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Abstract

Background: Variance component (VC) models are commonly used for Quantitative Trait Loci
(QTL) mapping in outbred populations. Here, the QTL effect is given as a random effect and a
critical part of the model is the relationship between the phenotypic values and the random effect.
In the traditional VC model, each individual has a unique QTL effect and the relationship between
these random effects is given as a covariance structure (known as the identity-by-descent (IBD)
matrix).

Results: We present an alternative notation of the variance component model, where the
elements of the random effect are independent base generation allele effects and sampling term
effects. The relationship between the phenotypic vales and the random effect is given by an
incidence matrix, which results in a novel, but statistically equivalent, version of the traditional VC
model. A general algorithm to estimate this incidence matrix is presented. Since the model is given
in terms of base generation allele effects and sampling term effects, these effects can be estimated
separately using best linear unbiased prediction (BLUP). From simulated data, we showed that
biallelic QTL effects could be accurately clustered using the BLUP obtained from our model
notation when markers are fully informative, and that the accuracy increased with the size of the
QTL effect. We also developed a measure indicating whether a base generation marker
homozygote is a QTL heterozygote or not, by comparing the variances of the sampling term BLUP
and the base generation allele BLUP. A ratio greater than one gives strong support for a QTL
heterozygote.

Conclusion: We developed a simple presentation of the VC QTL model for identification of base
generation allele effects in QTL linkage analysis. The base generation allele effects and sampling
term effects were separated in our model notation. This clarifies the assumptions of the model and
should also enhance the development of genome scan methods.

Background Trait Loci (QTL) mapping can be a powerful statistical
Understanding the genetic architecture of complex traits  tool. The basic idea of QTL analysis is to trace the inherit-
controlled by many genes and environmental factors is  ance of alleles from founders through a pedigree by using
currently one of the grand challenges in genetics. In this  genetic markers. After estimating this gene flow through
quest for the deciphering of the genetic code, Quantitative  the pedigree, the allelic effects are estimated by relating
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the phenotypes with the different alleles. The position in
the genome having the greatest statistical evidence for
large allelic effects is the most likely position of a QTL.

In QTL studies of pedigrees in outbred populations, vari-
ance component (VC) models are commonly used to esti-
mate the variance of the allelic effects [1], rather than the
effect of each individual allele. The studied phenotype is
the explanatory variable and the QTL effect is assumed to
be a random part of the phenotype. It is random because
the founders of the mapping population are assumed to
have QTL alleles with effects drawn from a distribution of
allelic effects in the entire population and also because the
alleles are transmitted from ancestor to descendent by a
random process. The model assumes that the random
effect is sampled from a multivariate normal distribution
with an infinite number of different alleles, and the model
is therefore called the infinite alleles model. Simulations
have shown that the model is capable of giving unbiased
estimates also when the QTL is biallelic [2-5].

To be able to estimate the variance of the random QTL
effect, a between-individual covariance structure has to be
specified. For a non-inbred population this is equal to the
proportion of genes that individuals share identical-by-
descent at a specific position [6], and the matrix describ-
ing the covariance structure is therefore called the iden-
tity-by-descent (IBD) matrix. Since the IBD matrix is not
known a priori, it has to be estimated from marker infor-
mation. This matrix has applications beyond the VC QTL
model [7,8], however, and a lot of effort has been put into
developing IBD estimation algorithms. For small pedi-
grees and few markers, the most likely IBD matrix can be
estimated [9], but for large pedigrees this is too computa-
tionally demanding and approximate algorithms have
therefore also been developed [10-12]. Hence, the IBD
matrix estimation algorithms have been described in
detail, but explicit definitions of the random QTL effect in
terms of independent levels are more difficult to find (see
however [13,14]).

Several review articles have been published where the
assumptions of the model are addressed [2,15-18]. The
focus of these papers was on statistical testing of QTL
effects and interpretation of genome scans. Several other
papers have focused on the biological interpretation of
the random QTL effects. Goddard [14] compares the
assumptions of the biallelic and the infinite alleles model.
He also explains how uncertainty is included in the infi-
nite alleles model by adding a random sampling term to
the expected allelic effects and that the variance of the
sampling terms are proportional to the QTL variance
under the infinite alleles model. Furthermore, Meuwissen
and Goddard [19] developed a VC model where they
related phenotypes with QTL allele effects by means of an
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incidence matrix. None of these papers show, however,
how the random QTL effect can be given in terms of inde-
pendent levels. Such a development would more clearly
show the definitions of the levels in the random QTL
effect and thereby help us to interpret the results from the
VC QTL model.

The aim of this paper is to develop a simple presentation
of the VC QTL model for identification of base generation
allele effects in QTL linkage analysis. Although our main
objective is to better understand the biological functions
of the random QTL effect, we argue that our model formu-
lation may also enhance the development genome scan
methods.

Results

In this section we show how an alternative incidence
matrix based VC QTL model is formulated, we give the
prerequisites for the model to be equivalent to the IBD
matrix based model, and we also present a general algo-
rithm for constructing the incidence matrix. The choice of
notation affects the results that can be obtained from the
model in terms of best linear unbiased predictions
(BLUP) [20]. This is shown with simulations and is also
illustrated with an analysis of real data from a wild-
domestic chicken cross. The theoretical details are given in
the Methods section.

