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This work considers the problem of utilizing electroencephalographic signals for use in systems designed for monitoring and
enhancing the performance of aircraft pilots. Systems with such capabilities are generally referred to as cognitive cockpits. This
article provides a description of the potential that is carried by such systems, especially in terms of increasing flight safety.
Additionally, a neuropsychological background of the problem is presented. Conducted research was focused mainly on the
problem of discrimination between states of brain activity related to idle but focused anticipation of visual cue and reaction to
it. Especially, a problem of selecting a proper classification algorithm for such problems is being examined. For that purpose an
experiment involving 10 subjects was planned and conducted. Experimental electroencephalographic data was acquired using an
Emotiv EPOC+ headset. Proposed methodology involved use of a popular method in biomedical signal processing, the Common
Spatial Pattern, extraction of bandpower features, and an extensive test of different classification algorithms, such as Linear
Discriminant Analysis, 𝑘-nearest neighbors, and Support Vector Machines with linear and radial basis function kernels, Random
Forests, and Artificial Neural Networks.

1. Introduction

Introduction of automated systems in plane cockpits signifi-
cantly increased flight safety. However, in case of a failure of
such systems or occurrence of the situation in which these
systems are not able to behave correctly, pilots must instantly
and unexpectedly make complex decision [1, 2]. Usually
utilization of such supporting systems puts the pilot in a
passive role; this introduces an additional challenge in case
of issue occurrence that might take place after long period
of autonomous flight, because pilot must switch immediately
to the active role and cope with complex problems that
require quick judgment [3, 4]. In addition, high reliability of
autonomy might reduce focus of the pilots on monitoring
tasks, thus prolonging the time of context switching [5].
Moreover, introduction of automated processes that controls
the plane might reduce orientation in the current state of the
flying process resulting in automation surprises [1, 6] and
some researchers point out that extensive use of autonomy
systems might even decrease flying skills of the pilots [7].

On the other hand, performance of pilots and thereby
safety of flights can be greatly improved and increased thanks
to cognitive cockpit solutions [8, 9]. These systems provide
an adaptive support for decision processes and control tasks
involved in aircraft operations. Such solutions can be highly
profitable both for military and passenger flights. One very
critical feature of such systems applies to the elimination
of human related errors and prevention of disasters that
may result from them. A prominent solution to that can
be found with Man Machine Interaction systems such as
Brain Computer Interfaces (BCI) [10]. These systems are
capable of monitoring and interpreting of brain activity for
computer or prosthesis control, rehabilitation, and other
purposes. Such approach comply with the Human-Centred-
Automation concept [11] in which human interacts with the
controlled system in an efficient way that can be further
improved through supporting of the cockpit logic with infor-
mation about brain activities. Another interesting application
of BCI based systems might involve an assessment of pilots’
mental state and capabilities executed in before-flight-phase
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as well as during pilots’ training process, for example, in
order to train pilots that have tendencies to be less alert. Such
systems can be used, for example, by recruitment agencies to
evaluate the natural predispositions of pilots.

BCI systems are often based on electroencephalographic
(EEG) signals [12]. EEG signals are recorded bymeasurement
sensors that are placed in specific locations over the scalp.
These sensors are referred to as electrodes. Due to charac-
teristics of EEG signals that make them highly susceptible
to noise and artifact disturbances, differential measurement
configurations (uni- or bipolar) are commonly used. As a
result of EEG measurement the electroencephalogram (EEG)
is obtained. A few characteristic frequency bands are often
mentioned in the context of EEG: delta (below 4Hz), theta
(4–8Hz), alpha (8–12Hz), beta (12–28Hz), and gamma (over
30Hz) [13–15]. It is worth mentioning that the frequency
limits of specific waves are conventional as there is no proper
way of determining their exact values. Delta brainwaves are
commonly associated with deep sleep [13]. Theta activity
is present during states of drowsiness. Interestingly, theta
activity has been also observed during cognitive visual
processing [16]. The alpha activity occurs during states of
wakeful relaxation or tiredness and can be induced by closing
eyes [13, 15]. Although being commonly attributed to states of
relaxation, these rhythmsmay increase during some attention
tasks [15]. Beta waves are associated with normal waking
consciousness, alertness, and an active concentration [13,
17]. The role of gamma waves remains an active topic of a
research. The reproducibility of the conducted EEG research
is ensured by utilization of some universally accepted stan-
dards of electrode placement and annotation [13]. Among
most popular systems mentioned can be standard 10-20 as
well as its extensions such as 10-10 and 10-5 [18, 19].

