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Abstract
Panic disorder (PD) is a common and debilitating neuropsychiatric disorder characterized by panic attacks coupled with 
excessive anxiety. Both genetic factors and environmental factors play an important role in PD pathogenesis and response to 
treatment. However, PD is clinically heterogeneous and genetically complex, and the exact genetic or environmental causes 
of this disorder remain unclear. Various approaches for detecting disease-causing genes have recently been made available. 
In particular, genome-wide association studies (GWAS) have attracted attention for the identification of disease-associated 
loci of multifactorial disorders. This review introduces GWAS of PD, followed by a discussion about the limitations of 
GWAS and the major challenges facing geneticists in the post-GWAS era. Alternative strategies to address these challenges 
are then proposed, such as epigenome-wide association studies (EWAS) and rare variant association studies (RVAS) using 
next-generation sequencing. To date, however, few reports have described these analyses, and the evidence remains insuf-
ficient to confidently identify or exclude rare variants or epigenetic changes in PD. Further analyses are therefore required, 
using sample sizes in the tens of thousands, extensive functional annotations, and highly targeted hypothesis testing.

Keywords  Panic disorder · Genome-wide association studies (GWAS) · Missing heritability · Next-generation sequencing 
(NGS) · Rare variant association study (RVAS) · Epigenome-wide association study (EWAS)

Introduction

Panic disorder (PD) is an anxiety disorder characterized by 
recurrent and unexpected panic attacks, subsequent anticipa-
tory anxiety, and phobic avoidance. Approximately, 10–20% 
of patients with PD are refractory, with severe and chronic 
symptoms that seriously affect their quality of life (Markow-
itz et al. 1989). PD has a high incidence rate, with a lifetime 
prevalence of 1–3%, and is a disorder frequently observed in 
clinical practice (Wittchen et al. 2011). Several genetic and 

epidemiological studies, including family and twin studies, 
have shown that genetic factors play an important role in the 
pathogenesis of PD. First-degree relatives of a proband with 
PD are at a sixfold risk of developing this disease (Goldstein 
et al. 1997). Additionally, the PD concordance rate is higher 
in monozygotic twins than in dizygotic twins (Hettema et al. 
2001). Conventionally, linkage mapping enables us to iden-
tify the causative genetic variants of Mendelian diseases, 
such as Huntington’s disease, using polymorphic microsatel-
lite markers. However, neuropsychiatric disorders, including 
PD, are typically not caused by single mutations; therefore, 
traditional linkage mapping for neuropsychiatric disorders 
have not achieved the same success as they have for Men-
delian diseases (Karayiorgou and Gogos 2006; Venken 
and Del-Favero 2007). Various candidate gene association 
studies have been conducted to identify candidate genes for 
neuropsychiatric disorders, including PD, but few studies 
have demonstrated reproducible results (Singer 2009; Schu-
macher et al. 2011).

In recent years, with rapid advances in sequencing tech-
nology, large amounts of data can be obtained and various 
approaches are available to detect disease-causing genes. 
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In particular, genome-wide association studies (GWAS) 
have attracted attention for their ability to detect disease-
associated loci of multifactorial disorders. The GWAS era 
has been successful in the sense that many loci have been 
statistically associated with risks for multifactorial diseases, 
and a large number of these loci have been well replicated 
(Uniken Venema et al. 2017; Langenberg and Lotta 2018; 
Dennison et al. 2019).

In the present review, an overview of GWAS of PD is 
provided, followed by a description of the current and future 
efforts that are necessary to overcome the remaining issues.