An incidence matrix based VC QTL model

The alternative incidence matrix notation breaks down
the VC model to its most basic form where the levels of
the random effect are independent. An advantage of this
approach is that it is easy to identify the assumptions
directly from the model. The present paper is restricted to
VC models where there are additive and dominance
effects but the models are easily extended to include poly-
genic, family specific effects, epistasis and genotype by
environmental interactions following the models given in
[1,21-23]. A VC model may consist of fixed and random
effects (a mixed model) but the main parameter of interest
is the variance of the random QTL effect, and the fixed
effects are therefore ignored without loss of generality in
the presentation below.

A restriction on the random QTL effect v can be given
either by the covariance structure between individuals, i.e.
the IBD matrix IT or alternatively by an incidence matrix Z
relating individuals with the QTL alleles in the base gen-
eration. In the latter case, the elements in the vector of ran-
dom effects v* are independent. The trait vector y is
multivariate normal and the distribution of the random
effects, i.e. the QTL allele effects, is given by Q ~ MVN(O,

1 . . . . .
50'3 I) where I is the identity matrix and 63 is the QTL
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genotypic effect. The genotypic value v; of individual i in

the base generation is the sum of the pair of QTL allele
effects at a specific position v; = Q,, + Q,,,;, where the QTL

alleles are arbitrarily numbered k = 2i-1 in the base.
Hence, by defining the variance of the random QTL geno-

typic effects as 0'3 , the variance of the QTL allele effects is
1
50'3 . The QTL alleles are all assumed to be independent

in the base generation, i.e. Cov(Q; Q;) = 0 where i and j

are different indices for the m base alleles. The VC QTL
model assumes that all alleles are different in the base
generation so that m equals twice the number of base gen-

eration individuals.

The incidence presentation of the VC QTL model is:
y=pu+Zv*+e (1)

Here y is the overall mean, v* is the vector of m independ-
ently normally distributed base generation alleles with v*

1 R . .
~MVN(O, 563 ). The matrix Z is of size n x m, e is the vec-

tor of residuals with e ~ MVN(O, 10'62) where O'e2 is the

residual variance. The variance of y is therefore

V= %zz’of +1o7

The traditional IBD matrix version [1] is given by:
y=u+v+e (2)

where v is the vector of QTL genotype effects (length n)

and v ~ MVN(O, HO',%) and e ~ MVN(O, IO'e2 ). Thus the

variance of y is V = HO'3 + IO'e2

The two models are equivalent if IT = %ZZ' because they
then result in the same log-likelihood function L(g, Vly)
- g In(27) - %ln|V| : % (v - 4)' V(y - 1) and the equiv-
alence follows directly from the weak likelihood principle

(see e.g. page 194 in [24]).

The following numerical example shows how Z is con-
structed at a marker position when the marker is fully
informative (i.e. all marker alleles are unique), and also
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1
thatI1= 3 ZZ7Z' Consider the example pedigree in Figure 1

with four individuals in the base generation, two in the
second generation and one in the third generation, and a
fully informative marker.

The incidence matrix Z is obtained by letting the elements
of v* be the random effects of the eight independent QTL
alleles in the base generation. Let each row in Z be
indexed according to the labels of the individuals in Fig-
ure 1 then:

Q
Q
Q3
Q4
Qs
Qs
Q;
Qg

with v* =

N

Il
S O B O O O +
S O O O O O +
S O O © O ~ O
— O = © O = O
S ©O © © ~» O O
— = O O = O O
S © ©O —» O O O
S =R O = O O O

For the pedigree in Figure 1 the corresponding IBD matrix
(indexed according to the labels in the figure) is:

1000+ 00
2

01 0 0 1 0 1
2 2 4] Q+Q
00100+ 21 2 Q3 +Qy
f 2 V3 Qs + Qg
Im=fo o0 0o 1 0 3 0 [withv=|vy [=] Q;+Qg
1 1 1 Us Q1+Q4
2200t 0y v | | Qo+ Qs
0 0 1 1 o 1 1 vz Qg +Q

2 2 2

o L 1 o, L 1

2 2 2 2

Note that the models (1) and (2) are equivalent since
%ZZ' = I1. In this example it was assumed that the QTL
was completely linked to a fully informative marker, but a
QTL can also be modelled at not fully informative mark-
ers, as well as non-marker positions, by adding additional
levels to v* that account for the unknown sampling of
QTL alleles. The theoretical details are given in Methods.
A direct consequence of the presented theory is that IT will
be positive definite at non-marker positions and that the
number of non-zero eigenvalues at a fully informative
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Figure |

An example pedigree with a fully informative marker A. The Z matrix, and corresponding IBD matrix, for this pedi-

gree is given in the text.

marker is equal to twice the number of base individuals
(i.e. when the number of marker allele types is equal to
the number of base generation alleles). Hence, a VC esti-
mation algorithm that assumes that IT can be inverted
(which is the case in the computer packages DMU [25]
and ASReml [26] for instance) cannot be used to identify
QTL at marker positions where the marker is highly
informative.

Including dominance effects

Model (1) can be extended to include dominance effects
by adding an additional variance component d* for the
dominance effects

y=U+2Zv*+Z,d* +e

where d* ~ MVN(O, 0'5) and 0'5 is the variance of the

dominance effects. In this model there is a random effect
for each allele combination A; and A;i.e. each allele com-

bination has an additional dominance effect &;. For the

pedigree in Figure 1, the matrix Z; (with rows indexed
according to the labels in the figure) is given by:

oo
oo
oo
o
o
o
o o

Zi=

cocococooo
ccococo
cococoococo
coc~ococoo
cococoooco
ccocococoo
° °
cococoocoo
cococoo
cococoococo
ccocococoo
cococoooco
ccocococoo
° °
cocococococo
cococoo
cococoo~-o
ccocococoo
cococoooo
ccocoocoo
° °
cococococoo
cococoo
~cocococoo
ccocococoo
cococoooco
ccocococoo
°
cococococoo
oo
oo
oo
oo
oo
ccococo
coc~-ocoo

00000

where the number of columns in Z; and the length of d*
is 36 since there are (9 - 8)/2 different allele combinations,
and the ordering of columns is such that the element cor-
responding to J; is given in column number (i-1)*(8-i/2)
+ j. Note also that Z,Z', is equal to the dominance IBD
matrix defined by Xu [23].

