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Identification of metabolic vulnerabilities of
receptor tyrosine kinases-driven cancer
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Ruimin Huang2,4, Yue Song5, Elaine Lai-Han Leung6, Xiaojun Yao6, Jian Ding1,2, Meiyu Geng1,2, Shu-Hai Lin7 &

Min Huang 1,2

One of the biggest hurdles for the development of metabolism-targeted therapies is to

identify the responsive tumor subsets. However, the metabolic vulnerabilities for most human

cancers remain unclear. Establishing the link between metabolic signatures and the onco-

genic alterations of receptor tyrosine kinases (RTK), the most well-defined cancer genotypes,

may precisely direct metabolic intervention to a broad patient population. By integrating

metabolomics and transcriptomics, we herein show that oncogenic RTK activation causes

distinct metabolic preference. Specifically, EGFR activation branches glycolysis to the serine

synthesis for nucleotide biosynthesis and redox homeostasis, whereas FGFR activation

recycles lactate to fuel oxidative phosphorylation for energy generation. Genetic alterations of

EGFR and FGFR stratify the responsive tumors to pharmacological inhibitors that target serine

synthesis and lactate fluxes, respectively. Together, this study provides the molecular link

between cancer genotypes and metabolic dependency, providing basis for patient stratifi-

cation in metabolism-targeted therapies.
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Metabolic reprogramming, a hallmark of cancer, presents
the new therapeutic opportunities and attracts
increasing efforts in anticancer drug discovery1.

Recently, it has been increasingly recognized that biochemical
pathways rewiring often induces cancer cell-specific metabolic
vulnerabilities. The heterogeneous dependency on nutrient types,
also known as metabolic heterogeneity, exists across tumor
types2–6 and even within the same tumor tissues7–10. This may
largely explain the very limited benefits obtained in the clinical
modalities of metabolic targets, in which metabolic inhibitors
were often delivered to broad cancer patients without indication
of metabolic dependency.

Metabolic reprogramming is believed to result from genetic
alterations of metabolic enzymes or putative oncogene activa-
tion11. At present, only a handful of autonomous abnormalities of
metabolic enzyme genes have been identified, such as mutations
in isocitrate dehydrogenase (IDH) and amplification of phos-
phoglycerate dehydrogenase (PHGDH), which were considered
as genetic signatures for reprogrammed metabolic network12–15.
In most cases, a variety of oncogenes orchestrate metabolic
reprogramming by inducing broad changes in gene expressions.
For instance, oncogenic KRAS and MYC instigate multiple
metabolic changes including increasing glucose uptake, differ-
ential channeling of glucose metabolism and reprogramming
glutathione biosynthesis in cancer4,16. Among the plethora of
metabolic changes, whether cancer cells with certain oncogenic
activation will exhibit a defined metabolic preference is mostly
unclear.

Tyrosine kinase receptors (RTK), such as epidermal growth
factor receptor (EGFR) and fibroblast growth factor receptor
(FGFR), are well recognized oncogenic drivers for the malignant
growth of various types of human cancer. To date, RTK gene
alterations represent the most well-defined genetic subtypes of
human cancers, in particular in non-small cell lung cancer
(NSCLC). While mounting evidence has proved the impact of
RTK on the rewiring of metabolic network, whether RTK-driven
metabolic programming results in metabolic vulnerability with
therapeutic potential is still obscure. This study aims to connect
the metabolic vulnerability to RTK genotypes, which may provide
a feasible approach for patient stratification in metabolism-
targeted therapies.

In this study, we show that oncogenic RTK activation causes
distinct metabolic preference. EGFR activation branches glyco-
lysis to the serine synthesis for nucleotide biosynthesis and redox
homeostasis, whereas FGFR activation recycles lactate to fuel
oxidative phosphorylation for energy generation. Our findings
provide basis for stratifying EGFR and FGFR aberrant patients for
metabolism-targeted therapies.

Results
Oncogenic RTK differentially reprogram metabolic pheno-
types. To get a glimpse of the metabolic vulnerabilities of RTK
aberrant cancer, we took an approach of pharmacological inhi-
bitor screen. In total 15 NSCLC cell lines covering the high-
incidence gene abnormalities, including EGFR mutation (L858R,
exon 19 deletion, or exon 21 deletion), FGFR1 amplification,
KRAS mutation etc., were exposed to small molecule inhibitors
targeting enzymes in glucose and glutamine metabolism or fatty
acid oxidation (Supplementary Fig. 1a)17. Hierarchical cluster
analysis of the growth inhibition rate showed that cancer cells in
the same genotype tended to present similar metabolic vulner-
abilities, especially for FGFR- and EGFR-aberrant cells that
showed a trend of clustering (Supplementary Fig. 1a, Dataset 1).
To confirm the clinical relevance of this finding, we extracted 740
lung adenocarcinoma from TCGA database, among which 54

patients were confirmed with EGFR activating mutation (n= 25),
FGFR1/2 amplification (n= 15), MET amplification (n= 12), or
RET fusion (n= 2). In these samples, hierarchical clustering
based on the expression of 1498 metabolic genes annotated in
KEGG database showed the distinct expression pattern between
EGFR-, FGFR- and RET-activated tumors (Supplementary
Fig. 1b), suggesting the distinct metabolic phenotypes in onco-
genic RTK-driven cancer.

To understand how individual RTK preferentially rewires the
metabolic network, we took the advantage of a widely-used BAF3
isogeneic cell model18–20. The introduction of the well-validated
oncogenic form of EGFR (EGFR-L858R-T790M), FGFR1 (TEL-
FGFR1 fusion), MET (TPR-MET fusion) or RET (CCDC6-RET
fusion) into BAF3 cells resulted in the constitutively activated
RTK signaling (Fig. 1a, Supplementary Fig. 1c), the IL3-
independent cell growth (Fig. 1b), and the exquisite sensitivity
to specific RTK inhibitors (Fig. 1c). We then characterized the
metabolic profiles of these cell lines. It was noted that RTK
activation resulted in the enhancement of both aerobic glycolysis
and oxidative phosphorylation, as indicated by the extracellular
acidification rate (ECAR) and oxygen consumption rate (OCR),
but with striking difference between RTK genotypes (Fig. 1d).
Given that FGFR gene has four isoforms, we also introduced TEL-
FGFR3 fusion into BAF3 cells, which resulted in IL3-independent
cell growth (Supplementary Fig. 1d) and the sensitivity to
AZD4547 (Supplementary Fig. 1e). The comparison of the
FGFR1- and FGFR3-driven BAF3 cells in parallel observed the
equally enhanced ECAR and OCR (Supplementary Fig. 1f). We
also tested the impact of IL3 on the metabolic phenotypes in these
cells, as IL3 is very important for BAF3 cell model. As expected,
deprivation of IL3 resulted in the striking change in OCR in BAF3
parental cells, since the survival of these cells is highly dependent
on IL3. BAF3-RTK cells were generally much less affected
(Supplementary Fig. 1g). The metabolic effect appeared to
correlate with the impact of IL3 on cell growth (Fig. 1b).

Further, we performed non-targeted metabolomics in these cell
lines using mass spectrometry, which identified 124 metabolites
(Supplementary Dataset 2) in distinct metabolic profiling, shown
by the heatmap of the individual metabolite abundance (Fig. 1e),
and the principal component analysis (PCA) (Fig. 1f). Pathway
enrichment analysis of altered metabolites in BAF3-RTK cells
(1.5-fold cutoff in relative to parental BAF3 cells; p < 0.01)
highlighted several metabolic pathways, in particular, citrate
cycle (TCA cycle), nucleotide biosynthesis and amino acid
metabolism that are required for malignant cell growth.
Specifically, TCA cycle was preferentially activated in FGFR-
activated cells and glutamine/glutamate metabolism pathway was
particularly enhanced in BAF3-RET cells (Supplementary Fig. 1h,
Dataset 3).

The heterogeneous metabolic phenotypes may suggest the
difference in nutrient acquisition of proliferating cells. As such,
we applied the isotopologue spectral analysis (ISA) to examine
the incorporation of [U-13C6]-glucose, [U-13C5]-glutamine or [U-
13C16]-palmitate in the intermediate metabolites. This allowed us
to track the metabolism of glucose, glutamine and fatty acids,
three major nutrient sources in these cells (Fig. 1g, Supplementary
Fig. 1i-k). Heatmap representing the difference of 13C-labeled
metabolites in each cell line highlighted the promoted glucose
flux in both BAF3-EGFR and BAF3-FGFR1 cells and the
remarkably enhanced glutaminolysis in BAF3-RET cells. Instead,
MET amplified cells did not show clear metabolic signature
(Fig. 1h, Supplementary Dataset 4).

We then asked whether the metabolic changes in RTK-driven
cells could suggest their distinct metabolic dependency. Indeed,
we discovered that the proliferation of BAF3-EGFR and BAF3-
FGFR1 cells was heavily dependent on glucose supply, whereas
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the growth of BAF3-RET cells appeared relying on the glutamine
supply (Fig. 1i). These findings were further confirmed in a panel
of cancer cell lines bearing similar genetic alterations. 9 EGFR
mutant cells, 4 FGFR1/3 amplified cells and 2 RET fusion/mutant
cells were tested for their growth dependence on glucose or
glutamine. 7 wildtype lung cancer cells (except A431) without
detectable driving gene alterations annotated by cancer cell line
encyclopedia (CCLE) database, were used as control. The details
of the genetic alterations in these cells were summarized in
Supplementary Dataset 5. Consistent with the observation in

BAF3-RTK cells, the growth of EGFR- and FGFR- activated cells
were dependent on glucose rather than glutamine. In contrast,
wildtype cells, which lacked driving gene alterations, showed
variable growth dependency on glucose or glutamine. RET fusion/
mutant cells seemed to rely on glutamine for proliferation, which
yet remained to be further confirmed due to the very limited
number of cell lines available for this study (Supplementary
Fig. 1l). In line with this result, selective inhibition of glucose
metabolism using UK5099, a potent inhibitor of the mitochon-
drial pyruvate carrier, preferentially inhibited the growth of
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EGFR- and FGFR-dependent cancer cells (Supplementary
Fig. 1m). Glutaminase inhibitor CB839 exhibited a more notable
impact on the growth of RET-aberrant cancer cells (Supplemen-
tary Fig. 1n). Moreover, consistent with the fatty acid β-oxidation
tracing (Fig. 1h), inhibition of fatty acid oxidation using etomoxir
(ETO), an inhibitor of carnitine palmitoyl-transferase 1 A
(CPT1A), only slightly affected the cell growth of all four
genotypes (Supplementary Fig. 1o).

