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Abstract This review summarizes current knowledge of
the hair cell mechanotransducer channel, the ion channel
responsible for detecting mechanical stimuli in the inner ear
and one of the few channels whose molecular structure is
still unknown. Several candidate proteins have been
proposed, especially members of the transient receptor
potential (TRP) channel family, but all have so far failed in
one test or another. Furthermore, none has biophysical
properties exactly matching the native channel. The
defining features of the native mechanotransducer chan-
nel are documented, including ionic permeability, channel
structure inferred from blocking agents, diversity in
channel conductance, and regulation by Ca**, which are
compared with a potential candidate, TRP channels of the
polycystin family. The strengths and weaknesses of a TRP
channel contender are discussed.

Keywords Cochlea - Calcium - Hair cell - Stereocilia - TRPP
channels - Polycystin - Tip link

Introduction

Ion channels located on the plasma membrane dictate the
electrical behavior of most cells, particularly neurons, and
are the main mediators of fast signal transduction. For
example, voltage-dependent calcium channels convert
excursions in membrane potential into intracellular calcium
transients, glutamatergic channels account for fast excitato-
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ry synaptic transmission, and cyclic nucleotide-gated
channels are the last step in transduction in visual and
olfactory receptors. Over the last 20 years, the structure and
gating mechanisms of a number of ion channels, either
voltage-dependent or ligand-activated, have been substan-
tially elucidated [37]. However, the molecular identity of a
third class of ion channel, responding to mechanical
deformations of a cell, is still largely unknown in
eukaryotes. These channels are employed ubiquitously in
cutaneous sensation, in internal organs such as barorecep-
tors and in the inner ear. A prime example is the
mechanoelectrical transducer (MET) channel in cochlear
hair cells, which detects minute mechanical stimuli elicited
by sound pressure fluctuations. The MET channel is
associated with an accessory specialization, the hair bundle,
a cluster of modified microvilli known as stereocilia, that
project from the top of the sensory cell. Hair cell
transduction has been extensively studied in both mammals
and non-mammals and is mediated by sub-micron deflec-
tions of the hair bundle which activate MET channels in the
stereocilia [26]. Compared with other types of ion channel,
however, little is known about the molecular composition
of the MET channel or how the stimulus energy is coupled
to channel opening [10]. This is an important lacuna in our
understanding of hair cell mechanisms and hearing. This
review summarizes present knowledge of the MET channel
against which any channel contender should be judged.

Channel location and gating—the fastest channel known
During hair cell transduction, the MET channel is thought
to be activated by tension in tip links connecting the apex

of one stereocilium with the side wall of its neighbor
(Fig. 1). Deflection of the hair bundle towards its taller edge
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Fig. 1 Localization of the MET channel relative to the tip link. a
Application of force (F) to the hair bundle increases tension in tip
links connecting contiguous stereocilia and leads to stimulation of the
mechanoelectrical transducer (MET) channels. In a common cartoon,
channels are present at both ends of the tip link which is kept taut by
the climbing activity of a myosin 1c motor at the upper end. b Two
possible channel locations. The tip link is composed of dimers of
cadherin 23 (CDH23) joined to dimers of protocadherin 15 (PCDH15)
[45]. Recent imaging of Ca®" influx during stimulation [4] suggests
that MET channels are present only at the lower ends of the tip links,
(bottom figure) where they could theoretically interact with the C-
terminus of protocadherin 15. On this scheme, it is unknown how
myosin lc might serve as the adaptation motor

increases tip link tension and opens channels through which
flows the transducer current. This generates an analog
waveform, the receptor potential, which is relayed synap-
tically to auditory nerve fibers where it initiates a volley of
action potentials. For an abrupt displacement of the hair
bundle, the transducer current in non-mammals such as frog
or turtle [12, 13, 65] develops with a time constant
decreasing with stimulus amplitude (range 500-50 us).
The acceleration of activation kinetics with stimulus
amplitude is expected if the mechanical stimulus modulates
the free energy difference between the open and closed
states of the channel. In mammalian cochlear hair cells, the
activation time constant is more than an order of magnitude
smaller, being indistinguishable from the experimentally
limited rise time of the displacement step [65, 68] which
under in vitro conditions can have a time constant of
~20 s at best [68]. It seems likely that the activation time
constant of the mammalian MET channel, when extrapo-
lated to body temperature (Q;0=2.0; [12, 13]), must be less
than 10 ps in vivo, making it the ion channel with the
fastest known gating kinetics. The MET channel in
mammals has more rapid kinetics than in non-mammals
presumably because the hair cells must respond to higher
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stimulation frequencies up to 100 kHz; this difference
implies a structural change to the channel.

