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Abstract

Constructing biological networks capable of performing specific biological functionalities has

been of sustained interest in synthetic biology. Adaptation is one such ubiquitous functional

property, which enables every living organism to sense a change in its surroundings and

return to its operating condition prior to the disturbance. In this paper, we present a generic

systems theory-driven method for designing adaptive protein networks. First, we translate

the necessary qualitative conditions for adaptation to mathematical constraints using the

language of systems theory, which we then map back as ‘design requirements’ for the

underlying networks. We go on to prove that a protein network with different input–output

nodes (proteins) needs to be at least of third-order in order to provide adaptation. Next, we

show that the necessary design principles obtained for a three-node network in adaptation

consist of negative feedback or a feed-forward realization. We argue that presence of a par-

ticular class of negative feedback or feed-forward realization is necessary for a network of

any size to provide adaptation. Further, we claim that the necessary structural conditions

derived in this work are the strictest among the ones hitherto existed in the literature. Finally,

we prove that the capability of producing adaptation is retained for the admissible motifs

even when the output node is connected with a downstream system in a feedback fashion.

This result explains how complex biological networks achieve robustness while keeping the

core motifs unchanged in the context of a particular functionality. We corroborate our theo-

retical results with detailed and thorough numerical simulations. Overall, our results present

a generic, systematic and robust framework for designing various kinds of biological

networks.

Author summary

Biological systems display a remarkable diversity of functionalities, many of which can be

conceived as the response of a large network composed of small interconnecting modules.

Unravelling the connection pattern, i.e. design principles, behind important biological
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functionalities is one of the most challenging problems in systems biology. One such phe-

nomenon is perfect adaptation, which merits special attention owing to its universal pres-

ence ranging from chemotaxis in bacterial cells to calcium homeostasis in mammalian

cells. The present work focuses on finding the design principles for perfect adaptation in

the presence of a stair-case type disturbance. To this end, the current work proposes a sys-

tems-theoretic approach to deduce precise mathematical (hence structural) conditions

that comply with the key performance parameters for adaptation. The approach is agnos-

tic to the particularities of the reaction kinetics, underlining the dominant role of the

topological structure on the response of the network. Notably, the design principles

obtained in this work serve as the most strict necessary structural conditions for a network

of any size to provide perfect adaptation.

1 Introduction

All living cells display a remarkable array of functions, which can be perceived as the response

of a complex, multi-level biological network at a systems level. These complex networks are

comprised of a variety of components— biological macro molecules—wired together in exqui-

site fashion. How the wiring of these components affects system function has been a classic

subject of research over the last two decades. A variety of mathematical modeling techniques

have been employed to model and predict the function of various biological networks [1–3].

Beyond mathematical modeling, systems theory has been particularly useful to understand

and characterize various biological systems [4]. Graph-theoretic tools have also found applica-

tions in analyzing and understanding biological networks as functional modules [5–9]. Nota-

bly, it has been seen through experiments [10] that the design principles, for any given

biological response, are relatively conserved across organisms [11]. For instance, it is well-

known that the adaptation (definition to be reviewed shortly) involved in performing bacterial

chemotaxis in E. coli employs negative feedback. Similarly, an adaptive homeostasis network

in higher organisms [12] also uses a negative feedback control strategy [13], suggesting the

importance of the role played by the network structure in realizing certain biological function-

alities. This observation serves as an essential motivating factor behind the search for mini-

mum networks capable of achieving a given biological functionality.