In this research use of EEG signals recorded with inex-
pensive device (Emotiv EPOC+ headset) is evaluated for
the purposes of cognitive cockpit applications. Precisely, the
possibility of discrimination between two states of event-
related activity is tested: (i) brain activity related to idle but
focused anticipation of visual cue (pre-event) and (ii) reaction
to that cue (event-related).

2. Materials and Methods

2.1. Emotiv EPOC+ Headset. Emotiv EPOC+ Headset device
was used for the purpose of recording EEG data during
the experiment. In a study that examined the sensitivity of
few inexpensive, wireless, and/or dry (no gel) electrode EEG
systems, Emotiv has proven to perform well (compared to a
traditional, research-grade EEG system) in tasks concerning
measurement of alpha brain activity and Visual Steady-State
Response (VSSR) [20]. Due to setup problems authors of
that work were not able to provide evidence to support the
use of Emotiv in paradigms that rely on time-locked events.
However, some reports of use of Emotiv EEG systems in such
tasks are available [21].

The recorded signals useful bandwidth is in 0.16–43Hz
range and is sequentially sampled with frequency 128Hz and
14-bit (1 LSB = 0.51 𝜇V) resolution. EPOC+ has built in digital
5th-order Sinc filter and notch filters at 50Hz and 60Hz [22].

14 EEG channels available in Emotiv EPOC+ Headset are
compatible with the following electrodes of the international
10-10montage system:AF3, F7, F3, FC5, T7, P7,O1,O2, P8, T8,
FC6, F4, F8, and AF4, with references in the P3/P4 locations.

The placement of EPOC+ electrodes in the 10-10 config-
uration was marked in Figure 1 [19].

Some special precautions were undertaken to reduce the
contamination of the data by artifacts related to muscle
movements that occur, for example, during motor actions
of limbs, head repositioning, or blinking. All subjects were
seated in a comfortable position and instructed to limit their
movements as much as possible. Additionally, time segments
which were used in this research were visually inspected for
the presence of artifacts. Trials that were assessed to be too
contaminated were removed from the analysis.

2.2. Flight Simulators. Flight Navigational Procedure Train-
ing II (FNPT II) class simulator that passed QTG tests was
utilized during data acquisition phase. Simulator represents
Cessna 172RG plane model. It consists of fully enclosed full
size cockpit that faithfully reproduces internals of Cessna
172RG equipped with glass cockpit. It is characterized by 180
degree panoramic view of the environment that is generated
by three projectors. Simulator is located in an especially des-
ignated room (Virtual Flight Laboratory located at Silesian
University of Technology), without any windows and with
black walls thus no external stimulus can reach the pilot. In
addition air temperature is controlled so every experiment
can be conducted in the same conditions. Presented in
Figure 2 is an interior of the cockpit of used simulator.

2.3. Experiment Description. Through the experimentation
phase, measurements of a human brain activity during
simulated session of short haul flights with activated auto
pilot were acquired.Thepurposewas to obtain brain response
to randomly displayed visual cues that were presented on the
main screen of the simulator.

Participants were selected from the group of people aged
between 20 and 35. All participants claimed that they were
well rested before the session, and all of them gave consent to
utilization of outcomes obtained during the experiment for
the purpose of scientific researches. During experimentation
phase 10 people (all males) were examined. Every experi-
mental session started at the same time of the day around
12:00 (noon). It was ensured that through the experiment no
external factors had influenced its participants. Each session
took around 1 hour. Experiments took place in FNPT II class
simulator. Participants had to observe cockpit instruments as
well as scan the surrounding of the plane so to behave as pilots
during regular flight. They were instructed to stay focused
and maintain awareness in order to be able to instantly react
to the appearance of visual cue by pressing of a specific
button. The placement of button was chosen to minimize the
time required for reaction to visual cue by restraining any
additional movements of pilots body besides their fingers.