We also used RNA-sequencing (RNA-seq) to probe the genetic
basis for the distinct metabolic dependency in these cells, which
revealed the differentially transcribed gene clusters in these
BAF3-RTK cell lines (Supplementary Fig. 1p, Dataset 6). Further
KEGG pathway enrichment analysis of these distinguished
clusters revealed overrepresented glycolytic and serine synthetic
pathways in FGFR1- and EGFR-activated cells, respectively
(Fig. 1j, Supplementary Dataset 6). To probe the clinical relevance
of the observed transcriptional change in BAF3 cells, we analyzed
the metabolic genes in EGFR- and FGFR-activated tumors
described in Supplementary Fig. 1b. KEGG pathway enrichment
analysis of altered metabolic genes (1.5-fold cutoff; p < 0.01)
highlighted several metabolic pathways in EGFR- and FGFR-
activated tumors respectively, such as pyruvate metabolism in
FGFR amplified tumors and glycine serine and threonine
metabolism in EGFR mutant tumors (Supplementary Fig. 1q).
These findings overlapped with gene sets identified in the BAF3
cells. These data together demonstrated the preferentially
reprogrammed metabolic phenotypes driven by corresponding
RTK activation in cancer cells, which is worthy of in-depth
investigation.

EGFR activation promotes the serine synthesis pathway. The
data above suggested that EGFR activation mainly branched
glycolysis to the serine synthesis pathway (SSP) (Fig. 1h). The
upregulated serine metabolism was further confirmed in 740 lung
adenocarcinoma patients extracted from the TCGA database by
comparing EGFR mutated cancer patients (n= 25) with the rest
wildtype EGFR tumors (n= 715) (Fig. 2a), suggesting that SSP
could be a clinically-relevant vulnerability for this subtype of
cancer. We hence treated RTK-driven cells with CBR5884, a
widely used PHGDH inhibitor to decrease the de novo serine
synthesis in these cells21. BAF3-EGFR but not BAF3-FGFR1 cells
were responsive to PHGDH inhibition (Fig. 2b). Similar results
were observed using NCT503, another reported PHGDH inhi-
bitor22 (Supplementary Fig. 2a). This observation was further
confirmed in a panel of EGFR-aberrant cancer cells. Cancer cells
with FGFR1/2/3 gene amplification and wildtype lung cancer cells

(except A431) without detectable driving gene alterations were
tested in parallel as controls (Supplementary Dataset 5). We
observed that PHGDH inhibition using CBR5884 showed the
increased growth inhibition rate in EGFR mutant cells compared
with cells with FGFR alteration. Wildtype cells, which lacked
driving gene alterations, showed variable response but were
mostly nonresponsive (Fig. 2c, Supplementary Fig. 2b). We also
confirmed this metabolic vulnerability in vivo. PC9 xenograft
model (Fig. 2d) and a NSCLC patient-derived xenograft (PDX)
model LU-01-0251 with EGFR L858R mutation (Fig. 2e, Sup-
plementary Dataset 7) were treated with EGFR inhibitor Gefitinib
or NCT503, the only PHGDH inhibitor reported to exhibit
in vivo activity. NCT503 treatment resulted in the significant
tumor growth inhibition, slightly less potent than EGFR inhibi-
tion (Fig. 2d, e), but with minimum toxicity (Supplementary
Fig. 2c, d). These results confirmed the SSP dependency as a
metabolic vulnerability of EGFR-driven cancer. Very recent stu-
dies also reported the involvement of SSP in the acquired resis-
tance to EGFR inhibitors23,24, confirming the essential role of SSP
in EGFR mutant cancer from a different perspective.

We further asked how increased serine production contributes
to the malignant growth of EGFR-dependent cancer cells. To
address this question, [U-13C6]-labeled glucose was used as a
tracer to measure the fractional contribution to 13C-labeled
nucleotide isotopologues in BAF3-EGFR cells, using BAF3-
FGFR1 cells as a control (Fig. 2f). In this assay, we detected the
enhanced proportion of M6 to M9 nucleotide isotopologues in
EGFR-driven cells, which indicated the glycine and formate
carbons incorporated into purine nucleotides (Fig. 2f, g,
Supplementary Fig. 2e). In addition to nucleotide synthesis,
glucose-derived serine could be incorporated into GSH via the
generation of glycine, contributing to the redox homeostasis. We
detected that glucose-derived GSH, shown as M2 isotopologue in
the UHPLC-qTOF-MS spectrum using [U-13C6]-glucose tracer,
was also enhanced by EGFR activation in BAF3 cells (Supple-
mentary Fig. 2f). The impairment of SSP by knocking down
PHGDH or phosphoserine phosphatase (PSPH) preferentially
increased the reactive oxygen species (ROS) generation in EGFR
mutant PC9 cells compared with the FGFR1 amplified DMS114
cells (Supplementary Fig. 2g, h). These results suggested a model
that EGFR promoted SSP to supply building blocks for DNA/
RNA synthesis and reducing equivalents. In support of this
model, the growth of EGFR-activated cells was relatively less
dependent on exogenous supply of serine, compared with
FGFR1-activated cells (Fig. 2h).

We next proceeded to understanding how EGFR activation
preferentially activated SSP. By comparing the expression of SSP

Fig. 1 Oncogenic RTK differentially reprogram metabolic phenotypes. a Immunoblotting analysis. Cells were treated with indicated RTK inhibitors (100 nM)
for 1 h. b IL3 dependence analysis. Cell growth fold changes with or without IL3 were plotted by counting cell numbers. Data were means of triplicates; error
bars represented SD. c Cell sensitivity to RTK inhibition. Cells were treated with indicated RTK inhibitors for 72 h and cell viability was analyzed using CCK8
assay. Data were means of duplicates; error bars represented SD. d Oxygen consumption rate (OCR) and extracellular acidification rate (ECAR)
measurement using Seahorse XF96 analyzer. Data were means of triplicates; error bars represented SD. e Heatmap depicting the metabolite intensities in
the metabolomics data. Rows indicate different metabolites, and columns indicate different cells (n= 3 per cell line). The log transformed metabolite
intensities are Z scored/standardized. f Principal component analysis (PCA). Three-dimensional clustergram depicts the internal structure of
metabolomics data set with respect to variance by MetaboAnalyst 4.0. g Tracer scheme illustrating the flux of [U-13C6]-glucose (orange), [U-13C5]-
glutamine (green) or [U-13C16]-palmitate (gray). Cells were cultured in the presence of [U-13C6]-glucose (12 h), [U-13C5]-glutamine (24 h) or [U-13C16]-
palmitate (24 h) prior to mass spectrometry analysis. h Heatmap depicting representative 13C-labeled fraction contribution of the metabolite
isotopologues. Rows indicate different metabolites and columns indicate different cells (n= 3 per cell line). The log transformed metabolite intensities are
Z scored/standardized. i Glucose/glutamine dependence analysis. Cells were cultured in RPMI-1640 with or without glucose (GLC)/glutamine (GLN) for
3 days. Cell growth fold changes were plotted by counting cell numbers. Data were means of triplicates; error bars represented SD. j Transcriptome
analysis. KEGG pathway enrichment analysis of differentially transcribed clusters in a heatmap of transcriptome profiling by RNA-seq. The different
clusters are color-coded in Supplementary Fig. 1p. Bars show the enrichment score of pathways and are presented according to p value using Fisher's exact
test (p < 0.05). See the complete list of KEGG pathways in Supplementary Dataset 6. Source data are provided as a Source Data file
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related enzymes between BAF3-EGFR and BAF3-FGFR1 cells, we
discovered several key metabolic enzymes that were specifically
upregulated upon EGFR activation, in particular PSPH, serine
hydroxymethyltransferase 1 (SHMT1), SHMT2 and methylene-
tetrahydrofolate dehydrogenase 1(MTHFD1) (Fig. 2i, Table 1).
Among these enzymes, the significant upregulation of PHGDH
and PSPH was also observed in the same set of lung
adenocarcinoma patient samples, as described in Fig. 2a (Fig. 2j).

We also did the immunohistochemistry analysis of these
metabolic enzymes in a panel of NSCLC PDX tumor tissues
with mutant EGFR (n= 6) or wildtype RTK (n= 6). Compared
with the wildtype tumors, most of the EGFR mutant tumors
showed higher expression level of PSPH and PHGDH (Supple-
mentary Fig. 2i). Importantly, the upregulated PHGDH and
PSPH expression in the PDX model (LU-01-0251) could be
reversed by the treatment of EGFR inhibitor (Fig. 2e, k).
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Among these enzymes, PSPH, a key enzyme for the de novo
serine synthesis as well as the rate-limiting enzyme of this
pathway in the liver25, was found to be significantly upregulated
in EGFR mutant lung patients versus those bearing wildtype
EGFR (Fig. 2j). Then, we were intrigued to look into the PSPH
status in patients (1144 from TCGA database). This led to the
unexpected identification of the co-occurrence of PSPH focal
amplification and EGFR activating mutation (L858R point
mutation, exon 19 deletion, or exon 21 deletion), which
accounted for 16% (58/164, p= 0.0067) in EGFR mutant subtype
(Fig. 2l). Considering the adjacent location of these two genes in
Chr 7p 11.2, the concurrent occurrence of PSPH amplification
and EGFR mutation may result from their physical linkage in this
local region. The results suggested the existence of a set of NSCLC
patients with highly promoted SSP due to the genetic alteration in
both genes. These data may suggest PSPH as a target associated
with EGFR activation in NSCLC. In line with this notion,
knockdown of PSPH resulted in remarkably decreased cell growth
of EGFR-mutant PC9 and NCI-H1975 cells, similar to EGFR
inactivation (Fig. 2m, Table 2). In parallel testing of FGFR
amplified cells showed that cell growth was differentially affected

(Supplementary Fig. 2j). Together, these data highlighted the SSP
as a metabolic vulnerability in EGFR-mutant cancer (Supple-
mentary Fig. 2k).