Besides adaptation, several studies have focused on understanding the emergence of func-

tionalities such as riboswitches, oscillation, toggle switches, and determining the underlying

circuitry [14–18], employing methods ranging from brute force searches [18] and rule-based

or quantitative modelling [14, 15] to control-theoretic approaches [17]. Tyson J (1975) con-

ceived a two-protein negative feedback model with specific rate kinetics to prove the existence

of an invariant Poincaré–Bendixson annulus which can lead to oscillation [15]. Otero-Muras

and Banga (2016) conceived of an algorithm based on mixed integer nonlinear programming

(MINLP) to deduce the design principles for oscillation along with admissible rate constants

[19]. The MINLP approach was later applied to deduce the network structures and admissible

parameter regions for adaptation [20] which dealt with a networks with imperfect adaptation

i. e. large but finite precision and non-zero sensitivity. The results showed that biological net-

works capable of serving as integral controller are the most suitable candidate for robust adap-

tation. Li et al [16] (2017) employed a brute force search across the topology–parameter space

and concluded that incoherent self-loops and negative feedback provide robust oscillation in

protein systems. Sontag E and Angeli D (2004) showed the necessity of positive feedback to

attain a switch-like behavior which plays a crucial role in cell-fate decision making and
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quorum switching [21]. Apart from these, network architectures that aid in the establishment

of quality control of glycoprotein based on the respective folding status have also been derived

through quantitative modelling of the pathway [22].

Adaptation is defined as the ability of the system output (O) to sense a change in the input

(I) from the surrounding environment and revert to its pre-stimulus operating state. From the

widely discussed bacterial chemotaxis [13], to the regulation of temperature in a volatile envi-

ronment, or homeostasis, adaptation is believed to have played a pivotal role in evolution [23].

Typically, adaptation is characterized by two key quantities [11], precision and sensitivity. Pre-

cision is the ratio of relative changes of input and output and is quantified as

P ¼
I2 � I1

I1

�
�
�
�

�
�
�
�

�
O2 � O1

O1

�
�
�
�

�
�
�
� ð1Þ

where, I2 is the new input, I1 is the initial input, O2 is the new output steady-state level, and O1

is the pre-stimulus output level. If O2 = O1, i. e. the system’s response returns to exactly the

pre-stimulus level, the adaptation is known as perfect adaptation. On the other hand, sensitiv-

ity refers to the ratio to the relative difference between the peak value of the output (Opeak) and

the initial steady-state to that of the input:

S ¼
Opeak � Oj

O1

�
�
�
�

�
�
�
�

�
jI2 � I1j

I1

�
�
�
�

�
�
�
� ð2Þ

Previously, Ma et al [11] (2009) investigated three-protein systems that were capable of

adaptation. A three-protein system, including self-loops, involves nine possible interactions,

each of which can be positive (activating), or negative (repressing), or absent, resulting in a

large number (39 = 19, 683) of possible network structures or topologies. A brute force study

of all the possible structures was carried out assuming Michaelis–Menten kinetics for the pro-

tein interactions. Each topology was examined for 10, 000 different sets of parameters leading

to over 1.6 × 108 simulations. The topology–parameter combinations that provided precision

and sensitivity more than 10 and 1 respectively were considered capable of adaptation. Their

study showed that only 395 topologies could perform robust adaptation. Surprisingly, all of the

admissible structures had either negative feedback associated with a buffer species or incoher-

ency in the input node’s effects on the output via two different paths. A possible explanation

inspired from the analysis of Jacobian matrix of the linearised system was also provided in that

work. From this perspective, the condition for perfect adaptation in case of a three node net-

work with different input output node was cast as the minor of the matrix element represent-

ing an edge from the output to input node should be zero. Later, other systems such as

voltage-gated sodium channels and gene regulatory networks were observed to exhibit adapta-

tion as well. Notably, all the deduced structures employed negative feedbacks [24–26].

Sontag E. (2003) argued from an internal model principle perspective that attainment of

adaptation with respect to a step-type disturbance requires an integrator within the system

[27]. This, if used for a three-protein network, produces topologies similar to the 395 topolo-

gies discussed above. Further, others have suggested specific control strategies like integral

feedback to be capable of producing adaptation for a small network (containing three nodes)

from an internal model principle and transfer function point of view [28–33]. Rahi et al [34]

(2017) suggested the supremacy of negative feedback loops over the incoherent feed-forward

structures in the context of providing adaptation to periodic responses with varying duration

for small scale network structures. We have previously employed a transfer function approach

to deduce the design principles for adaptation in a three-node network [31]. The main
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arguments were that the condition for perfect adaptation requires the transfer function of the

system to be stable and contain a zero on the origin.