In order to maintain consistency between successive
experimental sessions simulated flight on the route between
Frankfurt and London was registered. The same section
of the flight was presented to each participant of the



Computational Intelligence and Neuroscience 3

Nz

＆Ｊ1

＆ＪＴ
＆Ｊ2

！＆7 ！＆3 ！＆Ｔ
！＆4

！＆8

F9 F7 F5 F3 F1 Fz F2
F4

F6
F8

F10

＆４9 ＆４7 ＆＃5 ＆＃3 ＆＃1 ＆＃Ｔ ＆＃2
＆＃4

＆＃6
＆４8

＆４10

４9 ４7 ＃5 ＃3 ＃1 ＃Ｔ ＃2 ＃4 ＃6 ４8 ４10

４０9
４０7

＃０5
＃０3 ＃０1 ＃０Ｔ ＃０2 ＃０4 ＃０6 ４０8 ４０10

０9
０7

０5
０3

＃０1 ０Ｔ ０2 ０4 ０6 ０8 ０10

０／7
０／3

０／Ｔ ０／4 ０／8

／1 ／Ｔ

／2

）Ｔ

Figure 1: Positions of electrodes in the standard 10-10 electrode montage system (own source based on [19]).

Figure 2: Interior of used flight simulator (cockpit) and a simulation
screen.

experiment. The terrain over which flight took place and
cockpit instruments were recorded. During this flight auto
pilot was activated. Flight took place at the average altitude of
6,000 feet. In order to simulate flight with auto pilot activated,
take off and landing were removed from registered material.
Moreover, whole flight that was presented to the participants
took place over land. Importantly sound of engines was also
generated in the cockpit.

Visual cues were displayed randomly with normal distri-
bution characterized by 𝜇 = 2.5 minutes and 𝜎 = 1 minute.
Variance was introduced in order to prevent habituation of
human brain to regular patterns. In addition, for each pilot
distribution of visual cues in time was the same. Visual cue

was represented by solid grey-colored box that overlap 75%
of themain simulator screen that is responsible for displaying
of the terrain.

Bioethical committee of The Jerzy Kukuczka Academy
of Physical Education in Katowice consent was obtained for
conduction of this type of experiment.

2.4. Class Definition. For the purpose of conducted exper-
iment two classes of mental activity were defined. Since
the phenomenon analyzed in this research is related to an
appearance of some visual, the problem is in fact a problem of
event-related activity analysis. Therefore, the following class
definitions were adopted:

(i) Pre-event: a focused anticipation of visual cue
(ii) Event-related: activity related to reaction to the visual

cue
The pre-event trials were calculated from time window

of 1.5 s length containing samples directly preceding the
appearance of visual cue. Trials of event-related class were
determined analogously, from all trials that followed the
presentation of cue and that belonged to 1.5 s long time
window. As a result one trial of each class was obtained for
each event. A concept of pre-event and event-related class
trials extraction is presented in Figure 3.

2.5. Spatial Filtering. To improve and enhance discriminative
characteristics of signals that could have been degraded
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Figure 3: Concept of pre-event and event-related class trials extrac-
tion (own source).

by volume conduction related effect, the Common Spatial
Pattern (CSP) has been used in this research [10]. CSP is
a technique used for analysis, decomposition, and trans-
formation of multichannel EEG recordings containing two
classes of different mental activity. It is a popular method of
spatial filtering, commonly used inBrain-Computer Interface
applications. It has proven to be especially effective with
logarithmic bandpower used as a feature describing the brain
activity. Although it ismost commonly associatedwithmotor
imagery, it might prove to be valuable approach to implement
it in our research in a task related to visual processing. Many
works show the superiority of CSP over classical spatial fil-
tering methods such as Surface Laplacian, Common Average
Reference, ICA, and others, thus justifying the choice of CSP
in this research [12, 23]. Variance of transformed EEG signals
is maximized for trials from one class and simultaneously
minimized for examples from another class. For that purpose
transformation matrix 𝑊 ∈ R𝑁×𝑁 is provided (𝑁 denotes
the number of measurement channels). Matrix 𝑊 consists
of column-wise of optimized spatial filters that correspond
to its eigenvalues. More detailed description of this problem
can be found in [10]. In general, to avoid overfitting only
few pairs of filters from both ends of eigenvalue spectrum
carrying a discriminant information are used. In this work, 3
best CSP filter pairs from each frequency subband were taken
into consideration for each subject.