The MET channel also undergoes several phases of Ca'-
dependent adaptation [1, 13], the quickest component of
which also exhibits a kinetic difference between non-
mammals, in which the adapting time constant is =1 ms,
and mammals where it is ~0.1 ms [26, 65, 68]. Ca®"
entering via the channel is thought to bind to a site on or
near the channel to promote channel reclosure and fast
adaptation [13, 38, 72]. The reported time constants of
activation and adaptation should be regarded as upper limits
as it is conceivable that during stimulation other rate-
limiting steps are imposed by the hair bundle mechanics.
For example, non-coherent motion of the stereocilia
because of inadequacies in stimulation or viscoelastic
properties in the inter-ciliary linkages could slow the
observed kinetics. Nevertheless, the gating kinetics docu-
mented are sufficiently fast to argue for a direct mechanical
connection to the channel. A model of transduction,
devised from characterizing hair bundle mechanics [38],
proposes that MET channels are opened by force applied
via elastic elements known as “gating springs”, which are
stretched when the hair bundle is deflected. One end of the
spring is extended by tension in the tip link (which is
probably too rigid to be the gating spring [44]), while the
other end is attached to the channel’s hypothetical gate. A
conclusion from this model is that the channel gate
undergoes a large motion with a swing of 2—4 nm during
opening [9, 38]. If taken at face value, such modeling
implies that there are large, fast rearrangements of the
channel protein during opening.

How is the tip link related to the MET channel? The tip
links are 150-180 nm in length [28] and thought to be
composed of a twisted pair of cadherin 23 molecules joined
near their N-termini to a pair of protocadherin 15 molecules
(Fig. 1; [45]). From imaging of Ca®" influx through MET
channels during hair bundle stimulation, the channels have
been localized near the tops of the stereocilia [20, 53], but
their relationship to the tip link has been unclear. It was
previously suggested that channels were present at both
ends of the tip link [20] and this hypothesis was
incorporated into an attractive model of channel regulation
[31]. The model proposed that Myo-1¢ motors, climbing up
actin filaments in the stereocilia, were controlled by Ca*"
influx through channels at the top of the tip link. These
motors are thought to be responsible for maintaining the tip
links taut and for mediating a form of adaptation slower
than that directly involving the channel (Fig. 1). However,
recent high speed confocal imaging of Ca®" influx in
mammalian cochlear hair cells [4] has revealed the absence
of Ca®" signals in the tallest row of stereocilia, prompting
the conclusion that the MET channels are restricted to the
lower end of the tip links. Thus, inner hair cells with three
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rows of stereocilia were found to possess MET channels
only in the middle and shortest rows. A comparison of the
size of the transducer current with the number of tip links or
functional stereocilia suggested that each link was
connected to two channels [3, 4]. This conclusion is
satisfying because of the asymmetry in the tip link
structure. A plausible functional arrangement might there-
fore be that each channel connects directly with the
intracellular C-terminus of a protocadherin 15 molecule
comprising the lower end of the tip link. A direct
interaction between protocadherin 15 and the MET channel
might be exploited to isolate the channel using yeast two
hybrid methods.