A general algorithm for estimating Z

The matrix Z estimated with the algorithm outlined here
gives 0.5ZZ' equal to the IBD matrix obtained from the
single point algorithm developed by Wang et al. [27]. A
fully detailed description of the algorithm is given in
Methods.

The Z matrix is obtained in two steps. In the first step, the
first m columns of the gametic IBD matrix is constructed,
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where m is twice the number of base generation individu-
als. Let this matrix be denoted W. Additional columns
with the factors for the sampling terms due to uncertainty
are added if the marker is not fully informative. In the sec-
ond step, Z is obtained by adding the rows of W pairwise,
so that a row in Z relates an element in y with a pair of
QTL alleles from the base generation.

This is a single point algorithm, but the same principle
could be used for multi-point estimation if a multi-point
estimated gametic IBD is available.

Identification of base generation allelic effects

QTL mapping methods are in general based on strict
assumptions regarding the genetic architecture of the base
generation individuals for the mapping pedigree. Meth-
ods using fixed effect models generally assume bi-allelic
QTL and that the founder lines are assumed to be fixed for
alternative QTL alleles (e.g. [28]). In traditional variance
component methods, all founders are assumed unrelated
and contribute two alleles each with effects drawn from an
allelic effect distribution [1]. QTL mapping experiments
are often designed to be a first step in a process to fully dis-
sect the genetic architecture of the trait. The ultimate aim
could e.g. be to understand the molecular mechanisms
underlying different allelic effects or to identify appropri-
ate genetic markers for efficient marker assisted breeding.
It is therefore desirable that one, already during the statis-
tical QTL analysis, obtain as thorough understanding of
the genetic architecture of the base generation individuals
as possible by e.g. estimating their QTL allele effects
before the genetic dissection process is continued. The pri-
mary parameter of estimation in the VC QTL model is the
variance of the QTL effect, but it is also possible to esti-
mate the effects of each element in the random effect vec-
tor using BLUP [20] (see also [6,29]).

The incidence matrix notation presented here provides
new opportunities to estimate QTL allele effects of the
base generation individuals and to separate these effects
from the sampling term effects. The benefit of using the
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incidence matrix based parameterization of the VC model
is shown in the results below.

Simulation setup

We simulated an F, pedigree resulting from a cross
between two phenotypically divergent outbred strains
with a basic structure resembling the Jungle fowl x White
leghorn chicken pedigree of Kerje et al. [30]. The base gen-
eration consisted of four individuals; one male and three
females. In the two following generations there were 30 F,
and 800 F, individuals. A biallelic QTL was simulated and
the phenotypes were simulated as a QTL genotype effect
plus a residual effect (i.e. with expected mean equal to 0).
Each base generation allele was randomly assigned one of
the biallelic types with a 0.5 probability for each type.
Only the F, individuals were assumed to be phenotyped.
100 replicates were simulated with a fully informative
marker. The BLUP of the base generation QTL alleles were
calculated from the mixed model equations (described in
detail in the Methods section) with Z estimated using the
algorithm outlined above. Variance component estima-
tion was done using Fisher's scoring algorithm, and the
simulation and estimation algorithms (see Appendix)
were programmed in R [31].

Two different simulation experiments were performed to
evaluate the possibility of identifying biallelic effects from
the BLUP obtained from model (1) and to evaluate the
possibility of identifying if a marker homozygote base
individual is QTL heterozygous.

The parameters used in the first simulation experiment are
given in Table 1. Three different additive biallelic effects
were studied and one case with dominance was also
included. For each replicate, the BLUP were partitioned
into two clusters by minimizing the variance within clus-
ters using the pam function in the cluster package of R
[31,32]. The correspondence between the clustering and
the generated biallelic QTL types in the base generation
was subsequently analyzed by summing the number of
alleles that had been incorrectly clustered.

Table I: Setup for the simulations with a fully informative marker. 800 F, individuals were simulated with phenotype equal to the sum

of the additive QTL effect, dominance QTL effect and residual effect

Percentage of the phenotypic
variance explained by the QTL?

Additive effect (a)b

Dominance effect (d) Residual variance

5% additive QTL 3.162 0 95
10% additive QTL 4.472 0 90
20% additive QTL 6.324 0 80
20% add. QTL and 10% dominance 6.324 3.162 70
a Expected additive QTL variance 05 equal to 0.5a2
b The two alternative homozygous genotypes had additive effect a and -a in the simulated data
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In the second set of simulation experiments a 5%, 10%
and 20% additive QTL was simulated in the same way as
described in Table 1, but Z was constructed with the base
generation male being marker homozygous.

Simulation results

Our method based on the infinite alleles model is power-
ful in clustering biallelic effects even at moderate effect
sizes and the power increases when the proportion of the
total variance explained by the QTL increases (Table 2). In
the case where dominance was included, only 13% of the
dominance BLUP were correctly clustered. The clustering
of these effects, however, can be deduced from the cluster-
ing of the main effects, because in the biallelic model the
dominance effect is added only to the genotypes of the
heterozygotes. Hence, it is possible to cluster the biallelic
dominance effect accurately as well by identifying the QTL
heterozygotes from the estimates of the main QTL effect.