Let us assume that𝑀 correspond to length of single trial
𝑋 ∈ R𝑀×𝑁 of EEG phenomena.Then, spatially filtered signal
𝑋CSP ∈ R𝑀×𝑁 of a single trial 𝑋 can be calculated with the
use of projection matrix𝑊 as presented in the following:

𝑋CSP = 𝑊𝑇𝑋. (1)

2.6. Bandpass Filtering. It is a well known fact that perfor-
mance of the CSP method depends highly on the frequency
bandwidth in which signals are analyzed. Therefore, signals
must be properly band-pass filtered before applying CSP to
them. Selection of appropriate frequency range is therefore a
critical and difficult task [10]. Many solutions to that problem
have been proposed; however one of the most prominent
approaches up to date remains to be the Filter Bank Common
Spatial Patterns (FBCSP) [23]. In this approach signals are
first filtered into𝐹multiple frequency subbands.Then, CSP is
applied to each of the filtered signals independently. A fixed
number of 𝑃 filter pairs is taken from each band to form a
general set of features. To avoid overfitting a feature extrac-
tion procedure must be then applied. For the purpose of this
article signals will be bandpass filtered into the following
ranges corresponding to specific brainwaves: delta (1–4Hz),
theta (4–8Hz), alpha (8–12Hz), low beta (12–16Hz), middle

beta (16–20Hz), middle-high beta (20–24Hz), high beta
(24–28Hz), two frequency ranges related to lower gamma
frequencies, respectively, gamma 1 (32–36Hz) and gamma 2
(36–40Hz), and 8–30Hz range that is commonly related to
planning ofmotormovement thatwill be referred to asmotor.

For the purpose of bandpass filtering of EEG data a
Kaiser Window Finite Impulse Response (FIR) band-pass
filter constructed of 466 coefficients was used. Since the
analysis was to be performed offline (no requirement of
causality of used algorithms) a zero-phase (nondelaying)
filter could be applied. This operation was implemented by
applying a recursive filter to the original signal both forward
and backward in time [24]. Let𝑥 ∈ R𝑀 be a recorded, discrete
signal consisting of length𝑀 andℎ be the impulse response of
the recursive filter. The output V ∈ R𝑀 of filtering operation
performed on 𝑥 is calculated as in

V = ℎ ∗ 𝑥. (2)

If 𝑥(𝑖) (𝑖 = 1, . . . ,𝑀) denotes a discrete sample o 𝑥, then
the operation of flipping the signal can be defined as in the
following [24].

flip (𝑥 (𝑖)) = 𝑥 (𝑀 − 𝑖) , ∀𝑖 ∈ Z, 𝑖 < 𝑀. (3)

The flip operator reverses the order of samples of a discrete
signal 𝑥 [24]. Considering the above definitions the output of
forward-backward filter𝑦 ∈ R𝑀 can be calculated as present-
ed in the following[24].

𝑦 = flip (ℎ ∗ flip (ℎ ∗ 𝑥)) . (4)

2.7. Feature Extraction. A logarithmof the variance of signal’s
amplitude is a very common feature used for the description
of EEG signal’s power [10, 25]. As mean value of bandpass
filtered EEG signal is close to 0, its power is in fact equivalent
to its variance. The normalization of the feature distribution
is obtained by an application of logarithm operation [25].

The band power features were used for the analysis of
brain activity during the experiment. They were calculated
from a spectrally and spatially filtered signals, individually for
each measurement channel from all samples that belonged to
class-specific time window (either pre-event or event-related).

2.8. Feature Selection. After creating a bank of filters by
bandpass filtering of EEG signals into 𝐹 = 10 subbands
and applying a CSP transformation to each subsignal a set of
𝐾 = 𝐹 × 𝑁ch = 140 features was obtained (𝑁ch = 14 denotes
the number of measurement channels of EPOC+). The most
discriminative subset of features was selected by ranking
all features based on the mutual information (MI) criteria.
MI of features describing two categorical classes (pre-event
and event-related in this work) represents the dependency
between these features. If samples of a given feature are
independent for defined classes theirMI will be equal to zero.
The higher the calculated MI values, the less discriminative
the features. Mutual information for a discrete variables was
obtained with nonparametric methods based on entropy
estimation from 𝑘-nearest neighbors distances [26–28]. In



Computational Intelligence and Neuroscience 5

this work 𝑁sel of best features from ranking (with biggest
difference in MI) were selected. In implemented feature
selection approach, feature ranking was created only utilizing
a features from a training data independently from classifier.
However, a number 𝑁sel was tuned individually for each
validation session on the basis of classifier performance on
the cross-validation data.Therefore, an implementedmethod
cannot be unambiguously described as a filter approach.
A detailed description of the whole feature selection and
machine learning pipeline implemented in this research can
be found in Section 2.9. Use of MI-based feature selection
methods has been proven to yield highly satisfactory results
in filter bank approaches to EEG signal processing [23].