Insights into the structure from channel permeability
and block

The MET channel is a large conductance cation channel
with a permeability sequence of Pc, > Pp; > Pna = Px >
Pry > Pcs (Eisenman permeability sequence XI,
corresponding to a strong-field strength site; [59]). This
means that permeation is dominated by the ion’s interaction
with a negative site in the pore rather than by removal of
the hydration shell. The channel is preferentially permeable
to divalent metal cations [11] such as Ca®" and Mg*" and,
based on measurements of reversal potential, Pc,/Py, is =5:1
in both non-mammals [59] and mammals [3]. Using this
permeability ratio, the channel would be expected to carry
15% of the total transducer current in 1.5 mM extracellular
Ca*" and 0.2% of the current in an endolymphatic Ca®" of
20 puM. However, there have been claims that Ca**
contributes a significantly larger fraction of the current
under these conditions [43, 63] implying a Pc,/Pn. greater
than 5:1. In the intact inner ear, when the hair bundles are
bathed in endolymph, the transducer current will be carried
predominantly by K ions with a minor contribution from
Ca®" [63]. The channel is unusual in exhibiting a significant
permeability to large organic cations such as choline
(Peholine/Pna=0.27; [59]) and tetraecthyl ammonium (TEA)
ions (Ptpa/Pna=0.1; [22, 59]. A comparison of perme-
abilities using a series of trialkyl and tetralkyl ammonium
derivatives indicated an effective pore size of 1.2 nm [22]
in accord with the large single-channel conductance. This
size of pore is not shared with other non-selective cation
channels with high Ca®" permeability, such as the acetyl-
choline receptor and cyclic nucleotide-gated channels both
of which are effectively impermeable to TEA [21, 61].
The MET channel is blocked by an assortment of agents
[22, 26] and, where comparisons can be made, results from
non-mammals (frogs, chick, turtle) largely agree with
measurements on mammals suggesting a common pore
structure. High affinity blockers include extracellular La®"

(half blocking concentration, 1Csp=4 uM), Gd** (ICs50=
3 uM) and ruthenium red (IC5o=3 puM) that block many
transient receptor potential (TRP) and mechanically sensi-
tive channels [22, 46]. Other more bulky polyvalent cations
able to block the channel from its external face include
amiloride (IC50=50 uM; [42, 66]), dihydrostreptomycin
(DHS; IC50=10-70 uM; [51, 59, 62]), FM1-43 (ICs5¢=
1 uM; [29]) and curare (IC50=2—-6 uM; [22, 32]. The
channel is also blocked by Ca** with an ICso of 1 mM [14,
63]. This action of Ca®" is notable because it implies that
the divalent cation can both block and permeate the channel
as would occur if the site of interaction were negative
charges within the selectivity filter: because of the
permeability sequence, Ca®" lingers longer in the pore.
However, similar behavior occurs with large organic
blockers like DHS [54] and FM1-43 [29] which are also
partially permeable when applied externally. Hair cell
accumulation of FM1-43 can be visualized by the increase
in hair cell fluorescence as the dye that has entered via the
MET channel binds to intracellular membranes [29, 55].
Neither agent is as effective when applied intracellularly
(e.g., about 100-fold higher concentrations of DHS are
needed to elicit the same inhibition; [54]) implying
differential access to the blocking site within the channel
from the outside and inside. This has led to the notion of a
funnel-shaped channel [70], possessing a wide extracellular
mouth or vestibule that can more easily accommodate large
molecules with the charged residue on the blocker extend-
ing into the pore. The vestibule has room for an elongated
FM1-43 molecule, 2.2 nm long but only 0.8 nm maximum
end-on diameter [70], which is able to traverse the pore.
However, the vestibule cannot accommodate the analog
FM3-25, which has a fan-shaped tail of broader cross
section and neither blocks nor permeates the MET channel
[29].