Interestingly, the condition of ‘zero on the origo’ is equivalent to the co-factor condition

obtained by Tang and McMillen (2016). Perfect adaptation, as characterised by infinite preci-

sion, was argued to be possible if it satisfies the cofactor condition (Necessary condition) along

with the attainment of Hurwitz stability (The sufficient condition for stability). These condi-

tions were used to derive the three node admissible topologies that can provide perfect adapta-

tion. Furthermore, the authors argued that given a particular network structure, the cofactor

condition along with the stability requirement can provide the condition on the rate constants

(parameters) for which the network structure remains adaptive thereby gaining a qualitative

understanding about the robustness of that topology [35]. Recently, Araujo and Liotta devel-

oped a graph-theoretic method to address the same problem for networks of any size. The con-

dition for perfect adaptation was treated equivalent with the same for infinite precision. Upon

analyzing the system matrix of the linearised system, the condition for infinite precision was

established as the minor of the matrix element referring to the edge from the output to the

input node should be zero. A graph theoretic interpretation of this requirement along with a

weaker stability condition rendered presence of either feedback (balancer module) or incoher-

ent feed-forward strategies (opposer module) as the only two ways of providing adaptation for

networks with an arbitrary number of nodes and edges. Further, Araujo R. and Liotta L.

(2018) conjectured that a balancer module should contain at least one negative feedback in

order to retain the stability of the overall network [36]. Wang Y. and Golubitsky M. in 2020,

used a similar approach to deduce the necessary design requirements for perfect adaptation in

three node networks with different input output configuration [9]. In this case, unlike the pre-

vious studies, the disturbance input was considered bounded and Lyapunnov stable (Note:

previous consideration on the disturbance input being step type belongs to this class). Further,

an extension of the same method to networks of any size revealed that the presence of either

feed-forward or loop module or a Haldane structure is necessary for perfect adaptation. Inter-

estingly, the Haldane motifs refer to a biochemical network obtained by considering the three

phases (active, inactive and off state) of a single biochemical species where the total concentra-

tion at any given point of time is assumed to be constant [37].

The present work provides a generic control-theoretic method using a state-space frame-

work and shows that either negative feedback and incoherent feed-forward loop are necessary

conditions for perfect adaptation- a specific scenario of adaptation in general. We for the first

time, rigorously prove the conjecture by Araujo et al [36] (2018) that a ‘balancer module’ must

contain at least one negative feedback in order to provide stability to the entire network. Fur-

ther, we argue that there exists a class of negative feedbacks (i. e. not all negative feedback can

provide adaptation) that can only function as a balancer module admissible for adaptation. In

this sense, the necessary conditions obtained are the most stringent among the ones in the lit-

erature. Our entire algorithm is independent of the kinetics, barring some minimal assump-

tions. This approach is in agreement with, and a generalization of the findings from previous

studies [5, 11], which have argued that the structure of the network plays a determining role

for the governing functionality. The proposed approach enables us to identify all possible con-

trol strategies without resorting to a computationally demanding brute-force approach that

can achieve perfect adaptation. Unlike previous approaches, we have also taken the non-zero

sensitivity in to consideration along with the infinite precision condition while defining the

mathematical requirements for perfect adaptation. To this purpose, we have employed the

well-known concept of controllability and have been able to explain the reason behind a class

of networks such as voltage-gated Sodium channels providing adaptive response for only one

step change (the famous toilet-flush phenomenon as described by James Ferell [26]).
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Interestingly, the Haldane motifs as described by Wang et al [37] (2021) falls in this category if

there exists a conservation principle. We argue that a system that meets perfect adaptation is

also capable of producing peak response in the minimum time when compared with other

non-adaptation response. Further, we propose that the adaptive behaviour is invariant to a

canonical downstream connection, which in turn shows the context-independence property of

the adaptive networks, as opposed to oscillatory networks [38].