GWAS of PD

Several GWAS of PD have been published thus far. Otowa 
et al. (2009) conducted a GWAS in 200 Japanese patients 
with PD and 200 healthy individuals and identified seven 
genome-wide significant loci. However, the associations 
that were found in this 2009 study could not be confirmed 
in a later reproduction analysis by the same group (Otowa 
et al. 2010). In the 2010 study, another GWAS was per-
formed, using a larger sample size (718 patients with PD 
and 1717 controls), and the results of the meta-analysis 
were reported. Although genome-wide significant single 
nucleotide polymorphisms (SNPs) were not detected in 
either the GWAS or the meta-analysis, suggestive associa-
tions were observed in several loci, such as the bradykinin 
receptor B2 (BDKRB2) gene (p = 1.3 × 10−5, odds ratio 
(OR) = 1.31) (Otowa et al. 2012). Erhardt et al. (2011) con-
ducted a GWAS in 216 patients with PD and 222 controls, 
and reported that genome-wide significant SNPs were not 
detected, but that the highest nominal association was found 
for rs7309727 (p = 5.1 × 10−7, Cochran–Armitage test for 
trend: p = 7.726 × 10−7) in discovery samples. In a subse-
quent replication analysis with a larger number of samples, 
they found an association between the two SNP haplotypes 
(rs7309727 and rs11060369) in the transmembrane protein 
132D (TMEM132D) gene (p = 1.2 × 10−7); however, the p 
value did not reach genome-wide significance. Moreover, 
when comparing a mouse model of extremes in trait anxiety 
with normal mice, nominally significant differences were 
observed in Tmem132d mRNA expression in the cingulate 
cortex using a microarray experiment (p = 0.004). Addition-
ally, rs13478518, which is located on exon 9 of Tmem132d, 
was reported to be associated with the percentage of time 
spent in the open arms of the elevated plus-maze test 
(p < 0.01) (Erhardt et al. 2011). The same group conducted 
a reproduction analysis using an additional PD case–control 
sample, and found an association between the risk haplo-
types and the disorder; however, this association was not 
observed in an analysis of a Japanese population sample 
(Erhardt et al. 2012). Additionally, Deckert et al. (2017) 
conducted a GWAS with a high-dimensional phenotype: 

PD with and without agoraphobia (AG)-related anxiety 
phenotype, based on the Agoraphobia Cognition Question-
naire (ACQ). This study was conducted in a sample of 1370 
healthy German volunteers, and a genome-wide significant 
association was found between rs78726293 and rs19126060 
in the glycine receptor beta (GLRB) gene (rs78726293: 
p = 3.3 × 10−8, rs191260602: p = 3.9 × 10−8). The authors fol-
lowed up on this finding in a larger dimensional ACQ sample 
(n = 2547) and in independent samples with a dichotomous 
AG phenotype based on the Symptom Checklist (n = 3845) 
and a case–control sample with the categorical phenotype 
PD/AG (ncombined = 1012). Highly significant p values were 
obtained for rs17035816 (p = 3.8 × 10−4) and rs7688285 
(p = 7.6 × 10−5) in GLRB. Furthermore, heterozygous Glrb 
knockout mice showed significantly enhanced agoraphobic 
behavior, demonstrated by less time spent in the center of the 
open field test (Deckert et al. 2017). Forstner et al. (2019) 
conducted a GWAS in 2248 patients and 7992 controls, 
which is the largest sample size to date, but did not find 
any loci with genome-wide significant associations. They 
conducted a follow-up analysis on 255 SNPs (p < 1 × 10−4) 
in another independent sample (2408 patients and 22,847 
controls) and found that rs144783209 in the SMAD family 
member 1 (SMAD1) gene had the strongest association with 
PD (pcomb = 3.10 × 10−7) (Forstner et al. 2019).

Table 1 summarizes a list of candidate disease-related 
loci identified by GWAS.

Results and limitations of GWAS

Overall, GWAS have yielded exciting results and revealed 
unexpected candidate genes that contribute to the risk of PD. 
Several candidate genes are reported to be associated with 
other mental disorders, and further functional analyses or 
clinical applications are expected (Table 1).

To date, however, replicated genome-wide significant 
findings have not been identified in PD case–control GWAS. 
Given that genome-wide significant loci have been reported 
in other anxiety phenotypes (Stein et al. 2017; Meier and 
Deckert 2019; Purves et al. 2019), the PD GWAS that have 
so far been reported may be underpowered. An expansion 
in scale at multiple levels may improve GWAS power. First, 
because sample size is the primary limitation in risk variant 
discovery, large sample sizes are expected to result in the 
identification of additional candidate loci (Visscher et al. 
2017). Second, performing GWAS in understudied ethnic 
groups will be informative, especially for detecting ethnic-
specific risk variants (Morris 2011; Li and Keating 2014; 
Medina-Gomez et al. 2015). Third, the use of innovative 
GWAS methods and study designs, such as GWAS using 
Bayesian analysis (Stephens and Balding 2009), GWAS 
using machine learning approaches (Szymczak et al. 2009), 
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and GWAS using methods to improve power to analyze het-
erogenous traits, may also lead to the discovery of previously 
undetected associations (Bhattacharjee et al. 2012).