FGFR activation enhances aerobic glycolysis and recycles lac-
tate. FGFR aberrations occur in multiple types of human cancers,
including NSCLC, bladder cancer, and breast cancer etc.26–28.
FGFR-activated cells appeared to avidly consume more glucose
into glycolytic pathway (Fig. 1h). This was confirmed by the
highly accelerated intracellular generation and extracellular
secretion of lactate, the key product of aerobic glycolysis (Fig. 3a).
Given the remarkable OCR enhancement (Fig. 1d), we suspected
that lactate might serve as an alternative carbon source to fuel the
TCA cycle. In support of this hypothesis, we detected the pro-
moted fractional contributions of glucose to the TCA cycle
intermediates in FGFR-activated cells by tracing the carbon
enrichment of [U-13C6]-glucose to the intermediate metabolites
of the TCA cycle in BAF3-RTK cells (Fig. 3b, Supplementary
Dataset 4). The competitive uptake analysis of [U-13C3]-lactate (5
mM) in the presence of label-free glucose (10 mM) revealed that
FGFR cells seemed to prefer to consume lactate for the TCA

Fig. 2 EGFR activation promotes the serine synthesis pathway. a GO enrichment analysis of upregulated metabolic genes in EGFR-mutant lung cancer
patients. Data were from 740 lung adenocarcinoma datasets from TCGA database (cutoff fold change > 2 and p < 0.01 versus EGFR wildtype cancer). Gene
ratio represents the proportion of counted genes in the enriched pathway. b Sensitivity to PHGDH inhibition. Cell viability was measured using CCK-8 assay
after treatment with CBR5884 (20 µM) for 72 h. Data were means of triplicates; error bars represented SD. c Sensitivity of a panel of cancer cells to
PHGDH inhibition. Cells with indicated genetic alterations were treated with CBR5884 at 6.25, 12.5 or 25 µM for 6 days. Heatmap depicts the inhibition
rate of the cell growth. d, e Tumor growth curve of PC9 xenograft and LU-01-0251 PDX. Mice were dosed with NCT-503 (40mg/kg) or Gefitinib (5 mg/kg
for PC9, 1 mg/kg for LU-01-0251) daily for indicated days (n= 8 for PC9, n= 6 for LU-01-0251). Data were means and error bars represented SEM. f
Tracer scheme illustrating the flux of [U-13C6]-glucose to purine nucleosides. g 13C enrichment of purine nucleosides after [U-13C6]-glucose labeling for 24
h. h Serine dependence analysis. Cell viability was measured by counting cell numbers after 3-day culture. i Transcript analysis in BAF3-RTK cells compared
with BAF3 cells. j, PSPH or PHGDH expression between EGFR mutant and wildtype subtypes. Data source was as described in a. k Immunohistochemistry
analysis of tumor tissues from LU-01-0251 PDX as described in e. Tumor samples were collected at 6 h after the last dosing. Scale bar, 20 μm. l Upper: The
occurrence of EGFR activating mutation and/or PSPH amplification in TCGA data sets; Lower: The alteration of EGFR and PSPH gene in NSCLC patients. m
Cell growth measurement. Cells numbers were counted after transfected with indicated siRNAs for 72 h. Data were means of triplicates; error bars
represented SD. For all bar graphs, ***p < 0.001, **p < 0.01, *p < 0.05, n.s.≥ 0.05 for two-tailed Student’s t test. Source data are provided as a Source
Data file

Table 1 The sequences of primers used for RT-qPCR analysis

Gene Organism Forward primer Reverse primer

GLUT1 Mus musculus 5′-CTTCACTGTGGTGTCGCTGT-3′ 5′-UUCUCCGAACGUGUCACGUTT-3′
HK2 Mus musculus 5′-TGATCGCCTGCTTATTCACGG-3′ 5′-AACCGCCTAGAAATCTCCAGA-3′
PFKL Mus musculus 5′-GGAGGCGAGAACATCAAGCC-3′ 5′-CGGCCTTCCCTCGTAGTGA-3′
PKM2 Mus musculus 5′-GCCGCCTGGACATTGACTC-3′ 5′-CCATGAGAGAAATTCAGCCGAG-3′
LDHA Mus musculus 5′-TGTCTCCAGCAAAGACTACTGT-3′ 5′-GACTGTACTTGACAATGTTGGGA-3′
PHGDH Mus musculus 5′-CGGCAGAATTGGAAGAGAGGT-3′ 5′-AGGAGTGGGGTATGGACAGTT-3′
PSPH Mus musculus 5′-CATCTCTGGTGGCTTTCGGA-3′ 5′-TTTCCTTTCCCACCCGACTC-3′
PSAT1 Mus musculus 5′-GGTGTGATTTTCGCTGGTGC-3′ 5′-AGGACTGATGGGCACTCTCT-3′
SHMT1 Mus musculus 5′-CAGGGCTCTGTCTGATGCAC-3′ 5′-CGTAACGCGCTCTTGTCAC-3′
SHMT2 Mus musculus 5′-ATGCCCTATAAGCTCAATCCCC-3′ 5′-TCTCATGCGTGCATAGTCAATG-3′
MTHFD1 Mus musculus 5′-GCGGAGAGGATGAGATCATAGA-3′ 5′-GTCACCCCGTCCACATCTT-3′
MTHFD2 Mus musculus 5′-AGTGCGAAATGAAGCCGTTG-3′ 5′-GACTGGCGGGATTGTCACC-3′
GAPDH Mus musculus 5′-AGGTCGGTGTGAACGGATTTG-3′ 5′-TGTAGACCATGTAGTTGAGGTCA-3′
GLUT1 Homo sapiens 5′-TCACTGTCGTGTCGCTGTTT-3′ 5′-GGCCACGATGCTCAGATAGG-3′
LDHA Homo sapiens 5′-GGCCTGTGCCATCAGTATCT-3′ 5′-GAAAAGGCTGCCATGTTGGA-3′
PHGDH Homo sapiens 5′-CACGACAGGCTTGCTGAATGA-3′ 5′-CTTCCGTAAACACGTCCAGTG-3′
PSPH Homo sapiens 5′-GCATAAGGGAGCTGGTAAGTCG-3′ 5′-ACCTGCATATTCACCGTTAAAGT-3′
HIF1A Homo sapiens 5′-ACCTTCATCGGAAACTCCAAAG-3′ 5′-CTGTTAGGCTGGGAAAAGTTAGG-3′
MYC Homo sapiens 5′-GGCTCCTGGCAAAAGGTCA-3′ 5′-CTGCGTAGTTGTGCTGATGT-3′
ATF4 Homo sapiens 5′-ATGACCGAAATGAGCTTCCTG-3′ 5′-GCTGGAGAACCCATGAGGT-3′
NRF2 Homo sapiens 5′-TTCCCGGTCACATCGAGAG-3′ 5′v-TCCTGTTGCATACCGTCTAAATC-3′
β-actin Homo sapiens 5′-GGGACCTGACTGACTACCTC-3′ 5′-ATCTTCATTGTGCTGGGTG-3′
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supply in vitro (Fig. 3c, Supplementary Fig. 3a). We further traced
the fractional contributions of glucose and lactate to the TCA
cycle in FGFR1 amplified NCI-H1581 xenograft model, in which
mice were co-injected with [U-13C6]-glucose and [3-13C]-lactate
intravenously and tumor tissues were collected after 30 min.
Glucose carbons incorporated into the intermediates of TCA
cycle were similar to lactate carbons (Fig. 3d), after normalized by
the plasma lactate M3 or M1 isotopologue intensity resulted from
peripheral conversion (Supplementary Fig. 3b). These results
highlighted lactate as an equal fuel for the TCA cycle as glucose.
In line with these results, inhibition of lactate production using
Oxamate or GSK2837808A29 decreased OCR level in FGFR1
amplified NCI-H1581 cells, similar to the impact of FGFR inhi-
bition (Fig. 3e). In contrast, the intervention of lactate production
only slightly affected mitochondrial capacity in EGFR-dependent
PC9 cells (Supplementary Fig. 3c).

Accelerated oxidative phosphorylation is known to mainly
supply ATP for the rapid malignant growth, resulting in large
amounts of ROS as a byproduct. We further measured the
contribution of lactate to ATP and ROS production in FGFR-
activated cells. In BAF3 cells, activation of FGFR1 was associated
with higher level of ATP and ROS generation compared with
EGFR activation (Fig. 3f, g). Both ATP and ROS production in
FGFR1-activated NCI-H1581 cells could be partially reversed by
LDH inhibitors, with an extent similar to FGFR inhibition
(Fig. 3f, g). These data together revealed that lactate plays an
important role in fueling oxidative phosphorylation in FGFR-
aberrant cancer.

We also compared the expression of glycolytic enzymes upon
FGFR1 or EGFR activation in BAF3 cells. A few glycolytic
enzymes, such as lactate dehydrogenase A (LDHA), ATP-
dependent 6-phosphofructokinase (PFKL), glucose transporter 1
(GLUT1) and hexokinase 2 (HK2) were found particularly
upregulated in BAF3-FGFR1 cells (Fig. 3h). FGFR amplification
associated upregulation of these enzymes were confirmed in 740
lung adenocarcinoma patient samples extracted from TCGA
database (Fig. 3i). Using immunohistochemistry analysis, these
findings were recapitulated in NSCLC PDX tumor tissues with
FGFR1/2 amplification versus RTK wildtype tumors. Most
tumors with FGFR alteration showed higher expression of LDHA
and HK2 (Fig. 3j, Supplementary Fig. 3d). Furthermore, we used
Project Achilles, a CRISPR/Cas9 screening-based dataset30,31, to
reveal the cell growth dependence on these metabolic genes.
These results indicated that the dependence on LDHA, PFKL and
PKM was significantly higher in FGFR-amplified cancer cells than
the FGFR wildtype cancer cells. As a control, the dependence on
PHGDH and PSPH showed no difference between the indicated
subgroups (Supplementary Fig. 3e), suggesting that FGFR-
amplified cells were highly dependent on glycolysis.