In spite of a potential asymmetry to the MET channel
structure, the current—voltage relationship for the channel in
normal extracellular solution (Na'-containing saline with
1.5 mM Ca®") is approximately linear between £100 mV
[14, 52]; a modest inward rectification is acquired if the
extracellular Ca”>" concentration is reduced to 20 pM,
similar to that in endolymph [3]. However, a pronounced
non-linearity to the current—voltage relationship appears in
the presence of the divalent channel blockers DHS [51, 54,
58, 59] or amiloride [66], implying voltage dependence to
their blocking action. For both agents, suppression of the
transducer current is maximal at a membrane potential
around —70 mV but is relieved on depolarization beyond
0 mV. This would occur if the blocker needed access to a
negative binding site within the electrical field. By
modeling the voltage dependence, it has been estimated
that the site is located at a fractional distance in the field
from the external face, d;,, of 0.79 for DHS and 0.44 for
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amiloride [70]; a value for J;, of 0.45 has also been inferred
based on the voltage dependence of permeation by various
organic cations [22]. The reason for the different values for
dp is unclear and it is possible that there are a series of
negative charges within the vestibule surrounding the
selectivity filter that influence the voltage sensitivity of
permeation and block. Using the dimensions of the non-
blocking analog, FM3-25, the distance of the negative
binding site from the external surface was estimated to be
~2 nm. The efficacy of both amiloride and DHS is also
reduced by hyperpolarization negative to =100 mV which
has been attributed to exit of the blockers through the
selectivity filter into the cell [70]. Amiloride, DHS, and
FM1-43 all therefore behave as permeant blockers.

Channel conductance—a surprising variation

Characterization of single MET channel properties cannot
be achieved in hair cells by employing conventional cell-
attached or detached patch methods because it precludes
delivering appropriate physiological stimuli. However, it
has been possible to record unitary events by destroying
most of the extracellular connections to the channels (the
tip links) by brief exposure to sub-micromolar Ca®"; this
procedure probably severs the tip links at the junction
between cadherin-23 and protocadherin-15. One or a few
channels are spared by this approach and can be measured
in whole-cell mode because of their large unitary conduc-
tance >100 pS [14, 30, 59, 64]. Individual channels
recorded in this manner show all the features of the
macroscopic MET current (Fig. 2a). They can be activated
by sub-micron displacements of the hair bundle, they
exhibit adaptation, and they are blocked by DHS and by
millimolar Ca**. They have mean open times of under 1 ms
which decrease with stimulus amplitude [14] and are
inversely related to external Ca** concentration (i.e., longer
open times in lower Ca”"). Besides the large fast conduc-
tance level, some cells also display a long-lived sub-
conductance state about 40% of the size of the chief level
[14, 64].

A surprising property of the MET channels recorded in
turtle auditory cells is a variable conductance that depends
upon the localization of the hair cell in the cochlea,
increasing from 100 to 300 pS (in 0.05 mM Ca®") along
the tonotopic axis from low-frequency to high-frequency
end of the papilla (Fig. 2b). As a consequence of this
variation, both the size of the macroscopic current and the
rate of fast adaptation become larger towards the high
frequency end [64]. The change in fast adaptation can be
explained if its rate grows with the amount of Ca®" entering
the stereocilia [63], the Ca*" influx increasing with channel
conductance. This notion is supported by the observation
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Fig. 2 Mechanoelectrical transducer channels. a Single MET channel
events recorded in a turtle auditory hair cell during hair bundle
deflection of 280 nm. Three traces depict channel opening at the start
of the step, the ensemble average current (below) displaying
adaptation with a time constant of 3.5 ms. b When the holding
potential is switched from —80 to +80 mV to prevent Ca*" influx, the
channels remain open throughout the step and the average current
shows no adaptation. Measurements were made in 2.8 mM external
Ca*". ¢ MET channel amplitude as a function of hair cell location in
the cochlea, expressed as the fractional distance from the apical low
frequency end, in turtle (open circles) and rat (filled circles). The
values are given for a low external Ca®* concentration (30-50 uM)
that does not block the channel. Results in turtle from [64]; those in rat
from [3] and unpublished, corrected for removal of Ca®" block. Each
of the rat points is the mean (£1 SD) of three cells

that the time constant of adaptation seen in single channel
events depends on channel conductance [64]. In the
mammalian cochlea, the situation is more complicated and
MET channel properties differ between inner and outer hair
cells [3]. The outer hair cells, which fulfill a role in cochlear
amplification by virtue of their unique electromechanical
attributes [18], show a tonotopic variation in channel
conductance similar to turtle auditory hair cells. The
amplitude of the macroscopic current and the rate of
adaptation increase too with frequency [36, 65]. The change
in conductance, when expressed as a function of the