The rest of this article is organized as follows. The Methodology Section presents key con-

cepts leading to the proposed algorithm, where the conditions for perfect adaptation are trans-

lated into certain equality constraints on the parameters of systems theory. The question of

minimum peak response time is also addressed in this section. In the Application Section, the

postulated mathematical conditions are used to identify the potential network structures of

any size for adaptation The particular case of retroactivity in adaptation is also explained in the

proposed mathematical framework of control theory. The final Discussion Section places the

results along with the simulation studies in perspective.

2 Methodology

In this section, we outline a generic framework to deduce network structures capable of adap-

tation. First, we derive the mathematical requirements for the condition of adaptation using

linear systems theory. Using these conditions, we first discover the motifs for adaptation by

networks with a minimum number of nodes and edges. These conditions are further scaled-up

to determine the necessary conditions for adaptation in networks of larger sizes, with arbitrary

numbers of nodes and edges.

2.1 Linearisation of the rate reactions

Working in the linear domain allows us to utilize the wealth of linear systems theory. Given an

enzymatic reaction network, the rate equations for the nodes, i. e. enzyme concentrations (x)

can be written as

_xðtÞ ¼ fðxðtÞ; uðtÞÞ; yðtÞ ¼ gðxðtÞ; uðtÞÞ

where x(t), u(t) and y(t) are the states, inputs or known disturbances and output, respectively.

For this set-up, the linearized state-space model is

_xðtÞ ¼ AxðtÞ þ BuðtÞ;

yðtÞ ¼ CxðtÞ þDuðtÞ

where A, B, C and D are obtained as the Jacobians of f(x, u) and g(x, u) with respect to the x

and u, respectively. The corresponding transfer function can be written as

GðsÞ ¼ CðsI � AÞ� 1BþD ð4Þ

For the problem under consideration, the output and input are scalar variables. However, the

obtained results apply to multiple-input, multiple-output (MIMO) systems. Indeed, a linear-

ized model around a steady state does not always capture the non-linear dynamics accurately.

However, since adaptation is a stable (convergent) response, according to the Hartman–Grob-

man theorem [39], the conditions obtained for adaptation using linear time-invariant (LTI)

systems theory serve as sufficient conditions for the same even in non-linear systems.

2.2 Conditions for perfect adaptation

Perfect adaptation, as defined above, refers to a system that should be sensitive to changes in

the input in its transient phase and be able to drive the response to its previous steady-state
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value. These conditions can be translated to restrictions on the state space matrices using LTI

systems theory as (i) a non-zero peak value and (ii) a zero final value of the output.

The condition of non-zero peak value translates to a non-zero value of the sensitivity. This

condition can be attained by making the output mode of the system controllable by the envi-

ronmental disturbance. This can in turn be guaranteed, if the Kalman controllability matrix,

Γc, is full row rank, i. e., for an N-dimensional state space with a single input,

rankðGcÞ ¼ rank B AB � � � AN� 1B �
� �

¼ N ð5Þ
�

Since the system of rate equations are linearized around a stable fixed point, the initial value of

the deviated output (deviation from the stable point) of the linearized system should be zero.

These conditions, along with the assumption of linear, exponential stability (matrix A is Hur-

witz), can be mapped onto the parameters of an LTI system for a step-change in the external

environment, u(t), as

yðtÞ ¼
Z t

0

CeAðt� tÞBdtþDu ð6Þ

yðt ¼ 0Þ ¼ 0) D ¼ 0 ð7Þ

Using Eq 6, the condition for zero final value can be obtained as

yðtÞ ¼ CA� 1½eAt � I�B ð8Þ

lim
t!1

yðtÞ ¼ 0) CA� 1B ¼ 0 ½A is Hurwitz� ð9Þ

It is to be noted that the zero final value condition may not be achieved in several practical scenar-

ios, leading to imperfect adaptation [40]. However, we shall limit this discussion to perfect adapta-

tion. In this sense, adaptation and perfect adaptation shall be used interchangeably from here on.