All these findings suggested the essential role of lactate
production in FGFR-driven cells. We hence disrupted the lactate
production in a panel of cancer cells, as described in Fig. 2c using
GSK2837808A, a highly selective and potent LDHA inhibitor.
The growth of FGFR-aberrant cells appeared more responsive to
LDH inhibitor compared with the control cells (Fig. 3k),
suggesting that lactate metabolism was preferentially required
for FGFR-driven malignant growth. Importantly, lactate produc-
tion inhibitor Oxamate significantly inhibited the tumor growth
without mice body weight change in SNU16 and NCI-H1581
xenograft models (Fig. 3l, Supplementary Fig. 3f), along with the
decreased lactate and citrate generation in the tumors detected by
[U-13C6]-glucose tracer (Fig. 3l). We further tested the efficacy of
Oxamate in two FGFR2-amplified NSCLC PDX models. In model
LU6429, the benefit of either Oxamate or AZD4547 was clear but
with different extents between the individual tumors. Of note,
combinational inhibition of LDH and FGFR using AZD4547-

Table 2 siRNA targeting sequence

Gene Organism Sequence sense (5′−3′)
NC Homo sapiens UUCUCCGAACGUGUCACGUTT
siEGFR Homo sapiens CUCCAGAGGAUGUUCAAUATT
siFGFR1 Homo sapiens GACUUCACUGGUGUCAGAUTT
siPHGDH #1 Homo sapiens UAGCAAAGAGGAGCUGAUATT
siPHGDH #2 Homo sapiens GACUUCACUGGUGUCAGAUTT
siPSPH #1 Homo sapiens GGCAACAAGUCAAGGAUAATT
siPSPH #2 Homo sapiens GGAGUAUUGUAGAGCAUGUTT
siMYC #1 Homo sapiens CUCAACGUUAGCUUCACCATT
siMYC #2 Homo sapiens GUGCAGCCGUAUUUCUACUTT
siHIF1A #1 Homo sapiens CUCCCUAUAUCCCAAUGGATT
siHIF1A #2 Homo sapiens CGAGGAAGAACUAUGAACATT
siATF4 #1 Homo sapiens CUCCCAGAAAGUUUAACAATT
siATF4 #2 Homo sapiens CUGCUUACGUUGCCAUGAUT
CBFB #1 Homo sapiens GAAGCAAGUUCGAGAACGATT
CBFB #2 Homo sapiens CAGGAACCAAUCUGUCUCUTT
CBFB #3 Homo sapiens CAGGCAAGGUAUAUUUGAATT
CEBPA #1 Homo sapiens CCUUCAACGACGAGUUCCUTT
CEBPA #2 Homo sapiens CGGUGGACAAGAACAGCAATT
CEBPA #3 Homo sapiens GCUGACCAGUGACAAUGACTT
CTCF #1 Homo sapiens GGUGGAGACACUAGAACAATT
CTCF #3 Homo sapiens GUGCAAUUGAGAACAUUAUTT
CTCF #2 Homo sapiens GGUCUGCUAUCAGAGGUUATT
E2F4 #1 Homo sapiens CGGCGGAUUUACGACAUUATT
E2F4 #2 Homo sapiens CACCUGAAGAUUUGCUCCATT
E2F4 #3 Homo sapiens CGGGAGACCACGAUUAUAUTT
ETS1 #1 Homo sapiens GUGGUUUCCAGUCCAAUUATT
ETS1 #2 Homo sapiens GUCCCACUAUUAACUCCAATT
ETS1 #3 Homo sapiens CGCUAUACCUCGGAUUACUTT
FOS #1 Homo sapiens GGGAUAGCCUCUCUUACUATT
FOS #2 Homo sapiens GACAGACCAACUAGAAGAUTT
FOS #3 Homo sapiens CAAGGUGGAACAGUUAUCUTT
FOXO1 #1 Homo sapiens CCUACACAGCAAGUUCAUUTT
FOXO1 #2 Homo sapiens CCAUGGACAACAACAGUAATT
FOXO1 #3 Homo sapiens GCUCAAAUGCUAGUACUAUTT
GATA4 #1 Homo sapiens GUAGAUAUGUUUGACGACUTT
GATA4 #2 Homo sapiens GCCUCUACCACAAGAUGAATT
GATA4 #3 Homo sapiens GAAUAAAUCUAAGACACCATT
GTF2B #1 Homo sapiens CCAAGAGUCACAUGUCCAATT
GTF2B #2 Homo sapiens GGUUGUAGGUGACCGGGUUTT
GTF2B #3 Homo sapiens GCAGUUCUGAUCGGGCAAUTT
HNF4A #1 Homo sapiens ACACCACCCUGGAAUUUGATT
HNF4A #2 Homo sapiens CAUGUACUCCUGCAGAUUUTT
HNF4A #3 Homo sapiens GCAGCUGCUGGUUCUCGUUTT
IRF5 #1 Homo sapiens GACGGAGAUAACACCAUCUTT
IRF5 #2 Homo sapiens CGAGAGAAGAAGCUCAUUATT
IRF5 #3 Homo sapiens GCAUGGUGGAGCAAUUCAATT
MAF #1 Homo sapiens GAACUGGCAAUGAGCAACUTT
MAF #2 Homo sapiens CUGGAAGACUACUACUGGATT
MAF #3 Homo sapiens GACGCGUACAAGGAGAAAUTT
MEF2A #1 Homo sapiens GGAGGACAGAUUCAGCAAATT
MEF2A #2 Homo sapiens GGGAAUGGAUUUGUAAACUTT
MEF2A #3 Homo sapiens GCCCUUCUGUAAAGCGAAUTT
MITF #1 Homo sapiens CCACCAAGUACCACAUACATT
MITF #2 Homo sapiens GUGGACUAUAUCCGAAAGUTT
MITF #3 Homo sapiens GACCUAACCUGUACAACAATT
NOTCH1 #1 Homo sapiens GUCCAGGAAACAACUGCAATT
NOTCH1 #2 Homo sapiens GGGAGCAUGUGUAACAUCATT
NOTCH1 #3 Homo sapiens GGGCUAACAAAGAUAUGCATT
NR1H2 #1 Homo sapiens CCCAGAUCCCGAAGAGGAATT
NR1H2 #2 Homo sapiens CCAGCUAACAGCGGCUCAATT
NR1H2 #3 Homo sapiens GCCUGCAGGUGGAGUUCAUTT
NFIC #1 Homo sapiens CCGACUUCCAGGAGAGCUUTT
NFIC #2 Homo sapiens CCACGAGUAGCAGCCGCAATT
NFIC #3 Homo sapiens GCAACUGGACGGAGGACAUTT
PPARG #1 Homo sapiens ACUCCACAUUACGAAGACATT
PPARG #2 Homo sapiens CCUCAUGGCAAUUGAAUGUTT
PPARG #3 Homo sapiens CUGGCCUCCUUGAUGAAUATT
SOX2 #1 Homo sapiens CUGCAGUACAACUCCAUGATT
SOX2 #2 Homo sapiens CCACCUACAGCAUGUCCUATT
SOX2 #3 Homo sapiens GGACAUGAUCAGCAUGUAUTT
SREBF1 #1 Homo sapiens GGAGGCUUCUCUACAGGAATT
SREBF1 #2 Homo sapiens CCUUGGUGCUUCUCUUUGUTT
SREBF1 #3 Homo sapiens GCCUGACCAUCUGUGAGAATT
TCF7 #1 Homo sapiens GCAUGUACAAAGAGACCGUTT
TCF7 #2 Homo sapiens CCACCCAUCCUUGAUGCUATT
TCF7 #3 Homo sapiens CCGCAACCUGAAGACACAATT
TEAD1 #1 Homo sapiens CUGCCAUUCAUAACAAGCUTT
TEAD1 #2 Homo sapiens GGCAUGCCAACCAUUCUUATT
TEAD1 #3 Homo sapiens GUGGUAACAAACAGGGAUATT
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Oxamate combination caused a more universal and sustainable
benefit in tumor growth inhibition than FGFR inhibition alone
(Fig. 3m, Supplementary Fig. 3g), suggesting the potential in
lessening the resistance development to FGFR inhibitors. Of note,
the combination study was well tolerated as indicated by mice
body weight change. Similar trend was observed in another

FGFR2-amplified model LU0743 though the therapeutic effect
appeared less striking (Supplementary Fig. 3h). Of interest, we
also used metformin to block the mitochondrial respiration, given
the recycled lactate was utilized to fuel the oxidative
phosphorylation. Indeed, metformin showed similar efficacy
compared with the inhibition of lactate production (Fig. 3m).
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Together, we herein demonstrated the importance of lactate
production and consequential oxidative phosphorylation in
FGFR-aberrant cancer and indicated therapeutic promise arising
from this metabolic phenotype (Supplementary Fig. 3i).

Thus far, we have shown that EGFR and FGFR gene alteration
could be used to stratify tumors responsive to inhibitors of SSP
and lactate production, respectively. To strengthen this result, we
also tested several tumor models bearing wildtype RTK. In A431
cell xenograft, which often has been used as a control for RTK
study32, PHGDH or LDH inhibitors were barely responded
(Supplementary Fig. 3j). Likewise, in 3 NSCLC PDX models
without detectable driving gene alterations (LU-01-0393, LU2071
and LU-01-0416), we did not observe the apparent therapeutic
benefits (Supplementary Fig. 3k). The results together emphasized
the importance of patient selection for these inhibitors.

ATF4 and c-Myc orchestrate metabolic reprogramming. The
remaining question is what accounts for the preferential meta-
bolic rewiring in EGFR and FGFR cells. Previous evidence has
highlighted the role of transcriptional factors (TFs) as key nodes
in rewiring the metabolic network in cancer cells33–36. We hence
proceeded to identify TFs responsible for orchestrating the
transcriptome reprogramming in FGFR- and EGFR-dependent
cells. According to the RNA-seq data in BAF3 cells, we stratified
metabolic genes (annotated by KEGG database) whose expression
were promoted by RTK activation (1.5-fold, p < 0.01 cutoff in
relative to parental cells), and established a network model
describing the TF-target interactions according to the published
TF database (Cistrom, ORegAnno, mSigDB, CellNet and UCSC).
This led to the identification of 127 and 138 TFs that might be
potentially involved in regulating the differentially transcribed
metabolic enzymes in EGFR- and FGFR-addicted context
respectively (Supplementary Dataset 8). Based on this bioinfor-
matic annotation, we carried out a functional screen. Among the
TFs suggested by the TF-target interaction network, we knocked
down 25 representing TFs in FGFR3-dependent RT112 and
EGFR-activated PC9 cells, and the expression of representative
metabolic genes, PSPH and PHGDH for the SSP and LDHA and
GLUT1 for glycolysis, were examined by RT-qPCR analysis
respectively. This identified ATF4, FOXO1, HIF1A, MAF, MYC,
and SREBP1 in FGFR-dependent cancer cells whereas ATF4 and
MYC in EGFR-addicted cancer cells, which were required for the
transcription of the signature genes in glycolysis or SSP (Fig. 4a,
Supplementary Dataset 9). Among these TFs, we noticed that
only HIF1A and MYC expression were affected by FGFR inhi-
bition. Likewise, EGFR inhibitor Gefitinib could affect both ATF4
and MYC expression in EGFR mutant cancer cells (Fig. 4b) and
xenograft models (Fig. 4c). Further, knockdown of MYC rather

than ATF4 could substantially suppress the cell growth of
FGFR3-activated RT112 cells, whereas in EGFR-aberrant PC9
cells, only knockdown of ATF4 clearly suppressed cell growth
(Fig. 4d). All these data concluded the essential role of HIF1A-
MYC (in FGFR-addicted cells) and ATF4-MYC (in EGFR-
activated cells) in transcriptionally regulating the metabolic net-
work, and MYC and ATF4 seemed to play a more dominant
role for FGFR-addicted cells and EGFR-activated cells,
respectively.