Pflugers Arch - Eur J Physiol (2009) 458:1115-1123

1119

fractional distance of the hair cell along the basilar
membrane, is identical for the two animals (Fig. 2) despite
the disparate frequency ranges and cochlear lengths, 1 mm
in turtle compared to 10 mm in rat. This argues for a similar
mechanism across classes for acquiring the cochlear
gradients. In contrast, the inner hair cells, which are the
primary transducers relaying their signals directly to the
auditory nerve fiber dendrites, possess MET channels with
an invariant conductance of large size [3] comparable to
those of mammalian outer hair cells or turtle hair cells tuned
to high frequency. Whether the MET channels in inner hair
cells are indeed equivalent to channels in high-frequency
outer hair cells or differ in some other respects is unclear.
What might be the structural basis of the tonotopic
variation in conductance? The simplest hypothesis is that
different channel isoforms are expressed along the tono-
topic axis as has been proposed to account for the gradient
in kinetics of Ca?'-activated K* channels that underlie
electrical tuning in turtle and chick auditory hair cells [25].
With the MET channel, structural variation in the pore
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Fig. 3 Diagram of the MET channel pore to account for permeability
and block. A wide mouthed vestibule is exposed to the extracellular
face and a narrow selectivity filter contains negative charges to
account for the Ca®" permeability. The channel is depicted in high
conductance (fop) and low conductance (bottom) modes differing by
the presence of a ring of negative charges in the vestibule, postulated
to influence the local ion concentration. Channels of different
conductances (below) are hypothesized to be constructed of hetero-
tetramers of the two isoforms producing channels with intermediate
properties

region might be expected but conductance changes are not
accompanied by differences in ionic selectivity. For
example, there is no large difference in the relative Ca®"
permeability (Pc./Pna) between turtle hair cells tuned to
high and low frequency [62], or between low-frequency
inner and outer hair cells [3], suggesting no diversity in the
selectivity filter. However, a difference in the I1Cs, for block
by DHS has been found, MET currents in high frequency
turtle cells being fivefold less sensitive to block than low-
frequency cells [62]. The ICso for DHS block was smaller
in low Ca”", but nevertheless, the tonotopic differences
were preserved. One explanation for the DHS result is that
it is an open-channel blocker and that variations in ICsq
reflect differences in the probability of opening at rest,
smaller in high frequency hair cells and larger in low Ca®".
Thus, factors that increase the probability of opening at rest,
including lowering extracellular Ca®*, result in a smaller
ICs9. This would merely be a sign of differences in fast
adaptation. In contrast to DHS, amiloride, another open
channel blocker [66, 70], has an ICsq that is invariant with
frequency [62].

One hypothesis to explain variations in unitary conduc-
tance is that the channel or its local membrane environment
contains negative charges that play a role in regulating
permeability (Fig. 3). Altering these charges might influ-
ence the conductance by electrostatic mechanisms affecting
the local ionic concentration, as has been shown for the BK
Ca**-activated K* channel [6]. The BK channel is a large
conductance channel similar to the MET channel, and
structurally, it contains a vestibule on its intracellular aspect
with a 0.9-nm-wide mouth [5]. Replacement of negatively
charged residues in the S6 region lining the vestibule by
non-charged ones halves the single-channel conductance
[6]. If similar charges on or around the external face of the
MET channel act to concentrate the ions, then the effects of
lowering the ionic strength of the extracellular solution
should differentially affect the MET current in small and
large conductance channels. This hypothesis was tested [3]
in apical inner and outer hair cells (having a twofold
difference in conductance) by reducing the Na* concentra-
tion to a third by substitution with sucrose. The reduced
ionic strength should augment the effects of the local
charges by increasing the surface potential according to the
Gouy—Chapman theory [41]. Perfusing the low ionic
strength medium reduced the MET current in outer hair
cells to 0.33, a drop identical to the dilution of the
extracellular permeant ions. In contrast, the MET current
in inner hair cells showed a smaller reduction to 0.43. This
is evidence for a difference in the MET channels of high
and low unitary conductance. It is consistent with the
existence of charges around the channel that could augment
the conductance by concentrating ions in the vestibule,
increasing their availability to carry inward current [3].
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In extrapolating from the results on the BK channel, the
channel orientation was flipped so that in the MET channel
the wide vestibule was exposed to the extracellular solution
(Fig. 3). This configuration fits with the external accessi-
bility to large permeant organic cations [22] or to permeant
blockers [70], but it suggests a structural dissimilarity of the
MET channel to the K* channel superfamily to which the
BK channel belongs. Extending the analogy with an
inverted K channel predicts that the gate lies on the
external surface where it could connect with the tip link.
Again the BK channel may serve as a useful model. An
internal gating ring comprising eight RCK (regulator of K
conductance) domains, two per subunit, is thought to use
energy from Ca®" binding to activate the S6 gate via a
linker. Based on experiments of lengthening or shortening
the linker region, it has been suggested that the linker-
gating ring complex acts as a mechanical spring to apply
force to the gate [58]. Pursuing this line of argument, in the
MET channel, the gating ring would be on the extracellular
face and the gating spring would be intrinsic to the channel
protein.