The value of GWAS lies not only in their utility for iden-
tifying disease-associated loci, but also in other applications. 
For example, polygenic risk scores, which are quantitative 
measures of risk summed across multiple risk alleles, allow 
us to separate a population into categories with sufficiently 
distinct risks, which can then be used for clinical decision-
making (Tam et al. 2019). The value of a potential polygenic 
risk score in mental disorders has been explained in several 
studies (Gasse et al. 2019; Abdulkadir et al. 2019), and it 
is expected that this will have future applications in PD. 
Furthermore, using summary statistics from GWAS, link-
age disequilibrium score regression (LDSR) can be used to 
estimate genetic correlations between separate traits (Bulik-
Sullivan et al. 2015). Using LDSR, the genetic correlation 
between PD and anxiety-related traits has been reported. 
Otowa et al. (2016) conducted a meta-analysis on nine sam-
ple sets (> 18,000 patients) comprising anxiety disorders 
(ADs), PD, and phobias, and found a significant correlation 
of genetic risk between ADs and major depressive disor-
der (MDD), but not between ADs and bipolar disorder or 
schizophrenia. Forstner et al. (2019) also reported a signifi-
cant genetic correlation between PD and MDD, depressive 
symptoms, and neuroticism. These results suggest that ADs, 
PD, and MDD are likely to have genetic overlap and continu-
ous phenotypes.

The use of GWAS has identified an unprecedented num-
ber of genetic variants associated with common disease 
traits, but aside from a few notable exceptions, these variants 
account for only a modest proportion of the estimated herit-
ability of most complex traits (Tam et al. 2019). This hidden 
heritability, known as “missing heritability,” is largely attrib-
uted to the limitations of GWAS (Maher 2008). A number of 
possible explanations for this missing heritability problem 
include the presence of rare pathogenic variants (Zuk et al. 
2014; Bandyopadhyay et al. 2017), epigenetic factors (Tre-
rotola et al. 2015; Bourrat et al. 2017), and the complexity 
of patient phenotypes (van der Sluis et al. 2010).

In particular, rare variant association studies (RVAS), 
made possible by the popularization of next-generation 
sequencing (NGS), are anticipated to cause a paradigm shift 
to resolve the issue of missing heritability.

RVAS of PD

NGS has been put into practical use since the early 2000s. 
With the adoption of sequencing technology that is com-
pletely different from conventional Sanger sequencing, the 
speed of genome sequencing has dramatically increased. 
With the popularization of NGS, rare genetic variants—vari-
ants that are present with a minor allele frequency of less 

than 1%—with a strong effect size have become identifi-
able by whole genome sequencing (WGS) and whole exome 
sequencing (WES). Analyses of neuropsychiatric disorders 
using NGS have been performed (Sanders 2019; Zhuo et al. 
2019), and genes with high ORs have been reported (Fromer 
et al. 2014; Takata et al. 2014; Singh et al. 2016; McCarthy 
et al. 2017). NGS is a powerful tool to detect genes that 
cause not only single-gene disorders, but also multifactorial 
disorders; however, only a few studies have explored the 
genes responsible for PD.

Gregersen et al. (2016) conducted WES in 54 patients 
with PD and 211 controls from a Faroe population. However, 
no genes had a genome-wide significant association with the 
disorder. The diacylglycerol kinase eta (DGKH) gene dem-
onstrated the strongest association (combined multivariate 
and collapsing (CMC): p = 1.25 × 10−4) with PD (Gregersen 
et al. 2016). Additionally, our group performed WES on 
one Japanese family, including multiple patients with PD, 
and identified seven candidate genes. We subsequently 
conducted an association study on the identified candidate 
genes using a sample of 952 Japanese and 192 German 
individuals. Genes demonstrating a significant association 
with PD were not identified; however, the phospholipase A2 
group IVE (PLA2G4E) gene had the strongest association 
(CMC: p = 0.0715; Madsen–Browning: p = 0.0658; optimal 
sequence kernel association test: p = 0.1624) (Morimoto 
et al. 2018).

Table 2 summarizes a list of candidate genes identified 
by RVAS.

Limitations of RVAS

Analyses using NGS have the potential to identify highly 
pathogenic genetic variants that are difficult to identify using 
GWAS. In particular, DGKH is reported to be associated 
with other mental disorders, and further clinical applica-
tions are expected (Table 2). However, rare variant analysis 
using NGS has various issues. Genomic variants that sub-
stantially contribute to disease development are expected to 
have very low allele frequencies; therefore, a relatively large 
sample size is necessary, or the analyses will lack sufficient 
power to support the study findings (Moutsianas et al. 2015). 
Additionally, RVAS requires investigators to test a diverse 
array of genetic hypotheses that differ in the number, fre-
quency, and effect sizes of underlying causal variants. Thus, 
extensive functional annotation or highly targeted hypothesis 
testing is also required to be able to confidently identify rare 
variants in complex diseases (Moutsianas et al. 2015). The 
sampling of individuals with extreme phenotypes can enrich 
the presence of causal rare variants, leading to the increased 
power of RVAS with complex traits compared with random 
sampling (Barnett et al. 2013).
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Epigenome‑wide association studies (EWAS) of PD

Epigenetics is involved in various biological phenomena, 
including gene expression and cell differentiation (Portela 
and Esteller 2010). Epigenetic mechanisms, such as DNA 
methylation, have been suggested to play an important role 
in disease pathogenesis at the intersection of genetic and 
environmental factors (Klengel and Binder 2015; Schiele 
and Domschke 2018), and may be a possible explanation 
for missing heritability (Trerotola et al. 2015; Bourrat et al. 
2017).