We then looked into the network analysis to confirm the close
association of the identified TF pairs in regulating metabolic
network. Ten altered metabolic genes were co-regulated by MYC
and ATF4 in EGFR cells, including PSPH, while over 20 genes
encoding metabolic enzymes are co-regulated by HIF1A and
MYC in FGFR cells including LDHA (Fig. 4e). To carefully
dissect the role of these TF pairs in both cell contexts, we noticed
that MYC depletion could downregulate HIF1A expression
whereas MYC was intact upon HIF1A depletion, further
supporting the dominant role of MYC in FGFR cells (Fig. 4f,
Supplementary Fig. 4a). Similarly, in EGFR-constitutively acti-
vated PC9 cells, ATF4 appeared playing a more dominant role as
knockdown of ATF4 resulted in the downregulation of MYC, not
the case vice versa (Fig. 4f, Supplementary Fig. 4a). We then
confirmed the impact of these TFs on the metabolic phenotypes.
Consistent with results shown above, intracellular production of
pyruvate and lactate in FGFR-activated cancer cells were
decreased by MYC rather than ATF4 depletion (Fig. 4g). In
parallel, in a 13C6-glucose-labeled ISA assay, knockdown of ATF4
instead of MYC significantly inhibited serine and nucleotide
synthesis in PC9 cells, similar to EGFR inhibition (Fig. 4h,
Supplementary Fig. 4b, c). Together, we herein established the
RTK-initiated transcription regulatory network, which high-
lighted transcriptional factors ATF4 and MYC as the key nodes
in preferentially reprogramming the metabolic network in
cancers with aberrant EGFR or FGFR (Fig. 4i).

Discussion
Currently, apart from a few cases with autonomous genetic
abnormalities in metabolic enzymes12–14, the metabolic vulner-
abilities of most cancers remain unclear. With the advancement
of metabolic inhibitor discovery, it is imperative to understand
patient stratification strategy for the treatment. Lately, a few
studies have revealed the new therapeutic opportunities stemmed
from the identification of metabolic vulnerabilities. For example,
triple-negative breast cancer (TNBC) was highly dependent on de
novo pyrimidine synthesis. Inhibition of pyrimidine synthesis
could sensitize TNBC to chemotherapy37. Likewise, glutathione
biosynthesis was discovered as a metabolic vulnerability in PI(3)

Fig. 3 FGFR activation enhances aerobic glycolysis and recycles lactate. a Lactate production and lactate release. b Enrichment of 13C-labled intermediate
metabolites. Cells were cultured in the presence of [U-13C6]-glucose for 24 h. c Competitive uptake of glucose and lactate. Cells were cultured with both
[U-13C3]-lactate (5 mM) and label-free glucose (10mM) for 24 h. Left, Tracing map of [U-13C3]-lactate. Right, Enrichment of 13C-labled intermediate
metabolites. d The incorporation percentage of lactate to the TCA cycle in NCI-H1581 xenograft tumors (n= 6). Left, Scheme for co-infusions of [U-13C6]-
glucose and [3-13C]-lactate and the tracing map. Right, Fraction enrichment of the intermediates. e OCR measurement. Cells were treated with AZD4547
(100 nM, 24 h), Oxamate (10mM, 6 h) or GSK2837808A (20 μM, 6 h). f, g ATP production and ROS level. NCI-H1581 cells were treated as indicated in e.
h Transcript analysis of BAF3-RTK cells normalized by that in BAF3 cells. i The comparison of glycolytic gene expression between FGFR amplified and
diploid cancer. Data were from 740 lung adenocarcinoma patients in TCGA data sets. j Immunohistochemistry analysis of tumor tissues from NSCLC PDX
tumors. Shown are the representative fields from one section per tumor tissue (2 independent tumor tissues per PDX model). Scale bar, 20μm. k Scatter
plot showing the inhibition rate of PHGDH inhibitor (PHGDHi) CBR5884 (12.5 μM) and LDH inhibitor (LDHi) GSK2837808A (50 μM). Cells were treated
for 6 days. l Left: tumor growth curve of SNU16 xenograft model. Right: glucose-derived metabolites in tumor tissue. See the dosing regimen in Methods.
Data were means (n= 6) and error bars represented SEM. m Tumor growth curve of LU6429 PDX model and grouped scatter plot of individual mice
relative tumor volume on Day 21. See the dosing regimen in Methods. Data in a, b, e-h were means of triplicates and error bars represented SD. Data in
c, d, l,m were means and error bars represented SEM. For all bar graphs, ***p < 0.001, **p < 0.01, *p < 0.05, n.s.≥ 0.05 for two-tailed Student’s t test. Source
data are provided as a Source Data file
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K/Akt-driven breast cancer38 and purine synthesis for small cell
lung cancer39. All these findings showed the possibility of pre-
cisely directing the metabolic therapeutics to responsive cancer
subtypes defined by non-metabolic signatures.

Regardless of these advancements, the efficacious therapies
towards metabolic vulnerabilities of human cancer remains very
limited. Quite a few metabolic inhibitors are undergoing clinical

trials, but the strategy for patient stratification is unclear. In this
study, we chose to establish the linkage between metabolic vul-
nerabilities and the well-validated cancer genotypes. We took an
integrative approach of metabolomics and transcriptomics to
identify the metabolic vulnerabilities of RTK-driven cancer. These
efforts allowed us to define the metabolic preference of RTK-
aberrant cancer, showing that RTKs alterations could be used for
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patient stratification for metabolic inhibitors. For example, EGFR
gene activating alterations, which have been included in routine
diagnosis for NSCLC patients, could be a molecular signature for
stratifying responsive tumors for SSP inhibitors. Likewise, LDH
inhibitors, which have been extensively explored in pre-clinical
and clinical studies, could be delivered to cancer patients with
FGFR gene alterations. Of note, in-depth analysis of clinical
samples extracted from TCGA database suggest that the meta-
bolic phenotypes identified in this study may cross histological
types bearing the same oncogenic RTK alteration, suggesting
broad benefit that is worthy of clinical tests.

Oncogene-driven metabolic alterations have been observed in
cancer cells, which is generally considered as cell-autonomous
adaptations. According to our results, different oncogenic
alterations are associated with heterogeneous metabolic vulner-
abilities, which mechanistically stems from the differential tran-
scriptome orchestrated by defined transcriptional factors. Our
findings confirm that oncogene activation plays a causative,
rather than correlative, role in reprogramming metabolic phe-
notypes in malignant cells. Oncogene activation often results in
the rewiring of a complex metabolic network. For instance, gene
abnormalities in KRAS, one of the most frequently mutated
oncogenes in human cancers, alter cellular glucose uptake, gly-
colytic flux, and glutamine usage. The identification of the
metabolic vulnerabilities in a complex network will require better
understanding of intrinsic metabolic preference with distinct
nutrients and pathways for rapid growth40. Most recently, it has
been reported that glucose fuels the TCA cycle via lactate recycle
and turnover in human NSCLC41,42. Together with the existing
understanding, our data pinpoint the crucial role of glycolysis and
resultant lactate production, which fuels TCA cycle for energy
production in FGFR-aberrant cancer.

In this study, we have discovered that FGFR oncogenic sig-
naling mainly converges on MYC for transcriptional regulation of
downstream glycolytic enzymes whereas EGFR activation pre-
ferentially utilizes ATF4 to drive metabolic network reprogram-
ming. Of note, a previous work from Cantley’s group, which was
intrigued by the frequent occurrence of transcription factor NRF2
activation mutation in NSCLC, has demonstrated that upregu-
lation of NRF2 induces the expression of the key serine/glycine
biosynthesis enzymes via ATF443. Consistently, a previous work
discovered that in EGFR mutant cancer, knockdown of NRF2
remarkably decreased the ATF4 expression as well as downstream
metabolic enzymes44. These results positioned NRF2 upstream of
ATF4 in EGFR mutant context in NSCLC cells. Interestingly,
NRF2 mutation occurs often in NSCLC but appears very rare in
EGFR mutant cancer. According to TCGA database, among 1940

lung carcinoma patients (including 44 EGFR mutant patients),
106 patients showed NRF2 mutation yet none of these patients
co-occurred with EGFR mutation. We speculate that EGFR
activation, in addition to NRF2 activating mutation or Keap1
dysfunction, might represent a complimentary mechanism for
upregulating the serine biosynthetic pathway via NRF2-ATF4 axis
in lung cancer.

Certainly, in addition to the complexity imposed by the onco-
genotype, a full accounting of tumor metabolism must consider
extrinsic influences. Metabolic adaptation of cancer cells is
implemented in the stressful and dynamic microenvironment,
where concentrations of crucial nutrients such as glucose, gluta-
mine and oxygen are spatially and temporally heterogeneous. It
should be noted that while cancer cell lines are cultured in various
culture medium supplied with different nutrients, cancer cell lines
bearing same oncogenic driving mutation seemed to exhibit the
similar metabolic vulnerability in cell-based assays. We reason
that oncogenic driving mutation exhibit a dominate impact on
the cell intracellular metabolic homeostasis. Consistently, the
observed growth dependency in EGFR- and FGFR-driven cancer
could be recapitulated in vivo including PDX models that are
believed to faithfully reserve the clinical features of patients. We
suspect that the potential translation may be only applicable to
specific oncogene-addicted cancer, in which oncogene activation
alone largely dictates the fate of tumor cells. However, other
mutations, such as KRAS activation and TP53 deletion in the
pancreas may result in the metabolic behaviors of cancer that
appears to be highly context dependent compared to the lung
organ6. Of great interest, in our cell models, MET-driven cancer
cells barely show unique metabolic features in vitro, which was
consistent with the analysis of clinical samples (Supplementary
Fig. 1b). In a previous report, MET has been demonstrated to
promote glutamine synthesis from glucose flux in liver tumors
which were dictated by environmental factors in vivo4. This may
suggest the importance of understanding the role of MET in
tumor environment and echoed the increasing insights of its
involvement in reprogramming tumor microenvironment.