Although Eqs 9 and 5 constitute the main checkpoints for adaptation, several other addi-

tional constraints, such as minimum peak time and minimum settling time can play a crucial

role in sensing the change in the external disturbance and promptly acting to reject it. We

argue below in Theorem thm0 that the peak time for a system is minimum if the condition of

zero final value is satisfied:

Theorem 1. For a set S � D (whereD is the ring of all causal transfer functions with real
poles) consisting of stable, minimum phase transfer functions with the same set of poles and dif-
fering by a single zero position with each other, the transfer function with zero final value has the
minimum peak time.

Proof. To establish this fact, let us assume a proper LTI system G(s) and another system H
(s) with same singularities (all real), except a zero at the origin. Assume y1(t) (Y1(s)), y2(t)
(Y2(s)) and tp1

, tp2
to be the step responses and the peak times for G(s) and H(s), respectively.

GðsÞ ¼ K
ðsþ z1Þ

Yn

k¼2

ðsþ zkÞ

Ym

i¼1

ðsþ piÞ

;HðsÞ ¼ K
s
Yn

k¼2

ðsþ zkÞ

Ym

i¼1

ðsþ piÞ

ð10Þ

GðsÞ ¼ HðsÞ þ z1

HðsÞ
s

ð11Þ

Y1ðsÞ ¼ Y2ðsÞ þ z1

Y2ðsÞ
s

ð12aÞ
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y1ðtÞ ¼ y2ðtÞ þ z1

Z t

0

y2ðtÞdt ð12bÞ

_y1ðtÞ ¼ _y2ðtÞ þ z1y2ðtÞ ð12cÞ

Setting t ¼ tp2
,

_y1ðtÞjt¼tp2

¼ 0þ z1maxðy2ðtÞÞ > 0 ð13aÞ

tp1
� tp2

ð13bÞ

The equality in Eq 13b holds only when G(s) = H(s), i. e. g(t) shows perfect adaptation.

It can also be inferred from Fig 1 that the system with one zero at origo takes minimum

time to reach at its peak value when disturbed through a step input. The above result can be

extended in the case of damped oscillatory systems as well. From (12a), it can be seen that

y1ðtÞ ¼ y2ðtÞ þ z1

Z t

0

y2ðtÞdt

The peak time for y2(t) is always less than or equal to that of its integral
Rt

0

y2ðtÞdt therefore

their combination y1(t) has a peak time always greater than or equal to that of y2(t). Therefore,

Theorem 1 implies that perfect (theoretically infinite) precision also ensures minimum peak

time if the positions of the poles and the rest of the zeros are unchanged.

Fig 1. Comparison of peak times associated with the step responses for a set of ten transfer functions in S with

five poles and four zeros. It can be seen that the transfer function with zero gain (Response shown in dark blue)

provides minimum peak time. The peak values have been kept constant.

https://doi.org/10.1371/journal.pcbi.1009769.g001
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The minimum settling time requirement involves calculating time constants, which for a

large network can be obtained through a simulation study across different sets of time con-

stants while retaining the property of zero final gain ((5)) to ensure perfect adaptation.

To summarize, the conditions for adaptation derived above can be broadly divided into two

sets. The first set of conditions (Eq 9) take care of the criteria for infinite precision, which

includes the stability of the system matrix A and zero final gain of the step input. The second

set (Eq 5) ensures non-zero sensitivity. This includes the controllability condition. Moreover,

for a given network with a specific input–output configuration (i. e. with given B and C

matrix), if the attainment of one set of conditions ipso facto violates other, then the network

with the given input–output node cannot provide adaptation (see Fig 2). In that case, a modifi-

cation of the output node (since the input node is fixed for most of the practical cases) may

resolve the problem.

3 Results

We demonstrate the capability of the methodology we developed above by applying it to pro-

tein enzymatic networks, where each node is a protein, and an edge represents either of the

following:

1. Activation: a protein A is said to activate B when A acts as a transcription factor that binds

the active site of the promoter of B to aggravate the transcription process for the synthesis

of B.

2. Repression: similarly, if A acts as a transcription factor to reduce the transcription rate of

mRNA, which translates to B.