In the second set of simulations, the male in the base gen-
eration was marker homozygous. Depending on the
genetic constitution of this male there will be a bias in the
estimated QTL variance. If the male is a QTL heterozygote
the QTL variance will be over estimated, and if it is a
homozygote it will be underestimated (Table 3). The esti-
mate is, however, consistent if there is a 50% chance of
this male being a QTL heterozygote. The reason for the
QTL variance being underestimated when the male is
homozygous is that the true sampling terms are all zero
and their variance will not be proportional to the QTL var-
iance [14]. Since the estimated sampling terms for a QTL
homozygote will be close to zero, and those for a hetero-
zygote will differ from zero, it is possible to distinguish
between base generation homozygotes and heterozygotes.

In the simulated pedigree, there were four F,and 40 F,
individuals and consequently there are 8 levels in the vec-
tor of random effects (v*) corresponding to the base alle-
les and 40 levels due to sampling terms. The ratio between
the variance of the 40 sampling term BLUP and the vari-
ance of the 8 base allele BLUP is expected to be close to
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zero if the base male is a homozygote and it is expected to
be greater than one if it is a heterozygote. This difference
was clearly shown in the simulations (Table 4) and
increased with the size of the QTL. A threshold of 0.5 for
the variance ratio was empirically chosen to cluster the
simulations into two groups so that all simulations below
this threshold were classified into Group A (QTL homozy-
gotes) and all simulations above the threshold were clas-
sified into Group B (QTL heterozygotes). Using this
classification, all homozygotes and heterozygotes were
correctly grouped into Group A and B, respectively, when
a 20% QTL was simulated (Table 4). For the 10% QTL
case, all homozygotes were correctly grouped and over
75% of the heterozygotes were correctly grouped. When a
5% QTL was simulated over 95% of the homozygotes
were correctly grouped and nearly 50% of the heterozy-
gotes were correctly grouped. Hence, this method gives
good indication of whether the marker homozygote is
QTL heterozygous or not and does not require knowledge
of the true QTL variance. In the general case, there is
strong support for a heterozygote if the QTL variance is
high and the estimated variance ratio between allele
effects and sampling terms is greater than one.

Analysis of a QTL in a wild — domestic chicken cross

In a previous standard QTL analysis [28], a QTL on
Chicken chromosome 1 [30] was shown to explain 11%
of the variance for body weight at 200 days of age, and
subsequent analysis of the segregation patterns of the QTL
within individual F, sires indicated segregation of the QTL
within the founder breeds. This QTL was close (12 cM) to
a completely informative marker (LEI246). We calculated
the BLUP for the base generation allele effects and subse-
quently clustered these into two groups assuming a bi-
allelic QTL. The results showed that all Jungle fowl have a
common allele and all Leghorn hens have common alle-
les except for one hen, which has one red Jungle fowl
allele. Hence, we could identify which base individual
that had an allele not fixed within lines. The difference
between cluster means was 49.3 g. The estimated fixed
effects and variance components were: mean = 1080.3 g,

Table 2: Simulation results for clustering of biallelic effects using our presentation (eq. (1)) of the infinite alleles model when markers
are fully informative. 100 replicates were simulated for each QTL effect

Percentage of the Cluster difference?
phenotypic variance

explained by the QTL

Proportion correctly
clustered allele effects

Estimated residual
variance

Estimated allelic QTL  Estimated dominance

1 . 2
varianceb (563 ) variance (O 7 )

5% additive QTL 0.79 2.63 (0.81)
10% additive QTL 0.93 3.93 (0.73)
20% additive QTL 0.97 5.91 (0.65)
20% add. and 10% 0.99 5.39 (1.85)

dom

2.65 (1.16) - 95.11 (4.85)
4.99 (1.58) - 89.85 (4.97)
9.89 (2.44) - 78.98 (3.87)
9.61 (4.46) 10.98 (3.1) 70.43 (2.56)

2 Average differences between cluster means. Standard deviations within parentheses
b The allelic variance is estimated from model (). The expected mean is half the proportion of the total variance explained by the QTL.
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Table 3: Variance component estimates?from 100 replicates with a marker homozygous individual in the base generation. The marker

homozygote had a 50% chance of being QTL heterozygous.

1
Allelic QTL varianceb ( 50'3 )

Residual variance (0'3)

All Homozygotes Heterozygotes All Homozygotes Heterozygotes
5% additive QTL 2.90 (1.77) 2.16 (1.03) 3.76 (2.07) 94.42 (4.80) 94.17 (5.21) 94.72 (4.30)
10% additive QTL 5.26 (2.81) 3.63 (1.27) 7.71 2.71) 89.59 (4.90) 89.68 (4.48) 89.45 (5.53)
20% additive QTL 10.27 (6.38) 5.56 (1.30) 17.32 (3.98) 79.67 (4.19) 79.59 (4.42) 79.80 (3.85)

The variance estimates are given as the mean of estimates from all simulations (All), and also as the mean of the estimates divided into two cases:
marker homozygote simulated as QTL homozygous (Homozygotes) and marker homozygote simulated as QTL heterozygous (Heterozygotes)

aStandard deviations within parentheses.

b The allelic variance is estimated from model (). The expected mean is half the proportion of the total variance explained by the QTL

sex effect = 409.2 g, QTL genotype variance = 3251.8, and
residual variance = 26028.9.