In summary, our data together pinpoint the crucial role of
glycolysis and resultant lactate production, which fuels the TCA
cycle for energy production in FGFR aberrant cancer, and
the serine synthesis for nucleotide biosynthesis and redox
homeostasis in EGFR constitutively activated cancer. This study
may advance the current understanding in the field in two
aspects. Firstly, oncogenic RTK-driven metabolic reprogramming
could result in distinct metabolic vulnerabilities that could be
exploited for cancer treatment. Secondly, heterogeneous meta-
bolic dependency arises from the differential expression of

Fig. 4 ATF4 and c-Myc orchestrate metabolic reprogramming. a Metabolic gene expression upon the depletion of candidate transcription factors (TFs).
The Y-axis indicates the transcription factors and X-axis shows relative mRNA levels of metabolic genes. Gene expression was measured by RT-qPCR after
transfected with indicated siRNA for 72 h. NC, negative control. Data were means of duplicates; error bars represented SD. b RT-qPCR transcript analysis.
Cells were treated with AZD4547 (100 nM) or Gefitinib (100 nM) for 24 h and the mRNA level of indicated TFs was measured by RT-qPCR. The
expression level of indicated genes was normalized by that of the untreated group (CON). Data were means of triplicates; error bars represented SD.
c Immunohistochemistry analysis. PC9 xenograft models were treated with NCT-503 (40mg/kg) or Gefitinib (5 mg/kg) daily for 15 days (n= 8). Tumor
samples were collected at 6 h after last dosing. Scale bar, 20 μm. d Cell viability assay. Cells were transfected with two independent siRNAs targeting
indicated TFs for 72 h and the cell viability was analyzed by counting cell numbers. Data were means of duplicates; error bars represented SD. e A network
model describing the TF-targeted metabolic genes interactions. f RT-qPCR transcript analysis. Cells were transfected with indicated siRNA for 72 h and
metabolic gene expression was measured by RT-qPCR. Data were means of triplicates; error bars represented SD. g Intracellular pyruvate and lactate
levels. RT112 cells were transfected with indicated siRNA for 48 h and pyruvate and lactate aboundance was measured using GC/MS. h Analysis of [U-
13C6]-glucose-derived serine. PC9 cells were transfected with indicated siRNA for 48 h followed by 24 h-culture in the presence of [U-13C6]-glucose.
Serine isotopologue M3 was measured by GC-MS. Gefitinib treatment (100 nM, 24 h) was used as a positive control. Data in g, h were means of triplicates;
error bars represented SEM. i Diagram depicting RTK-driven transcriptional reprogramming to orchestrate metabolic changes. For all bar graphs, ***p <
0.001, **p < 0.01, *p < 0.05, n.s.≥ 0.05 for two-tailed Student’s t test. Source data are provided as a Source Data file
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metabolic genes orchestrated by transcription factors. These
findings have the important translational value for guiding the
patient stratification of metabolic inhibitors.

Methods
Cell culture. The information of all the cells were summarized in Supplementary
Dataset 5. All the cell lines were regularly authenticated by analyzing the DNA
profile of 8 short tandem repeat (STR) loci plus amelogenin (Genesky Bio-
technologies Inc., Shanghai, China) and were maintained in appropriate culture
medium as suppliers suggested. BAF3 cells (DSMZ, ACC 300) were cultured in the
RPMI-1640 medium containing 10 ng/mL of IL3 (PeproTech, 213-12-50). BAF3-
RTK cells were constructed in our laboratory45,46, and maintained in the RPMI-
1640 medium without IL3. Unless otherwise stated, in all assays involving BAF3
cells, BAF3 parental cells were cultured with IL3 and BAF3-RTK cells were cultured
without IL3.

Animal experiments. Tumor-bearing mice were randomized into groups and
started dosing when average tumor volume reached 80–150 mm3. Dosing details
were described as below. Tumor growth was monitored by the measurement of
tumor size using caliper every three days using the formula (length × width2)/2.
The individual relative tumor volume (RTV) was calculated as follows: RTV=Vt/
V0, where Vt is the volume on each day and V0 is the volume at the beginning of
the treatment.

Dosing regimens for cell line-based xenograft and PDX models were as follows.
For PC9 model, NCT503 (40 mg/kg, p.o.) and Gefitinib (5 mg/kg, p.o.) were given
daily for 15 days (8 mice per group). For SNU16 model, Oxamate (750 mg/kg, i.p.)
and AZD4547 (5 mg/kg, p.o.) were given daily for 14 days (6 mice per group). For
NCI-H1581 model, Oxamate (750 mg/kg, i.p.) and AZD4547 (2.5 mg/kg, p.o.) were
given daily for 21 days (5 mice per group). For A431 model, Oxamate (750 mg/kg,
i.p.) and NCT503 (40 mg/kg, p.o.) were given daily for 13 days (10 mice per group).
For LU-01-0251 PDX model, NCT503 (40 mg/kg, p.o.) and Gefitinib (1 mg/kg, p.
o.) were given daily for 24 days (6 mice per group). For LU6429 PDX model,
Oxamate (750 mg/kg, i.p.), Metformin (250 mg/kg, i.p.) and AZD4547 (10 mg/kg,
p.o.) were given daily (6 mice per group except for Oxamate-treated group of 7
mice). For LU0743 PDX model, Oxamate (750 mg/kg, i.p.), and AZD4547 (10 mg/
kg, p.o.) were given daily (6 mice per group). For LU-01-0393 and LU-01-0416
PDX models, Oxamate (750 mg/kg, i.p.), and NCT503 (40 mg/kg, p.o.) were given
daily for indicated days (6 mice per group). For LU0271 model, Oxamate (750 mg/
kg, i.p.), and NCT503 (40 mg/kg, p.o.) were given daily for 20 days (5 mice per
group). The dosing period was determined by the endpoint tumor volume, and
tumor samples were collected at 6 h after the last dosing. For all studies involving
combination treatment, drugs were given separately. Growth curve was plotted by
measuring the relative tumor volume three times per week compared to vehicle
group. All the data were means and error bars represented SEM.

The experiments of A431, SNU16 and NCI-H1581 xenograft models were
approved and performed according to the Institute Animal Care and Use
Committee (IACUC) at Shanghai Institute of Materia Medica. The experiments of
PC9 xenograft, LU-01-0251, LU-01-0393 and LU-01-0416 PDX models were
approved and performed according to the IACUC at WuXi AppTec. The
experiments of LU2071, LU0743, and LU6429 PDX models were approved and
performed according to the IACUC at CrownBio. During all the studies, the care
and use of animals were conducted in accordance with the regulations of the
Association for Assessment and Accreditation of Laboratory Animal Care
(AAALAC).

Stable isotope resolved metabolomics in vivo. The glucose utilization and
transformation in SNU16 xenograft model was determined by bolus injection of
[U-13C6]-glucose tracer in the tail vein. 25% (w/v) sterile filtered [U-13C6]-glucose
(by 0.22 μm microporous filter membrane) in 0.9% NaCl was pre-prepared.
Intravenous injection of [U-13C6]-glucose for 200 μL in the tail vein of mice (20 g)
at 6 h after the last dosing. After 45 min, the mice were killed immediately, and the
tumor tissues were collected and preserved at −80 °C. Incorporation of 13C into
metabolites extracted from tissues was profiled by GC-MS.

The contribution of lactate in vivo was determined by injection with [U-13C6]-
Glucose and [3-13C]-lactate concurrently in subcutaneous NCI-H1581 tumor-
bearing mice. Sterile filtered the mixture of 25% (w/v) [U-13C6]-glucose and 6.25%
(w/v) [3-13C]-lactate (n/n = 2:1) (by 0.22 μm microporous filter membrane) in
0.9% NaCl was pre-prepared. Intravenous injection for 100 μL in the tail vein of
mice (20 g). Short injections were used to limit labeling complexity. After 30 min,
the mice were killed immediately, and the tumor tissues were collected and
preserved at −80 °C. Incorporation of 13C into metabolites extracted from tissue
was profiled by GC-MS.

The analysis of TCGA patients. For lung adenocarcinoma, LUAD dataset was
extracted from TCGA and used for further analysis. The upregulated genes in
EGFR mutant tumors (L858R, exon 19 deletion or exon 21 deletion) were deter-
mined compared to the counterpart with wildtype EGFR (cutoff fold-change > 1.5
and p < 0.05), and gene functions were enriched by R package ClusterProfiler using

annotation of GO-Biological Process. Gene amplifications were annotated by the
cBioPortal public dataset through GISTIC algorithm, a widely used method able to
differentiate the focal alteration and chromosome level copy number gain.

Identification of key transcription factors regulating metabolic DEGs. Differ-
entially expressed genes (DEGs) were identified by comparing gene expression in
parental BAF3 and BAF3-RTK cells. DEGs were selected with a cutoff of 1.5 fold-
change and p < 0.01 using two-tailed Student’s t test. Among DEGs, metabolic
genes were identified by KEGG database.

To identify key TFs regulating metabolic DEGs, 1118148 TF-targets interaction
data pointing for 2160 TFs were collected from public databases including Cistrom,
mSigDB, OregAnno, CellNet and UCSC. The TFs were enriched using Fisher’s
exact test and p-values were adjusted using Benjamini-Hochberg method. Finally,
all TFs with adjusted p < 0.0005 were selected to be key TFs regulating metabolic
DEGs. All these procedures were implemented in R 3.4.2.

To reconstruct a sub-network describing TF-target interaction by two key TFs,
we selected the target genes of the TFs and built a network model describing the
key TF-target interactions and protein-protein interactions among the targets. The
TF-target interactions were obtained from databases including Cistrom, mSigDB,
OregAnno, CellNet and UCSC and the protein-protein interactions were obtained
from BioGRID, STRING and HPRD and combined information from the three
databases into one list. All these procedures were implemented in R 3.4.2. The
network was displayed using Cytoscape 3.6.0.

The analysis of genetic alterations in tumor models. For all the cancer cell lines
used for this study, the genetic alterations of driving gene mutations were anno-
tated according to CCLE database. Mutations in PDX models were based on RNA-
seq or Exome-seq analysis. Copy number alterations in PDX models were based on
the microarray analysis. Wildtype NSCLC models referred to those without
mutation, amplification or deletion of KRAS, EGFR, FGFR1, FGFR2, FGFR3,
FGFR4, ALK, MET, PIK3CA, HER2, ROS1, RET, PDGFRA, DDR2, and PTEN
genes, which are well-defined driving genes of NSCLC. For ChaGo-K-1 cell line,
which was generally classified as a lung cancer cell line, additional genes including
KIT, INSR, IGF1R, and MYC were analyzed for the assignment of its genotype.