2.9. Data Classification. To properly evaluate an accuracy of
proposed model a stratified modification of leave-one-out
procedure was implemented. In this approach one sample
from each class is being used as the testing set. Precisely,
one trial from pre-event and one trial from event-related class
related to the same event are selected to form a two-element
test set. Remaining samples are used to create a training set.
Described validation procedure allows taking into considera-
tion the chronological order of the trials. Proposed approach
resembles a real life case where training trials used for the
calibration of pilot aiding system are recorded consequently
during specified time frame. Such examples will share some
common characteristics that might differ for trials recorded
in later stages (i.e., during the operation of the system). The
resemblance of the proposed procedure of data partitioning
to the real applications is a significant advantage over random
choice of trials. This training set is used not only to train
given classifier but also to determine the CSP transformation
matrix 𝑊 and for the purposes of feature selection. This is
dictated by the fact that use of test data for that purposewould
lead to overfitting of themodel and result in biased estimation
of model accuracy. Described steps are repeated for every
event that is available for each subject. Final accuracy of
proposed model is obtained from the mean of all accuracies
achieved in particular cross-validation stages.

In this research an extensive test of different classification
algorithms, such as Linear Discriminant Analysis (LDA),
𝑘-nearest neighbors (kNN), Support Vector Machines with
linear (SVMLIN) and radial basis function (SVMRBF) kernels,
Random Forest (RF), and Artificial Neural Networks (NN)
was performed. A standard pipeline ofmachine learning pro-
cessing implemented for each classifier beginswith extraction
of bandpower features, normalizing their distribution by
application of logarithm transformation, removal of their
mean, and scaling the variance to unitary. Such standardiza-
tion of features is often required for many machine learning
estimators to perform in a satisfactory way. The next step
involves ranking the features by their MI and preliminarily
selecting 9 of them for the stage of classifier tuning. The
final number of features 𝑁sel is selected during the process
of machine learning estimator fine tuning. For that purpose
a cross-validated grid search strategy was utilized. In this
approach, all possible combinations of hyperparameters that
were specified by the user are tested and the combination
that allowed achieving the best accuracy is selected. For that

purpose the training data is furtherly divided into two sub-
sets: one used for training and the other for cross-validating
tested parameters. That was achieved with the 3-fold cross-
validation. After the best combination of hyperparameters
is selected, the estimator is refitted with them on the whole
training dataset.

Presented below are brief summaries of each tested
classification algorithm together with descriptions of sets of
hyperparameters used during the tuning process. For each
subject and each validation session classification model was
created using full training dataset with selected best hyper-
parameters and used to obtain a classification accuracy on
the test data. Achieved results and comparison of classifiers
performances are presented in Section 3.

2.9.1. Linear Discriminant Analysis. LDA is a simple classifier
with a linear decision boundary, obtained by fitting class
conditional densities to the data and using Bayes’ rule. It
is a parameterless estimator that did not require any fine
tuning. Creating a model with LDA requires the estimation
of class covariance matrices. However, in situations where
the number of training examples is small compared to the
number of features the empirical sample covariance is a poor
estimator. In such scenarios use of shrinkage can improve
estimation of covariance matrices. The level of shrinkage
can be controlled by specifying the shrinkage parameter.
For a 0 value of no shrinkage, the empirical covariance
matrix is used. For a value of 1 the diagonal matrix of
variances is used as an estimate for the covariancematrix.The
optimal shrinkage parameter was obtained following lemma
introduced by Ledoit and Wolf [29].