Recently, with advances in genome analysis technology, 
EWAS have become possible (Flanagan 2015). EWAS can 
be used to analyze genome-wide associations between epi-
genetic changes and disorders, and several EWAS for mul-
tifactorial disorders, including mental disorders, have been 
reported (Abdulrahim et al. 2019; Starnawska et al. 2019; 
Gonzalez-Jaramillo et al. 2019).

Iurato et al. (2017) conducted an EWAS in a sample of 
89 patients with PD and 76 controls. In the female sample, 
one locus with genome-wide association was detected in the 
enhancer region of the hdc homolog, cell cycle regulator 
(HECA) gene (cg07308824: p = 1.094 × 10−7; p-adj = 0.046). 
Hypermethylation at the same locus was also confirmed in 
a reproduction analysis (p = 0.035; 131 patients with PD 
and 169 controls). Methylation at this CpG site was associ-
ated with HECA mRNA expression in another independ-
ent female sample (n = 71), both at baseline (p = 0.046) 
and after induction by dexamethasone (p = 0.029) (Iurato 
et al. 2017). Furthermore, Shimada-Sugimoto et al. (2017) 
analyzed DNA methylation levels at CpG sites across the 
genome in a sample of 48 patients with PD and 48 controls. 
Forty CpG sites had a significant association with PD, and 
pathway analysis revealed an association with PD among 
multiple pathways, including that of positive regulation of 
lymphocyte activation (Shimada-Sugimoto et al. 2017). 

Additionally, Ziegler et al. (2019) conducted an EWAS in a 
sample of 57 patients with PD and 61 controls. Epigenome-
wide significant hits were not identified; however, sugges-
tive evidence was observed for decreased methylation at 
cg19917903 in the cilia- and flagella-associated protein 46 
(CFAP46) gene. These authors also reported DNA meth-
ylation changes as well as clinical effects after 6 weeks of 
cognitive behavioral therapy in PD, but they did not obtain 
a hit reaching epigenome-wide significance; however, in 
patients who responded to cognitive behavioral therapy, 
there was the most suggestive evidence for methylation at 
CG06943668 in intron 1 of the interleukin 1 receptor type 1 
(IL1R1) gene (Ziegler et al. 2019).

Table 3 summarizes a list of candidate disease-related 
loci identified by EWAS.

Limitations of EWAS

EWAS have the potential to identify epigenetic changes, 
which are difficult to detect using conventional technology. 
In light of the dynamic nature of epigenetic modifications in 
response to environmental input, recent studies have placed 
a particular focus on epigenetic changes in relation to the 
effects of psychotherapy, examining the potential of epige-
netic patterns to predict therapeutic correlates of clinical 
change over the course of psychotherapeutic and preven-
tive interventions (Tomasi et al. 2019; Schiele et al. 2020). 
As mentioned in the previous section, Ziegler et al. (2019) 
reported increased methylation at cg06943668 in IL1R1 in 
treatment responders after cognitive behavioral therapy; this 
finding suggests that diagnostic or therapeutic biological 
markers of PD may be identified by EWAS.

To date, however, a replicated epigenome-wide signifi-
cant finding has not been identified in PD using EWAS. 
All EWAS reports have been conducted on small sample 

Table 2   Summary of rare variant association studies (RVAS) of panic disorder (PD)

Study Sample Criteria Gene-based 
association 
analysis

Strongest association Other phenotypes

Gregersen et al. (2016) 54 PD cases, 211 controls
Country: Denmark
(Faroe Islands)

ICD-10 – DGKH
(CMC: p = 1.25 × 10−4)

BIP (Baum et al. 2008; Zeng 
et al. 2011; Yosifova et al. 
2011), depression (Weber 
et al. 2011), ADHD (Weber 
et al. 2011), SCZ (Zeng 
et al. 2011)

Morimoto et al. (2018) Discovery: One Japanese 
family including multiple 
patients with PD