Chemicals and antibodies. The following chemicals were used: AZD4547 (Selleck,
S2801), AZD9291 (Selleck, S7297), SGX523 (Selleck, S1112), AP24534 (Selleck,
S1490), Gefitinib (Selleck, S1025), UK5099 (Sigma, PZ0160), CB839 (Selleck,
S7655), Etomoxir (Aladdin, E124862), Oxamate (Sigma, O2751), CBR5884 (MCE,
HY-100012), NCT503 (MCE, HY-101966), GSK2837808A (MCE, 1445879) and
murine IL3 (PeproTech, 213-13-10). For animal studies that required large amount
of chemicals, AZD4547 (MB5756), Gefitinib (MB1112) and NCT503 (1916571-90-
8) were obtained from Melone Pharmaceutical Co., Ltd. Oxamate (S123221) and
Metformin (M107827) was purchased from Aladdin.

The following antibodies were used: FGFR1 (9740 S), p-EGFR Tyr1068 (3777
S), EGFR (4267 S), p-MET Tyr1003 (3135 S), MET (8198 S), p-RET Tyr905 (3221
S), RET (3223 S), p-AKT Ser473 (4060 L), AKT (4691 S), p-ERK1/2 Thr202/Tyr204
(4370 L), ERK1/2 (4695 S), p-STAT3 Tyr705 (9145 S) and STAT3 (9139 S) from
Cell Signaling; p-FGFR1 Tyr653/654 (06–1433) from Millipore; PHGDH
(14719–1-AP), PSPH (14513–1-AP), and GAPDH (60004–1) from Proteintech; β-
actin (P30002) from Abmart. The dilution of all the primary antibody incubation
in immunoblotting is 1:1000, except for the 1:5000 dilution of GAPDH and β-actin.

All the stable isotope markers were purchased from Cambridge Isotope
Laboratories, including D-Glucose (U-13C6, 99%, CLM-1396–10), L-Glutamine
(U-13C5, 99%, CLM-1822-H-0.5), Sodium Palmitate (U-13C16, 98%, CLM-6059–1),
Sodium L-Lactate (U-13C3, 98%, 20% W/W in H2O, CLM-1579-PK) and Sodium
L-Lactate (3-13C, 98%, 20% W/W in H2O, CLM-1578-PK).

Immunoblotting analysis. Cells were collected and lysed using pre-heated 2% SDS
by vortexing vigorously for 2–3 s at maximum speed, followed by boiling for 30
min. Protein concentrations were determined using BCA assay (Beyotime, P0011).
Proteins were subjected to SDS-PAGE, transferred to nitrocellulose membranes
(Immobilon-P, Millipore) and blocked for 1 h at room temperature with 3% milk
in 1xTris-buffered saline Tween-20 (TBST) (25 mM Tris, 150 mM NaCl, 2 mM
KCl, pH 7.4, supplemented with 0.1% Tween-20) and blotting was performed with
primary antibodies at 4 °C overnight. After washing the membranes with TBST
three times for 30 min, horseradish peroxidase-conjugated anti-rabbit IgG (dilu-
tion, 1: 2000) or anti-mouse IgG (dilution, 1: 5000) antibodies were incubated at
room temperature for 1 h. The membranes were washed with TBST three times for
30 min, and the antigen-antibody reaction was visualized with an enhanced che-
miluminescence assay (Thermo Scientific) or Femto chemiluminescence assay
(Thermo Scientific).

Immunohistochemistry analysis. For PC9 xenograft and LU-01-0251 PDX
models, tumor samples were collected at 6 h after the last dosing. For the rest of
PDX models, including EGFR mutant tumors (n= 6), FGFR amplified tumors
(n= 4) or wildtype tumors (n= 6), used for immunohistochemistry analysis, basal
level of metabolic enzyme genes was detected. Three independent tumor tissues
from each PDX model were analyzed. The tumor tissues were fixed with
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paraformaldehyde (4%) before dehydration and paraffin embedding. Paraffin
sections were stained with hematoxylin and eosin (H&E) according to standard
protocols or were subjected to immunohistochemical staining using a horseradish
peroxidase-labeled streptavidin-biotin ABC kit (ZSGBBIO, Beijing, China) with
hematoxylin as the counterstain. Anti-EGFR, anti-p-EGFR Tyr1068, anti-ATF4,
anti-cMyc, anti-PHGDH, anti-PSPH, an-HK2, anti-LDHA and Ki67 were diluted
at the recommenced ratio according to the manufacturer’s instructions in 0.1%
BSA/PBS and incubated on slides in a humidified chamber for 2 h, and imaged at ×
100 magnification.

GC-MS analysis. Cell lines were cultured under indicated conditions to identify
metabolic characteristics. In [U-13C6]-glucose and [U-13C5]-glutamine tracer
experiments, BAF3 and BAF3-RTK cells were cultured in the DMEM medium
(Sigma-Aldrich, D5030) by adding 10mM [U-13C6]-glucose, 4mM label-free gluta-
mine or 10mM label-free glucose and 4mM [U-13C5]-glutamine for indicated hours.
In [U-13C16] palmitate tracer experiments, [U-13C16] palmitate was first non-
covalently conjugated to fatty acid free BSA (Applygen, A2000) and then the 100 µM
BSA-conjugated [U-13C16] palmitate and 1mM carnitine were added to culture
medium for fatty acid oxidation assay. In the competitive uptake experiment of
glucose and lactate, BAF3-EGFR and BAF3-FGFR cells were cultured in the presence
of 5 mM [U-13C3]-lactate and 10mM label-free glucose for indicated hours. In the
analysis of [U-13C6]-glucose-derived serine, PC9 cells were transfected with indicated
siRNA for 48 h followed by 24h-culture in the DMEM medium (Sigma-Aldrich,
D5030) by adding 10mM [U-13C6]-glucose and 4mM label-free glutamine. The 13C-
labeled fraction contribution of the metabolite isotopologues was analyzed by GC-MS
and the raw MS data was corrected for the contribution of all naturally abundant
isotopes. The metabolite intensities in the metabolomics data of BAF3 and BAF3-RTK
cells were analyzed by GC-MS. In the analysis of intracellular lactate and pyruvate
level, RT112 cells were transfected with indicated siRNA for 48 h and the metabolite
intensities were analyzed by GC-MS.

Sample preparation: The cell samples were collected (5–7 × 106 cells per sample)
in 2-mL Eppendorf tubes with 1.6 mL of 80% (v/v) methanol solution for each
sample. Then, the sample was processed by 7 cycles of 2 min ultra-sonication and 2
min interval in ice-bath. The cell lysates were kept at 4 °C for 1 h prior to
centrifugation at 14,000 × g and 4 °C for 15 min. The supernatant was evaporated
to dryness with the vacuum centrifuge.

Derivatization: The dried sample for metabolomics analysis was reconstituted in
30 μL of 20 mg/mL methoxyamine hydrochloride in anhydrous pyridine, and
incubated at 37 °C for 90 min. Following the supplementation of another 30 μL of
N,O-bis(trimethyl)trifluoroacetamide (BSTFA) with 1% trimethylchlorosilane
(TMCS), the sample was derivatized at 70 °C for 60 min prior to GC-MS
metabolomics analysis. The dried sample for isotopologue spectral analysis
(ISA) was reconstituted in 30 μL of 20 mg/mL methoxyamine hydrochloride in
anhydrous pyridine, and incubated at 37 °C for 90 min. Samples were then
derivatized by addition of 30 μL of N-tert-butyldimethylsily-N-
methyltrifluoroacetade (MTBSTFA) with 1% tert-butyldimethylsilyl (tBDMS)
(Regis Technologies) and incubated at 55 °C for 60 min.

Instrumental Analysis: Instrumental analysis was performed on an Agilent
Intuvo 9000 gas chromatography system coupled to an Agilent 5977B inert MSD
system (Agilent Technologies Inc., CA, USA). A HP-5MS fused-silica capillary
column (30 m × 0.25 mm × 0.25 μm; Agilent J&W Scientific, Folsom, CA) was
utilized to separate the derivatives. Helium ( > 99.999%) was used as a carrier gas at
a constant flow rate of 1 mL/min through the column. Injection volume was 1 μL in
the splitless mode, and the solvent delay time was set 6 min. The initial oven
temperature was held at 70 °C for 2 min, ramped to 160 °C at a rate of 6 °C/min, to
240 °C at a rate of 10 °C/min, to 300 °C at a rate of 20 °C/min, and finally held at
300 °C for 6 min. For ISA, injection volume was 1 μL in the splitless mode, and the
solvent delay time was 5.5 min. The initial oven temperature was held at 100 °C for
2 min, ramped to 180 °C at a rate of 10 °C/min, to 260 °C at a rate of 5 °C/min, to
300 °C at a rate of 10 °C/min and finally held for 8 min. The temperatures of
injector, transfer line, and electron impact ion source were set to 250 °C, 250 °C,
and 230 °C, respectively. The electron energy was 70 eV, and data was collected in a
full scan mode (m/z 50–600).

UHPLC-QTOF-MS analysis. BAF3 and BAF3-RTK cells were cultured in the
DMEM medium (Sigma-Aldrich, D5030) by adding 10 mM [U-13C6]-glucose and
4 mM label-free glutamine for 24 h. The incorporation percentage of [U-13C6]-
glucose to purine nucleotides and glutathione (GSH) was analyzed by UHPLC-
QTOF-MS. In the analysis of [U-13C6]-glucose-derived purine nucleotides, PC9
cells were transfected with indicated siRNA for 48 h followed by 24 h-culture in the
DMEM medium (Sigma-Aldrich, D5030) by adding 10 mM [U-13C6]-glucose and
4 mM label-free glutamine. The incorporation percentage of [U-13C6]-glucose to
purine nucleotides was analyzed by UHPLC-QTOF-MS. The metabolite intensities
in the metabolomics data of BAF3 and BAF3-RTK cells were analyzed by GC/MS
and UHPLC-QTOF-MS.