2.9.2. 𝑘-Nearest Neighbors. kNN is a distance based classifier
capable of solving nonlinear machine learning problems. In
this work the number of neighbors was selected from the
range 1 to rounded value of (4(𝑁𝑒 − 1)/3) − 1, where 𝑁𝑒
is a number of events that occurred during the experiment.
For the distance calculation the Minkowski metric was used.
The power parameter of this metric was selected from the
range 1–5. The points in each neighborhood either were
considered with uniform weights or have been assigned
weights proportional to the inverse of their distance from the
analyzed point.

2.9.3. Support Vector Machines with Linear Kernel. SVMLIN
belongs to a group of supervised learning methods used
for classification (or regression). These methods are quite
effective in cases, such as the one presented in this article,
where dimensionality of feature space is greater than the
number of examples. However, if the number of features is
much greater than the number of samples they are prone to
overfitting.

The best value of penalty parameter 𝐶 of the error term
was selected from the set of values evenly spaced on the
logarithmic space from −4 to 50 with step 5. During the
grid search parameter optimization it was determined for
each session whether to use the shrinking heuristic or not.
Tolerance for stopping criterion was selected from the values
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1𝑒−1, 1𝑒−3, 1𝑒−5.The calculations could be also terminated
if the upper limit of iterations 1𝑒 + 5 was reached.

2.9.4. Support Vector Machines with Radial Basis Function
Kernel. SVMRBF is a SVM algorithm that thanks to the
use of nonlinear kernel is capable of solving more complex
problems. Additionally, utilization of RBF kernel can help
avoiding overfitting in situations where dimensionality of
feature space is greater than the number of examples.

TheRBF kernel coefficient’s value, as well as the best value
of penalty parameter 𝐶 of the error term, was chosen during
the fine tuning stage from the set of values evenly spaced
on the logarithmic space from −3 to 20 with step 2. During
the grid search parameter optimization it was determined for
each session whether to use the shrinking heuristic or not.
Tolerance for stopping criterion was selected from the values
1𝑒−1, 1𝑒−3, 1𝑒−5.The calculations could be also terminated
if the upper limit of iterations 1𝑒 + 5 was reached.

2.9.5. Random Forest. RF is an ensemble estimator that
fits a number of decision tree classifiers utilizing variously
subsampled examples from the training dataset in order
to improve the accuracy and avoid overfitting. The final
classification is obtained by taking the majority vote of all
decision trees. In this work, the size of subsampled training
data is always the same as the original input sample size. This
was maintained by the utilization of sample bootstrapping
(sampling with replacement).The nodes of each decision tree
were expanded until all leaves were pure or until all leaves
contain less than some individually tuned minimal number
of samples per each split. This number was selected from the
set of evenly distributed number (with step 3) from range 1 to
15. The quality of splits could be evaluated with either using
the Gini impurity or entropy criteria. The number of trees
in the forest was chosen from the set of evenly distributed
number from range 1 to 100 with step 5 during the grid search
hyperparameter tuning.TheRF classifier creates new training
subsets with bootstrapping. This approach is often referred
to as bagging. As a result, a part of the training set remains
unused and can be utilized for the task of the generalization
error estimation. During that hyperparameter tuning it was
also determined whether or not to use out-of-bag samples to
estimate the generalization accuracy. It must be noted that
due to the fact that RF is a tree-based classifier it is capable
of ranking the features itself. Each feature can evaluate how it
improves the chosen quality of split. Nodes with the greatest
decrease of said measure are most discriminative. Therefore,
by restraining (pruning) trees below a particular node, a
subset of the most important features can be created. The
number of features to consider was fine tuned from range
1 to 140 with step 10 during the grid search hyperparameter
tuning.

2.9.6. Artificial Neural Networks. Feed Forward Artificial
Neural Networks with one hidden layer were evaluated.
During initial phase of tuning process NN with various
numbers of neurons in hidden layer (in the range 1 to 100)
and ReLU activation function were tested. LBFGS solver
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Figure 4: Comparison of classifier performance obtained for all
subjects.

was exploited for the training process. The purpose was to
determine the smallest NN structure that is characterized
by the best recognition properties. Results pointed out that
the best accuracy was delivered by NN with 4 neurons
in hidden layer. Therefore, this structure was selected for
the second phase of NN tuning. Due to the fact that the
results of NN training process are highly dependent on
initial weights between neurons withinNN structure, process
of NN training was repeated independently 100 times. At
the beginning of each training scenario NN weights were
initialized with random values. After execution of the second
phase of the tuning the best NN were selected.