TRPP channels as contenders

Mechanically gated ion channels in various organisms have
been identified as members of the TRP channel family [10],
making them natural contenders for the MET channel in
hair cells. Several have already been investigated for
involvement in hair cell mechanotransduction and elimi-
nated, including TRPV4, TRPA1, and TRPML3. Although
TRPML3 is present in hair cells and its mutation causes
age-dependent hearing loss, hair cell degeneration has been
attributed to Ca®>" loading by activation of an inwardly
rectifying channel unlike the MET channel [34, 56, 69]. Of
course, it remains possible that the MET channel belongs to
an entirely new channel family as was the case with the
CRAC channel [24, 73]. Furthermore, the analogy to an
inverted BK channel, with an external vestibule may not
easily fit with TRP channels either. However, one category
of TRP channel that does possess similar biophysical
properties to the MET channel is the TRPP family, also
known as PKD or polycystin channels because their
mutation causes renal cyst formation. This family com-
prises three pore forming members, TRPP2 (PKD2),
TRPP3 (PKD2L), and TRPPS (PKD2L1), as well as several
large accessory proteins, TRPP1 (PKD1) and three homo-
logs. When expressed alone, TRPP1 cannot produce ion
channels as do other members of the TRP channel family.

TRPP channels are thought to be mechanoreceptors that
detect ciliary motion [57] in the kidney, heart, and other
tissues, and in most respects, they exhibit comparable
properties to the MET channel with large unitary conduc-
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tance and Ca®" permeability [60]. For example, TRPP2 has
a unitary conductance of 40-170 pS, a Pc,/Pn, of up to 5
and is blocked by Ca2+, La*", Gd**, and amiloride [33, 35,
49]. TRPP3 has a unitary conductance of 137-400 pS, a
Pca/Py of 4 and is blocked by Ca**, Mg®", La*", Gd**, and
amiloride [7, 17, 67]. Most experimenters agree that the
TRPP channels when bathed in normal monovalent ions
have a current—voltage relationship displaying inward rectifi-
cation, with unitary conductances for inward current being
two to three times those for outward current. A third pore-
forming member, TRPPS5, has a single channel conductance
of 300 pS, a Pca/Pna of 4 and is blocked by La’*, Gd*",
and amiloride too [71]. For all three TRPP isoforms,
the amiloride half-blocking concentrations are in roughly
the same range (IC50=40-130 uM; [17, 19, 71]) as for the
native MT channel. No information is available about block
by dihydrostreptomycin. It is unclear why different unitary
conductances are reported by different groups (these may
depend on the expression system: oocytes, HEK-293, or
CHO cells) but all concur on a relatively large size >100 pS.