The metabolite extraction process was same as the GC–MS analysis section. The
dry residues of metabolite extracts were reconstituted with 200 μL 50% (v/v)
acetonitrile solution and kept at −20 °C for 30 min. Then vortexed for 30 s before
centrifugation at 12,000 × g for 10 min at 4 °C, and 3 μL of the supernatants were
injected into the LC-MS for measurement. Quality control (QC) sample was the

mixture prepared from an equal amount in each sample supernatant and analyzed
with the same procedure as that for the experiment samples.

For reversed-phase liquid chromatography, Agilent uHPLC (Binary Pump
G7120A, Multisampler G7167B and Column Comp G7116B) was employed with
chromatographic separation on an Agilent rapid resolution HD C18 column (1.8 μm,
3.0 × 150mm internal dimensions, PN:959759–302). The column was maintained at
30 °C and the injection volume of all samples was 3 μL. The mobile phase consisted of
0.1% formic acid in LC-MS grade water (mobile phase A) and LC–MS grade
acetonitrile (mobile phase B) run at a flow rate of 0.4mL/min. The analysts were
separated with following gradient program: 2% B held for 1 min, increased to 40% B
in 4min, increased to 70% B in 7min, and increased to 95% B in 3min, held for 5
min, and the post time was set 6 min. The mass spectrometer (Agilent MS QTOF
6545 A) was operated in positive ion mode with a 3.5 kV capillary voltage. Nozzle
voltage 500 v for positive ion mode, 1000 v for negative ion mode. The source gas and
sheath gas temperature were set at 200 °C and 325 °C, respectively.

For nucleotide analysis, Agilent uHPLC was employed with chromatographic
separation on a Thermo hypercarb column (3 μm, 2.1 × 150 mm internal
dimensions, PN: 35003–152130). The column was maintained at 35 °C and the
injection volume of all samples was 3 μL. The mobile phase consisted of 20 mM
ammonium acetate and 3 mL/L ammonium hydroxide (>28%) in LC-MS grade
water (mobile phase A) and 20 mM ammonium acetate and 3 mL/L ammonium
hydroxide (>28%) in LC–MS grade 90% acetonitrile (v/v) (mobile phase B) run at a
flow rate of 0.3 mL/min. The analysts were separated with the following gradient
program: 3% B held for 2 min, increased to 45% B in 9 min, increased to 95% B in
4 min, held for 2 min, and the post time was set 5 min. The mass spectrometer was
operated in positive ion mode with a 3.5 kV capillary voltage. Nozzle voltage was
set 500 V for positive and 1000 V for negative ionization mode. The source gas and
sheath gas temperature was set 200 °C and 325 °C, respectively.

RNA isolation and RT-qPCR analysis. Total RNA was extracted with TRIzol
reagent (Thermo Fisher Scientific, 15596026) and subjected to reverse transcription
with PrimeScript® RT reagent Kit (Takara, RR014A). PCR reactions were per-
formed with SYBR® Premix Ex Taq™ kit (Takara, RR420A) using ABI Prism VIIA7
Real-Time PCR System. All measurements were performed in duplicate and the
arithmetic mean of the Ct-values was used for calculations: target gene mean Ct-
values were normalized to the respective housekeeping genes (GAPDH or β-Actin),
mean Ct-values (internal reference gene, Ct), and then to the experimental control.
Obtained values were exponentiated 2-ΔΔCt to be expressed as n-fold changes in
regulation compared with the experimental control (2-ΔΔCt by the method of
relative quantification. The assay was performed in biological triplicates, and error
bars represented SD.

siRNA transfection. siRNA transfection in cancer cells was performed using
Lipofectamine RNAiMAX Reagent Agent (Invitrogen, 13778150) in OPTI-MEM
serum-free medium (Gibco, 31985–070) according to the manufacturer’s
instructions.

The siRNAs were synthesized as RP-HPLC-purified duplexes by GenePharma
(Shanghai, China), dissolved in DEPC water at the initial concentration of 20 µM
and preserved at −20 °C. Scrambled siRNA was used as a negative control (NC).

Cell proliferation assay. For CCK8 assay (Vazyme, 606051), cells were seeded in
96-well plates for overnight and then treated with DMSO or the indicated inhi-
bitors for 72 h. Untreated cells served as the indicator of 100% cell viability. The
absorbance (optical density, OD) was read at a wavelength of 450 nm on an ELISA
plate reader. For sulforhodamine B (SRB) assay (Sigma-Aldrich, S1402), cells were
seeded in 96-well plates at density of 3–5 × 103 cells per well for overnight and then
were treated with DMSO or the indicated inhibitors for 72 h. The culture medium
was aspirated, and 10% trichloroacetic acid (TCA) was added to each well and
allowed to stand for 24 h at 4 °C to precipitate proteins. Then, the precipitated
proteins were stained for 15 min at room temperature with 0.4% (w/v) SRB in an
acetic acid solution 1% (v/v), washed with 1% acetic acid 5 times and then dried.
The adherent SRB was solubilised in 10 mM Tris buffer and the absorbance was
read at a wavelength of 560 nm on an ELISA plate reader. Cell viability rate was
calculated as follows: (ODtreated/ODcontrol) × 100%. The assay was performed in
biological triplicates, and error bars represented SD.

For the cells in Figs 2c and 3k, the adherent cells were seeded in 12-well plates
per well for overnight and then were treated with DMSO or the indicated inhibitors
for 6 days. Then the culture medium was aspirated, and fixed with 90% ethanol for
30 min, followed by the staining with 0.1% crystal violet (Sigma-Aldrich, C0775).
Plates were air dried overnight. Crystal violet was eluted with 30% (v/v) acetic acid
solution and the absorbance was read at a wavelength of 600 nm on an ELISA plate
reader. The non-adherent cells were seeded in 12-well plates per well for overnight
and then were treated with DMSO or the indicated inhibitors, followed by cell
number counting after 6 days. Cell growth inhibition rate was calculated as follows:
(1-ODtreated/ODcontrol) × 100%. The assay was performed in biological duplicates.

Seahorse XF analysis. Seahorse XF96 assay well was equipped with a disposable
sensor cartridge and embedded with 96 pairs of fluorescent biosensors (oxygen and
pH), coupled to fiber-optic waveguides (Seahorse Bioscience). The XF Calibrant
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Solution 200 μL/well was added into the sensor box and put into the pre-work
station at 37 °C (non-CO2 incubator) for hydration overnight. To measure oxygen
consumption rate (OCR) and extracellular acidification rate (ECAR), BAF3 and
BAF3-RTK cells (2 × 106 per well) and cancer cells (1–1.5 × 105 per well) were
plated into XF96 cell culture plates in 200 μL XF-Base Medium Minimal DMEM
supplemented with glucose (25 mM) and pyruvate (1 mM). The cells were incu-
bated for 1 h at 37 °C (non-CO2 incubator) for pH stabilization. The measurement
of oxygen consumption was expressed in pmol/min and extracellular acidification
rate was expressed in mPH/min. The experiment was repeated for three times
independently and the shown was a representative result. The shown data were
means of biological triplicates and error bars represented SD.

Lactate measurement. Lactate levels were measured using a Lactate Colorimetric/
Fluorometric Assay Kit (Biovision, K607–100). Cells were seeded in 12-well plates
overnight and then were harvested to collect both of the supernatant and pellet for
lactate release and intracellular lactate assay respectively. Cell pellet was lysed in the
100 μL buffer provided by the kit and centrifuged at 12,000 × g for 15 min to collect
the cell supernatant. The resultant supernatant of both fractions was mixed with
the assay solution. The absorbance was measured at 570 nm and the readout was
normalized by the protein amounts. The experiment was repeated for three times
independently and the shown was a representative result. The shown data was
performed in biological triplicates, and error bars represented SD.

Intracellular ATP measurement. Intracellular ATP levels were assessed using an
ATP assay kit (Beyotime, S0027). Cells were lysed in 100 μL buffer provided by the
kit and centrifuged at 12,000 × g for 15 min to collect the cell supernatant. An
aliquot of ATP detection working solution was added to a 96-well culture plate and
was incubated for 5 min at room temperature. Then, the cell lysate was added to
the wells, and the luminescence was measured immediately. The readout was
normalized by the protein amounts of each well. The experiment was repeated for
three times independently. The shown data was performed in biological triplicates,
and error bars represented SD.

ROS measurement. The levels of ROS were detected using 2′,7′-Dichlorofluoresci
diacetate (DCFH) (Sigma, D6883). Cells were incubated with 10 µM DCFH at 37 °
C for 30 min. During the incubation period, each sample was agitated every 10 min
to ensure that the reagent reacted sufficiently with the ROS. Then the cells were
centrifuged at 500 × g for 5 min to collect the cell pellet, followed by PBS rinse twice
to reduce the fluorescence background. The level of ROS was measured by FACS
analysis (FACSCalibur flow cytometer, BD Biosciences). The experiment was
repeated for three times independently and shown was a representative result. The
shown data was performed in biological triplicates, and error bars represented SD.

Glucose/glutamine dependency analysis. Cells were seeded in 96-well plates per
well for overnight and then change medium by RPMI-1640 medium at the indi-
cated concentration of glucose (GLC) or glutamine (GLN). Briefly, for glucose
dependency assay, cells were cultured in the RPMI-1640 medium with no glucose
(Gibco, 11879020) or in the medium containing 4 mM glucose. For glutamine
dependency assay, cells were cultured in the RPMI-1640 medium (no glutamine)
(Gibco, 21870076) containing 4 mM or 0.5 mM glutamine. Subsequently, the cell
culture plates were placed into the live-cell analysis system IncuCyte® (Essen
BioScience Ltd., Hertfordshire, UK), and images were acquired every 6 h by
automated real-time assessment for 4 days. Growth curves were plotted as the
change in confluence percentage. In the glucose/glutamine dependency analysis of
BAF3 and BAF3-RTK cells, cells were cultured in the RPMI-1640 medium (no
glucose) (Gibco, 11879020) with or without adding glucose (4.5 mM), and in the
RPMI-1640 medium (no glutamine) (Gibco, 21870076) with or without adding
glutamine (4.5 mM) respectively. Growth curves were plotted by measuring growth
fold change by counting cell numbers at indicated time.

Statistics. Statistical significance was analyzed using two-tailed Student’s t test or
Fisher's exact test, and p < 0.05 was considered to be statistically significant.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
All data presented in the main text and the supplementary information are available. The
transcriptome data of BAF3 and BAF3-RTK cells have been deposited in the GEO under
ID code GSE111292. The source data underlying all Figs. and Supplementary Figs. are
provided as a Source Data file.
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