3. Results and Discussion

In Figure 4, performances of classifiers have been compared
and visualized with the help of box plots. Additionally,
accuracies achieved by each of the evaluated classifiers
for each subject obtained from the validation procedure
described in Section 2.9 are presented in Tables 1–6. In Table 7
the distributions of results across all experimental sessions
for each classifier are summarized. For that purpose mean
accuracy 𝜇, standard deviation 𝜎, first quartile 𝑄1, and third
quartiles 𝑄3 were calculated.

The visual inspection of box plots presented in Figure 4,
as well as the analysis of distributions presented in Table 7,
suggests that the performance of a Neural Networks might
be significantly better than that of other algorithms. In order
to evaluate that hypothesis a one-way analysis of variance
(ANOVA) has been performed. The tested hypothesis was
that the means of all accuracies obtained for each subject
by different classifiers are the same against the alternative
hypothesis that the populations means are not all the same.
High 𝑝 value obtained from said ANOVA test (𝑝 = 0.2708)
might suggest that differences in mean accuracies of all
classifiers are not statistically significant.This however might
be attributed to the small size of the populations. One versus
one comparison of Neural Networks against LDA, kNN,
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Table 1: Linear Discriminant Analysis: accuracy of classification achieved for each subject (mean accuracy 73.01%).

Subject 1 2 3 4 5 6 7 8 9 10
Accuracy 79.41% 84.21% 78.57% 82.69% 66.67% 69.57% 68.18% 73.21% 66.67% 60.87%

Table 2: 𝑘-Nearest Neighbors: accuracy of classification achieved for each subject (mean accuracy 69.45%).

Subject 1 2 3 4 5 6 7 8 9 10
Accuracy 79.41% 84.21% 59.52% 80.77% 66.67% 56.52% 68.18% 80.36% 66.67% 52.17%

Table 3: Support Vector Machines with linear kernel: accuracy of classification achieved for each subject (mean accuracy 67.29%).

Subject 1 2 3 4 5 6 7 8 9 10
Accuracy 76.47% 84.21% 64.29% 80.77% 63.89% 56.52% 68.18% 69.64% 52.38% 56.52%

Table 4: Support Vector Machines with radial basis function kernel: accuracy of classification achieved for each subject (mean accuracy
69.32%).

Subject 1 2 3 4 5 6 7 8 9 10
Accuracy 73.53% 84.21% 73.81% 84.62% 69.44% 56.52% 73.21% 65.91% 61.90% 50.00%

Table 5: Random Forest: accuracy of classification achieved for each subject (mean accuracy 68.72%).

Subject 1 2 3 4 5 6 7 8 9 10
Accuracy 76.47% 86.84% 54.76% 84.62% 69.44% 60.87% 65.91% 78.57% 61.90% 47.83%

Table 6: Artificial Neural Networks: accuracy of classification achieved for each subject (mean accuracy 77.77%).

Subject 1 2 3 4 5 6 7 8 9 10
Accuracy 88.23% 92.10% 78.57% 86.53% 77.77% 67.39% 68.18% 80.35% 69.04% 69.56%

Table 7: Accuracy of classification achieved for each subject.

Classifier 𝜇 𝜎 𝑄
1

𝑄
3

LDA 73.01% 7.85% 66.67% 79.41%
kNN 69.45% 11.28% 59.52% 80.36%
SVMLIN 67.29% 10.72% 56.52% 76.47%
SVMRBF 69.32% 11.12% 61.90% 73.81%
RF 68.72% 12.85% 60.87% 78.57%
NN 77.77% 9.08% 69.04% 86.53%

SVMLIN, SVMRBF, and RF returned, respectively, following 𝑝
values: 0.2252, 0.0858, 0.0297, 0.0789, and 0.0856. Therefore,
it can be stated that the performance of NN classifier was
significantly better than that of other algorithms, apart from
LDA.