Discussion

We have developed a presentation of the VC QTL model
where the random effect vector is given in terms of inde-
pendent levels. Three main points can be concluded from
the analytical description of the model and the results pre-
sented in the paper: more information can be extracted
from QTL analysis by using our alternative model presen-
tation, an improved understanding of VC estimation can
be achieved, and the presentation of the model in terms
of base allele effects should help to develop new models
specifically designed for different structures of dependen-
cies between base generation alleles.

Estimation of BLUP for base generation allelic effects and
sampling term effects

Using our presentation of the infinite alleles model, we
could accurately cluster a bi-allelic QTL when markers are
fully informative. Furthermore, we were also able develop
a measure of whether a marker homozygote is a QTL het-
erozygote or not, which can be used in both outbred pop-
ulations and experimental crosses. To our knowledge
these developments are novel, but the idea that the sam-
pling variance should be different between the QTL heter-
ozygote and homozygote individuals was mentioned
already by Goddard [[14]; p.121]: "If the inheritance of an

allele cannot be followed with certainty from parent to
offspring [in the infinite alleles model], then a new allele
is assumed with effect pg, + (1-p)g, + e where g, and g, are
the effects of the parental alleles, p is the probability that
allele 1 was inherited and ¢ is a random effect with mean
zero and variance equal to p(1-p) v(g). If there are only two
alleles at this gene then the correct assumption would be
that the offspring inherits g, with probability p and g, with
probability 1-p. On average this implies the same segrega-
tion variance as the infinite alleles model but in a particu-
lar case, if g, and g, are similar, then the segregation
variance is smaller in the two allele model than in the infi-
nite allele model." Hence, the VC model is capable of giv-
ing unbiased estimates for a biallelic QTL [2-5] but this
unbiased property of the estimator assumes that a marker
homozygote in the base is equally probable of being QTL
homozygous or heterozygous. More importantly, the esti-
mate obtained from a single QTL analysis will be severely
under- or overestimated depending on whether the
marker homozygote is QTL homozygous or heterozygous,
respectively.

The infinite alleles model has acquired its name not only
because the base generation alleles are assumed to be
drawn from an infinite number of different alleles, but
also because the sampling terms have previously been
included in the allelic effects (as explained in the citation
above) and each new sampling term has been thought of

Table 4: Quantiles for the variance ratios between sampling term BLUP and base allele BLUP split into the two cases where the
marker homozygote was either simulated as QTL homozygous or QTL heterozygous

Min. 5% 25% 50% 75% 95% Max.

5% additive QTL Homozygotes 0.05 0.07 0.13 0.17 0.25 0.39 0.67
Heterozygotes 0.18 0.21 0.34 0.54 0.92 2.09 2.58

10% additive QTL Homozygotes 0.08 0.10 0.12 0.15 0.21 0.37 0.40
Heterozygotes 0.26 0.30 0.8l 1.19 1.83 2.74 7.06

20% additive QTL Homozygotes 0.08 0.09 0.12 0.15 0.19 0.34 0.41
Heterozygotes 0.63 0.94 1.44 1.70 2.29 3.93 9.73
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as producing a new allelic effect. To us, this production of
new QTL alleles through the pedigree due to uncertainty
is contra-intuitive and our model notation separates the
QTL allele effects from the sampling terms.

The clustering analysis of additive biallelic QTL effects at
a fully informative marker presented in the results could
have been performed based on the neat transformation of
individual genotypic BLUP to individual allele BLUP
developed by Nagamine et al. [33,34]. However, these
allelic BLUP are calculated for each individual in the ped-
igree and does not give separate BLUP for the sampling
terms, because each allelic effect in this model is a mixture
of the base generation allele effects and the sampling
terms. Our notation was also easy to extend so that dom-
inance effects could be incorporated, which Nagamine et
al. [33] did not attempt in their calculations of allelic
BLUP. Furthermore, the transformation given by Nag-
amine et al. assumes that the IBD matrix is positive defi-
nite, which is not the case in marker positions.

Implications for VC estimation

Our decomposition of the IBD matrix into a low rank inci-
dence matrix shows that IBD matrices will be singular in
marker positions and the rank of the IBD matrix will
depend on the size of the base generation and the inform-
ativeness of the marker. Furthermore, for positions close
to markers the IBD matrix will be close to singular. The
current VC estimation programmes that are used in
human genetics (e.g. SOLAR [35] and MERLIN [36]) have
not been developed to deal with large family pedigrees,
because so far only small or moderately sized pedigrees
have been used, but the need of obtaining fast algorithms
for large family pedigrees will be a major task within the
near future [37]. VC estimation programmes developed
for animal breeding applications [25,26], however, have
primarily been developed for estimating the variance of
polygenic effects in large pedigrees. The covariance matrix
of polygenic effects (i.e. the additive relationship matrix)
is positive definite and the VC estimation algorithms that
have been developed to estimate polygenic variances have
therefore been optimized for situations with non-singular
covariance structures, and are unable to handle those
cases in VC QTL analysis where the covariance structure is
singular (e.g. at marker locations). A way to get around
this problem is to add a small positive value to the diago-
nal of the IBD matrix, which may lead to an extremely ill
conditioned optimization problem since the IBD matrix
will then be close to singular (i.e. with many eigenvalues
close to zero). An alternative is to invert the variance of the
response vector directly [38] but neither of these strategies
take advantage of the fact that the IBD matrix is lower
ranked or close to lower ranked when markers are dense
(which was shown in the Methods section).
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Modeling of dependencies between allelic effects in the
base generation