Replication: 477 PD cases, 
667 controls

Country: Japan and Ger-
many

ICD-10
DSM-IV

– PLA2G4E (CMC: 
p = 0.0715; Madsen–
Browning: p = 0.0658; 
SKAT-O: p = 0.1624)

–
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sizes and may therefore have low statistical power. Tsai and 
Bell (2015) simulated the statistical power for case–con-
trol and discordant monozygotic twin EWAS study designs, 
using a range of epigenetic risk effect sizes and conditions. 
For example, to detect a 10% mean methylation difference 
between affected and unaffected subjects at a genome-wide 
significance threshold of p = 1 × 10–6, 98 monozygotic twin 
pairs were required to reach 80% EWAS power, and 112 
cases and 112 controls pairs were needed for the case–con-
trol design (Tsai and Bell 2015).

Additionally, many items require careful consideration in 
EWAS study design, such as population and tissue selection, 
population stratification, cell heterogeneity, confounding, 
temporality, appropriate statistical analysis, and validation 
of results (Saffari et al. 2018; Michels and Binder 2018). 
Moreover, it has been recently suggested that differential 
DNA methylation identified in peripheral blood may not cor-
relate well with methylation changes in brain tissue (Ursini 
et al. 2011; Provençal et al. 2012; Wang et al. 2012). Fur-
ther research is therefore needed to investigate whether DNA 
isolated from peripheral sources can be used as a surrogate 
biomarker for methylation patterns in the brain.

Future perspectives

RVAS and EWAS analyses can be adopted to elucidate miss-
ing heritability in PD; however, there are only a small num-
ber of reports of these analyses, and the evidence remains 
insufficient. To confidently identify or exclude rare variants 
or epigenetic changes in complex diseases, further analyses 
are required using sample sizes in the tens of thousands, 
extensive functional annotations, and highly targeted 
hypothesis testing.

Currently used NGS techniques have limitations for 
identifying structural variants, sequencing repetitive 
regions, phasing of alleles, and distinguishing highly 
homologous genomic regions because of its short-read 
lengths (Mantere et al. 2019). Recently, long-read-NGS 
(LR-NGS) has emerged, which is expected to improve the 
characterization of genetic variations and regions that are 
difficult to assess using prevailing NGS (Lu et al. 2016; 
Midha et al. 2019). Moreover, several studies have recently 
demonstrated that LR-NGS technology is ideal for epi-
genetic characterization (Nakano et al. 2017; Sakamoto 
et al. 2020). Genetic analyses using the latest technology, 
including LR-NGS, are expected to lead to the discovery 
of new PD causative genetic and epigenetic variations.

In the future, methodological progress may contribute 
to more robust findings that have a strong effect on PD 
onset and might also contribute to targeted preventive 
measures and the development of individualized thera-
peutic approaches. However, because of the higher dis-
ease risks that will be implicated in these findings, strict 
regulations about genetic counseling, confidentiality, and 
data protection should be applied (Gershon and Alliey-
Rodriguez 2013). On a more positive note, the sharing of 
clinical and genomic data promises to increase research 
efficiency, expedite translational efforts of research results, 
and ensure the traceability and transparency of published 
studies (Shabani and Borry 2015; Takashima et al. 2018). 
In the post-GWAS era, the ethical framework regarding 
data sharing should require that researchers and research 
participants are responsible for protecting privacy, while 
advancing genomic science and medicine.
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Table 3   Summary of epigenome-wide association studies (EWAS) of panic disorder (PD)

PD panic disorder, DSM-IV Diagnostic and Statistical Manual of Mental Disorders, 4th edition, FDR false discovery rate

Study Sample Criteria Tissue Epigenome-wide sig-
nificant site

Strongest association Nearby gene Other 
pheno-
types

Iurato et al. (2017) Discovery: 89 PD 
cases, 76 controls

Replication: 131 PD 
cases, 169 controls

Country: Germany

DSM-IV Blood cg07308824
hypermethylated
(p = 1.094 × 10–7)
Statistical significance: 

FDR of 5%

cg07308824
Hypermethylated
(p = 1.651 × 10–8)

HECA –

Shimada-Sugimoto 
et al. (2017)

48 PD cases, 48 
controls

Country: Japan

DSM-IV Blood 40 CpG sites
Statistical significance: 

FDR of 5%

cg25270498
Hypomethylated
(p = 5.67 × 10–10)

METRNL –

Ziegler et al. (2019) 57 PD cases, 61 
controls

Country: Germany

DSM-IV Blood –
Statistical significance: 

p < 5.77 × 10–8

cg19917903
Hypomethylated 
(p = 3.8 × 10–7)

CFAP46 –
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