Minor differences between the MET channel and the
TRPP channel are that the latter channels are less
susceptible to block by La** and Gd** and show Ca*'-
induced activation, a feature never reported for the native
MET channel. Indeed, elevating intracellular Ca** blocks
the hair cell MET channel [47] and causes adaptation [63].
Ca*"-induced activation in TRPP2 may underlie its intra-
cellular role as a Ca®" release channel in endoplasmic
reticulum [50], though its function is often dependent on
interaction with adaptor proteins [8]. One significant
difference is in the permeability to organic cations, choline
and TEA being significantly permeable for the native
channel [59] but not for the TRPP3 [7, 16]. Another
difference, at least for TRPP3, is in sensitivity to pH
changes. TRPP3 was found to be part of receptor for sour
taste sensation and when expressed heterologously was
activated by acidification of the external solution [39, 40],
but no effects on the MET channel were reported for
changes in pH from 6.5 to 8.5 [22]. Differences in channel
properties may hinge around the presence or absence of
accessory subunits. For example, TRPP3 occurs in the taste
receptors in conjunction with the non-pore-forming subunit
PKDIL3 [39, 40], but if expressed alone in HEK-293 cells,
TRPP3 channels are suppressed by acidification but
markedly enhanced by alkalization to pH 9.0 [67].

Four TRPP isoforms are present in the organ of Corti
[15], two pore forming (TRPP2 and TRPP3) and two
modulatory (TRPP1, PKDREJ), which allows for assembly
of heteromultimers with disparate properties including
conductance. Heteromultimers of TRPP2 and TRPP3 could
in theory generate single-channel conductances from 40 to
400 pS encompassing the range seen in vivo. In addition,
TRPP2 channels can form heteromultimeric channels with
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other types of TRP channel: TRPV4 [48] or TRPCI1 [2],
both of which are present in the organ of Corti [15] and
may modify channel properties. For example, TRPP2
expressed with TRPC1 has a unitary conductance of
40 pS compared to 140 pS when it was expressed with
TRPP1 [2]. There are thus at least two specific mechanisms
for generating an array of conductance levels overlapping
those in the cochlea: by mixing TRPP isoforms or by
combining TRPP with other TRP channels. Apart from the
similarity of their biophysical properties to the MET
channel, an attractive feature of the TRPP family is the
existence of the ancillary subunit TRPP1 that could act as a
strong external linker [27] with an extensive N-terminus to
connect to the tip link and supply force to the pore-forming
subunit. This could act as a lever arm and its motion
account for the 2- to 4-nm gating swing that appears in
models of transduction [38].

Conclusions

The hair cell MET channel is a large conductance cation
channel preferentially permeable to Ca*', the influx of
which initiates channel reclosure and fast adaptation. It is
unusual in being partially permeable to organic cations as
large as TEA, FM1-43, and DHS, a property attributable to
a 2-nm-long external vestibule with a wide mouth. This
feature is unlike many other ion channels, especially those
of the K" channel superfamily including cyclic nucleotide
gated channels and TRP channels, which form tetrameric
channels with a vestibule on the intracellular face. The
depiction of the MET channel as an inverted K™ channel
with large external vestibule may be inconsistent with its
being a member of the K' channel superfamily. Further-
more, to achieve ultrafast mechanical activation, the MET
channel may not require the six trans-membrane domain
structure that is typical of the K™ channel family subunits
and associated with voltage or ligand gating. No molecular
structure has so far been established for the MET channel
and it is possible that it belongs to an entirely new family
that may emerge from a genetic screen. Nevertheless, its
biophysical signature in many respects resembles the TRPP
(or PKD) family. There are however some differences, most
notably a smaller pore impermeable to TEA in TRPP
channels. On the other hand, TRPP channels have multiple
isoforms, and channel formation by oligomerization be-
tween isoforms, with different accessory subunits or other
TRP channel types, may account for the variation in unitary
conductance found in vivo for the MET channel. Unfortu-
nately, the presence of multiple pore-forming subunits in
the MET channel may render difficult the interpretation of
simple knock-out experiments where other subunits may be
up-regulated. With the isolation of a candidate channel that

has matching properties, the most rigorous test of its
involvement in hair cell transduction will be incorporation
of a modified pore sequence, as was done with the Orail
channel [73]. For example, glutamate replacements in the
pore or vestibule may alter permeability, conductance, and
adaptation. Identifying the MET channel will be the first
step in elucidating how the channel is mechanically gated,
and how it can achieve kinetics so fast that it can encode
frequencies up to 100 kHz as required for auditory
transduction in animals such as bats and cetaceans [23].
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