We describe the VC QTL model in terms of independent
random effects (base generation allele effects and sam-
pling terms) instead of correlated random effects (as in
the IBD version of the model). As a consequence it is eas-
ier to model correlation structures between base genera-
tion alleles, which has been an important issue in linkage-
disequilibrium linkage mapping over the past decade [39]
where the correlation structure is estimated from marker
haplotypes. This method incorporates linkage disequilib-
rium in the base generation and gives greater power to
position a QTL in fine mapping. It can also account for the
possibility that marker homozygotes are more likely to be
QTL homozygotes. Recently, we have shown [40] that VC
modeling can be a powerful tool to identify within line
variation in divergent intercrosses by including a correla-
tion structure between the base generation allele effects
that is estimated directly in the VC model. An important
future development would be to combine these two mod-
els so that both the linkage disequilibrium information
and the within line variation can be modeled simultane-
ously. This development, and other possible develop-
ments of the VC models where base generation
correlation structures are included, should be enhanced
by the model presentation given in this paper.

Conclusion

By defining VC QTL model in terms of independent levels
of the random QTL effect, we have developed a simple
presentation of the VC model for identification of base
generation allele effects in QTL linkage analysis. This
development clarifies the definition of the random QTL
effect and will be helpful in applications where the aim is
to trace allelic QTL effects through a pedigree. Our clarifi-
cations of the VC QTL model should also enhance the
development of genome scan methods.

Methods

Adding uncertainty to the incidence matrix based VC QTL
model

A QTL can be modelled at not fully informative markers,
as well as non-marker positions, by adding additional lev-
els to v* that account for the sampling of QTL alleles.
These sampling terms can be shown to be independent of
the QTL allele effects in the base [6,13,14], which moti-
vates the inclusion of these as additional levels in v*. If,
for instance, a QTL allele cannot be related to a base gen-
eration allele with absolute certainty but it is known that
it is one of two alleles with equal probability, then the
effect (Q,) of this unknown QTL allele is modelled as:

Q,=0.5Q,+0.5Q,+ 0.5 ‘& (3)
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where Q, and Q), are the effects of the two alternative QTL
alleles and ¢ is the random sampling term. The factor
J0.5 ensures that the variance of the sampling term & is
equal to the variance of random effects in v*.

In the following numerical example the QTL is linked to a
marker that is not fully informative. Here, it is not possi-
ble to distinguish between the QTL alleles with absolute
certainty since the marker is not fully informative. For
example, if the marker alleles of individual 1 in Figure 1
were identical, it would not be possible to know which of
the two that had been inherited by individual 5. The prob-
ability that individual 5 inherited the first of the two alle-
les is 0.5 and the effect Q, of the unknown allele is either
Q, or Q,. This uncertainty is incorporated into the VC
model in two steps. In this example, the first step is to
change the first and second elements on the fifth row in Z
to 0.5. This would then be interpreted as Q, = 0.5Q; +
0.5Q),, but since Q, is either Q; or Q, a sampling term
must be added. This is achieved by applying equation (3):
Q,=0.5Q,+0.5Q,+ J0.5 - & The second step is therefore
to extend v* to include a ninth element £and add a ninth

column to Z with element 0.5 in the fifth row.

Q
Q
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Q4
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Q;
Qg

£

S © o
S © ©

0.5 05

o
]
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o oo oo~ o
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Thus, the sampling term is treated as an additional level in
the normally distributed random effect.

Similarly v* and Z can also be extended to include further
uncertainty in the inheritance of the QTL alleles caused by
non-informative markers and QTL-scanning at non-
marker positions. The formulation of Z above gives a VC
model (1) that is equivalent to the IBD matrix based VC

1
model (2) since Il = 3 77'.
Two important facts can be noted from our presentation.

First of all, the rank of an IBD matrix at a marker position
will depend on the informativeness of the marker and the

http://www.biomedcentral.com/1471-2156/8/1

size of the base generation. Secondly, if markers are dense
then the IBD matrices at non-marker positions will be
positive definite but many of the eigenvalues will be close
to zero.

A general single-point algorithm of estimating Z

Here we describe a general algorithm for obtaining the
incidence matrix in (1). The matrix Z estimated with this
algorithm gives 0.5ZZ' equal to the IBD-matrix II
obtained from the single point algorithm developed by
Wang et al [27].

The incidence matrix Z is obtained by first constructing a
matrix W describing the haplotype specific inheritance of
QTL alleles from the base generation. There are f base gen-
eration individuals and a total of n individuals in the ped-
igree.

W is a matrix of size 2n x 2n. An element [ (for I = 1,...,2f)
in row 2i-1 is the probability that the paternally inherited
QTL allele is identical to the I:th allele in the base genera-
tion, and an element ! (I = 1,...,2f) in row 2i is the corre-
sponding probability for the maternally inherited QTL
allele. Thus the first 2f columns in W are the same as the
first 2f columns of the gametic IBD matrix (as defined in

[271)

For simplicity of notation, let a row k of W be denoted W,
and an element in row k and column [ be denoted W,,,.
The individuals are numbered i = 1,2,...,n (with ancestors
preceding descendents) and the following subscripts are
used:

h =1 for paternal allele and 2 for maternal allele

jip = id-number of the father of individual i

jim = id-number of the mother of individual i

Each row 2f+1 to 2n is constructed in two steps. The first
step is based on the concept of probability of descent of a
gamete (PDQ;) as defined in [27]. The PDQ matrix of size
2 x 4 gives the probabilities for the two alleles (row i)
being inherited from the four possible parental alleles
(column j).