In order to evaluate the individual capabilities and suit-
ability of each subject for the use of pilot aiding system based
on the principle described in this article, a summary of all
accuracies obtained with different classifiers for each subject
has been presented in Figure 5. The low variance of results
achieved for subjects 1, 2, 4, 5, 7, and 9 suggests that these
participants are suitable forworkwith EEG-based pilot aiding
systems. It can be also observed that for subjects 6, 8, and
10 the proper choice of classification algorithm might result
in improved performance, while for subject 3 such selection

is crucial in order to achieve the best results. It is worth
observing that for 10th subject classification accuracies are in
general unsatisfactory, which might suggest that either this
person is not suitable for work with described systems or
the data might have been too noisy due to some unwanted
environmental factors.

4. Conclusions

In this work a methodology of EEG signals processing and
classifier tuning was proposed and evaluated for the purpose
of analyzing data containing states of brain activity related
to idle but focused anticipation of visual cue and reaction
to that cue. Although such methodology has been in use for
many classical BCI paradigms, to the best of our knowledge
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Figure 5: A summary of general accuracies that were obtained for
each subject.

its implementation to the problem posed in this research is a
novelty. Classification accuracies obtained during performed
tests show the significance of proper selection and fine
tuning of classification algorithm. In general case the Neural
Network classifier achieved the best mean accuracy, outper-
forming by almost 5% the LDA and other classifiers by over
8%. However, through the ANOVA tests it was not possible
to prove that any differences in means are significant, if all
classifiers were considered. This might be attributed to the
small number of subjects that participated in the experiment
and suggests that for a more reliable and profound analysis,
evaluation of proposed methodology and experiment with
greater number of participants must be performed.

A very interesting observation was made that, for some
subjects, the proposed methodology was not able to find a
configuration of parameters that would allow achieving a
satisfactory results. This could be attributed to some kind of
data corruption; however, a most likely related explanation
might be related to the phenomena referred to as BCI
illiteracy [30]. Accordingly to research and some documented
cases, some people are not capable of using BCI (Brain-
Computer Interface) systems [30–32]. Such condition must
be taken into consideration in the future works and, even
more importantly, if such solution as described in this article
was to be utilized in real life situations as a part of a pilot
aiding system.

Moreover, obtained results proved the possibility of using
EEG-based BCI systems in cognitive cockpit solutions. Pilot
aiding and reaction enhancing solutions, especially, that are
applicable during flight sessions could potentially highly
benefit from use of such signals. It must be noted that
conducted research was focused mainly on the problem of
discrimination between states of brain activity related to idle
but focused anticipation of visual cue and reaction to it.
Therefore, it should be considered more as an in-depth study
of one of themultiple steps of the functional cognitive cockpit
system rather than as a description of a complete solution.

In order to apply the proposed methods for BCI systems in
cognitive cockpit solution it would be necessary to develop
automaticmethods for the removal of artifacts related to body
movements and EMG.

Data recorded for the purposes of this research was
acquired using a low-cost and consumer available EEG
device with limited number and configuration of electrodes.
Despite that, used signals allowed to discriminate between
defined classes of brain activity. This validates the potential
of utilizing such EEG devices in future work and real life
applications. This is a very important conclusion, since pro-
fessional EEG measurement systems can be very expensive.
Most scientifically and clinically used EEG measurement
systems provide a great number of electrodes (usually over
60 or even 100). Such approach allows achieving a higher
spatial resolution of EEG data. As a result a more accurate
and precise conclusions about areas of brain activation can be
drawn. However, greater number of measurement electrodes
can significantly increase time required for experimental
setup and, even more importantly, decrease a comfort of
BCI systems and restrict the allowed movement range of
subject. Such situation is unacceptable for cognitive cockpit
and general pilot monitoring and aiding systems. Therefore,
the fact this research proved, that smaller number of electrode
channels can be effectively used in such applications, is
valuable in terms of practical solutions. Although there are
some interesting studies regarding the choice of classification
algorithms for the BCI purposes, these are mostly focused on
the classical BCI paradigms. To the best of our knowledge
a review of classification algorithms in the task of classifi-
cation of pre- and postevent related activity has not been
so far conducted, especially for experiment with low-cost
EEG systems. Thanks to the findings of this article a clear
information about the choice of the classification method
in the proposed methodology of EEG signal analysis was
obtained. This will hopefully greatly contribute to the future
research on that subject. Achieved results and conclusions
drawn from performed experiment will serve as a reference
for future works that will be focused not only on digital signal
processing and classification of pilot’s mental states present
during flight session but also on developing of data recording
procedures and hardware setup of measurement devices.
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