Step 1: Construction of elements 1 to 2i-2 in row 2(i-1)+h

Waictyen = PDQuiWa(ji, -1y41 + PDQuaWagj, —1y2 + PDQ s Wo(j,, 1y + PDQy s Wagj, —1)12

Step 2: Construction of the 2 x 2 block diagonal elements

Ep = \/ 1- %( Woi-1y+he )2

Wz(i-1)+h,2(i-l)+h = Ey,
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The matrix W will then contain columns with only zeros
that correspond to the cases where transmission of alleles
from parent to offspring is known without uncertainty.
When the matrix W is completed the incidence matrix is
obtained by summing up the rows in W pairwise for each
individual:

Z =KW

where K = (1,1)®I, I is the identity matrix of size n x n and
® is the Kronecker product.

Mixed model equations for the IBD and Z matrix based VC
QTL models

The mixed model equations to solve in the incidence
matrix notation (1) is [20]:

XX X'Z u) (Xy
ZX 2Z+02G7" |\ v+ ) |2y
1

with G = —03 I,
2

which gives BLUP for v*, i.e. the QTL allele effects of the
base generation individuals and the additional sampling
term effects.

The mixed model equations to solve in the IBD-matrix
notation (2) is:

XX X’ u X’y
X I+ 0'62(;_1 vy
with G = o T],

which gives BLUP for v, i.e. the QTL genotype effects for
all phenotyped individuals. Here X is the design matrix for
the fixed effects.
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Appendix

Fisher scoring algorithm for REML estimates in R code
REML<-func-
tion(y,X,n_comp,conv_crit,n_maxiter,lJambda_start,delta,
Z1, Z2=0, print_results=FALSE, step=1) {

HAHRHRHHHHRERAR AR HHHHRARARHHHARAR AR B R HHR AR A
HAHRHRHHHHRHRARHHBHRARARBHHHRAR AR BHH AR AR GTH

## Responsible programmer: Lars Ronnegard (lars.ronne-
gard@lcb.uu.se)

## Date 20060925
#This is the Fisher Scoring algorithm for REML

#See e.g. Johnson & Thompson 1995 J. of Dairy Science
78:449-456.

#The function returns the estimated variance components
and fixed effects, together with the log-likelihood

#and convergence information.
#INPUT PARAMTERS (Table 5)

#WORKING VARIABLES AND OUTPUT PARAMETERS
(Table 6)

HAHRHRHHHHHHRARHRHHHERAR AR HHHHR AR AR B R HHR AR A
HAHRARHHHHRARARBHHHRHRARBRHHR AR AR BHH AR AR GTH

print("REML iteration number")
min.error<-10"-8
n_compl<-n_comp+1
n_rows<-length(y)

A<-matrix(0,(n_comp1l*n_rows),n_rows)

Table 5:
Hy Response vector
#X Design matrix for fixed effects
#n_comp Number of different random effects in the model (max.=2 in this version)
#conv_crit Value that the change in loglikelihood should be less than

Maximum number of iterations
Initial ratio of variance components

#n_maxiter
#lambda_start
#delta

Minimum possible value of the variance component
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Table 6:
#HA A matrix which stores ZZ' for all variance components
#phi_start Staring values for the variance components
#M_phi Matrix with VC estimates at each iteration
#phi VC estimate from the latest iteration
#DL Gradient of the restricted log-likelihood
#FS Fisher's Information matrix
#v Variance matrix of y
#P The projection matrix
#llh Restricted log-likelihood
#beta_hat Estimates of fixed effects
#conv_test Binary variable equal to | if the algorithm converges within n_maxiter iterations

Aj<-matrix(0,n_rows,n_rows)

for (i_comp in 1:n_comp) {
if (i_comp==1) Aj<-Z1%*%t(Z1)
if (i_comp==2) Aj<-Z2%*%t(Z2)

A[((i_comp-
1)*n_rows+1):(n_rows*i_comp),1:n_rows|<-Aj

}

A[(n_comp*n_rows+1):(n_comp1l*n_rows),1:n_rows|<-
diag(rep(1,n_rows))

res_var<-var(y-X% *%solve(t(X)%*%X) % * %t(X)% *%y)
phi_start<-numeric(n_comp1)
for (iin 1:(n_comp1-1)) {
phi_start[i]<-lambda_start*res_var
}
phi_start[n_comp1]<-res_var
dimIBD<-min(dim(A))
M_phi<-matrix(0,(n_maxiter+1),n_comp1)
M_phi[1,1:n_comp1]<-phi_start[1:n_comp1l]
phi<-numeric(n_comp1)
DL<-numeric(n_compl)
DL[1:n_comp1l]<-conv_crit+1

FS<-matrix(0,n_compl,n_compl)

Aj<-matrix(0,dimIBD,dimIBD)
Ak<-matrix(0,dimIBD,dimIBD)
1lh.prev<-1+conv_crit
11h<-0
for (i in 1:n_maxiter){
V<-matrix(0,dimIBD,dimIBD)
if (abs(1lh-1lh.prev)>conv_crit){
phi<-M_phil[i,]
for (j in 1:n_comp1){
Aj<-A[((j-1)*dimIBD+1):(j*dimIBD),1:dimIBD]
V<-V+phi[j] *Aj
}
invV<-solve(V)
temp<-solve(t(X)%*%invV% *%X)
P<-invV-invV% *%X% * % (temp) % * %t (X) % * %invV
for (jin 1:n_comp1){
Aj<-A[((j-1)*dimIBD+1):(j*dimIBD),1:dimIBD]

DL[j]<-sum(diag(Aj%*%P))-
t(y)%*%P%* %Aj%* %P%* %y

for (kin j:n_comp1) {
Ak<-A[((k-

1)*dimIBD+1):(k*dimIBD),1:dimIBD]
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FS[j, k]<-sum(diag(Aj%*%P%*%Ak% *%P))

FS[k,j]<-FS[j, k]

}

FS.egen<-eigen(FS, only.values=TRUE)
FS.min<-min(FS.egen$values)

if (FS.min>min.error) M_phi[(i+1),]<-phi-

step*solve(FS)%*%DL
if (FS.min<=min.error) {
print("Negative Hessian")

identitet<-
diag(rep((0.5+abs(FS.min)),min(dim(ES))))

M_phi[(i+1),]<-phi-step *solve(FS+ident-
itet)%*%DL

}
egen<-eigen(V, only.values=TRUE)

if (min(egen$values>0))ldV<-sum(log(egen$values))

egen2<-eigen(t(X)%*%invV%* %X, only.val-
ues=TRUE)

1dXVX<-sum(log(egen2$values))

1lh.prev<-1lh

if (min(egen$values)>0) llh<-

(1dV+1dXVX+t(y)%*%P%*%y) * (-0.5)
if (min(egen$values)<=0) llh<-llh.prev-1
#Iruncation at zero

M_phi[(i+1),]<-
0.5*(M_phi[(i+1),]+delta+abs(M_phi[(i+1),]-delta))

conv_val<-abs(llh-1lh.prev)

if (print_results==TRUE) {

print(" ")

print("Iteration:")

http://www.biomedcentral.com/1471-2156/8/1

print(i)

print("Convergence criteria: Change in log-likeli-
hood")

print(conv_val)

print("log-likelihood")

print(1lh)

print("REML estimates of variance components")

print("Genotype variance [1] and residual variance

[2]")
print(M_phi[(i+1),])
}

if (print_results==FALSE) print(paste(" ",i))

}

conv_test<-1
if (abs(llh-1lh.prev)>conv_crit) conv_test<-0
beta_hat<-numeric(min(dim(X)))

beta_hat<-
solve(t(X)%* %invV%* %X )% * %t(X) % *%invV%* %y

if (print_results==TRUE) {
print("Estimates of fixed effects")
print(beta_hat)

}

list(beta_hat=beta_hat,conv_test=conv_test,conv_val=co
nv_val,phi=phi,phi_iteration=M_phi,llh=Ilh)

}

Algorithm for construction of an F, pedigree with a fully
informative marker in R code

simple_F2<-func-
tion(n0.males,n0.females,n1.males,n1.females,n2.males,
n2.females, QTLvar,RESvar) {
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HHHHBHBHRHRH R HBHRHRH R HBHRH R HRHRHRHHBHRHRHH
HHHAHBHRHHHHHHR AR AR HHRHR AR B R AR HR AR B R HHHHH

## Responsible programmer: Lars Ronnegard (lars.ronne-
gard@lcb.uu.se)

## Date 20060925

## This function constructs an F2 pedigree for a fully
informative marker.

## The function returns the simulated phenotypes (y) and
the incidence matrix (Z)

## and also the true simulated QTL alleles of the base
individuals.

## The phenotypes are simulated assuming a biallelic QTL
at the marker position

#INPUT PARAMTERS (Table 9)

#WORKING VARIABLES AND OUTPUT PARAMETERS
(Table 10)

HHRAHBHBHRHHAHBHRHRHHAH B R R AR HBHRHRH R HRHRHH
HHHAHBHRHBHHAHBHRHHHRHH R AR B R AR H R AR B R AR HHH

n0=n0.males+n0.females
nl=nl.males+n1.females
n2=n2.males+n2.females
n=n0+nl+n2
Z<-matrix(0,n2,(2*n0))
index.mat<-matrix(0,n1,2)
for (iin 1:n1) {

sire<-i-n0.males*floor(i/n0.males)+1

Table 7:
#n0.males No. of males in base generation
#n0.females No. of females in base generation
#nl.males No. of males in Fl generation
#n| females No. of females in F| generation
#n2.males No. of males in Fl generation
#n2.females No. of females in F| generation
#QTLvar Genotypic QTL variance
#RESvar Residual variance

http://www.biomedcentral.com/1471-2156/8/1

Table 8:
#n0 Total no. of base generation individuals
#nl Total no. of Fl individuals
#n2 Total no. of F2 individuals
#n Total no. of individuals in pedigree
#index.mat Stores indeces of alleles in the F| generation
#HZ Incidence matrix for the random base allele effects
#Hv Random base allele effects
Hy Vector of phenotypes
He Residual effects

#base.alleles  Simulated alleles of the base individuals

sire.allele<-sample(1:2,1)
dam<-i-n0.females*floor(i/n0.females)+1
dam=dam-+n0.males
dam.allele<-sample(1:2,1)

index.mat|[i, |<-c(((sire-1)*2+sire.allele),((dam-
1)*2+dam.allele))

}

for (iin 1:n2) {
sire<-sample(1:n1.males, 1)
sire.allele<-sample(1:2,1)
dam<-sample(1:n1.females,1)
dam=dam+n1.males
dam.allele<-sample(1:2,1)

Z|i,index.mat|[sire,sire.allele]]=Z[i,index.mat[sire,sire.al
lele]]+1

Z|i,index.mat[dam,dam.allele]]=Z[i,index.mat[dam,da
m.allele]]+1

}

base.alleles <-sample(0:1,(2*n0),replace=TRUE)
v<-base.alleles *sqrt(2*QTLvar)
e<-rnorm(n2,0,sqrt(RESvar))

y<-Z%*%v+e

list(y=y,Z=Z,base.alleles= base.alleles)
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