For a network containing N nodes, there are 3n2

numbers of possible network structures.

The generalized state equations for an N-node network can be written by considering the

Fig 2. Workflow of the proposed methodology. Any given protein network is first linearized, and the conditions on

the A matrix are investigated, to ultimately derive admissible motifs for the desired functionality.

https://doi.org/10.1371/journal.pcbi.1009769.g002
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normalized concentration of each protein as states:

_x ¼ fðx; k; dÞ ð14aÞ

y ¼ Cx ð14bÞ

where, x 2 RN and k 2 Rp are the states and the parameters associated with the rate equations.

In the single disturbance case, d is referred to as the disturbance variable. The protein that

receives the external disturbance directly is considered as the input node. The concentration of

the Nth node is taken as the output.

3.1 Assumptions

It is to be noted that though (14a) does not assume any particular rate kinetics it should satisfy

a number of conditions for us to apply our methodology.

1. The vector field (f(x)) in (14a) should be Lipschitz continuous with respect to x and d. This

is to ensure the uniqueness of the solution to the dynamical system

2. Given a state xi, the dynamics of the state can be written as

_xi ¼ fi ¼
XN

j¼1

fi;jðxi; xjÞ ð15Þ

where, fi,j(xi, xj) captures the effect of the jth node on the dynamics of the ith node.

3. fij(x) (for activation) or −fij(x) (for repression) is a class K (i. e. monotone within a finite

open interval in the domain, and passes through the origin) function with respect to xj, 8j
6¼ i.

The above assumptions are not too restrictive, in the sense that almost every form of reac-

tion kinetics prevalent in any biochemical networks satisfy these.

It is important to note that the due to assumption 3, the system matrix A for an N-node sys-

tem carries not only the necessary information about the structure of the network but also the

type of each edge, i. e. activation or repression. For instance, if A represses C, the element in

the associated A matrix that corresponds to this edge turns out to be negative. Intuitively, A

matrix acts as a variant of the incidence matrix for the graphical network, with the diagonals

being the exceptions. It is possible to have a negative or non-positive value of the diagonal ele-

ment, albeit in the presence of a self-activation loop. These inherent properties of the biological

systems’ rate dynamics perform an instrumental role in maintaining the structural determin-

ism property of adaptation.

3.2 Two node networks- are they capable of adaptation?

From a systems theoretic viewpoint, the step response of a first-order system is always a mono-

tone which is not the case with adaptation. Therefore, the possibility of providing adaptation

for any single protein can be safely ruled out. The immediate next case of N = 2 can be investi-

gated. Implementing the aforementioned approach (Fig 2) reveals that two protein networks

with different input and output nodes are unable to provide adaptation. However, as shown in

Fig 3, two-node networks can indeed perform perfect adaptation provided the output is mea-

sured at the same node that receives the disturbance input. (see section 1 of S1 Text).

Interestingly, there exists a class of biological networks that provide adaptation for a single

step input but do not respond to subsequent perturbations [26]. This is defined as the toilet
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flush phenomenon (Fig 3). Friedlander et al [24] (2009) and Goh et al [41] (2013) showed that

this phenomenon occurs in a three node network with an equality constraint stemming out

from a conservation law thereby reducing the effective number of state variables to two. In this

regard, the aforementioned algorithm provides a great systems-theoretic perspective to explain

and design such networks. If the time difference between two successive step perturbations is

large enough (compared to the system’s settling time), then the condition for adaptation in

this case is the same as that for a single step. Along with this, it is to be observed that with each

step perturbation, the steady-state values of the system changes (note that the adaptation prop-

erty guarantees the invariance of the steady-state of the output state only), which leads to a dif-

ferent linearized model. If the modified linearized model remains controllable and the general

condition of adaptation is satisfied, the system provides adaptation for staircase input (Refer to

section 1 of the S1 Text file for a detailed discussion).

3.3 Three node networks- smallest motifs capable of adaptation?

The admissible network structures obtained from the analysis of the two-node enzymatic net-

works exclude the possibility of network structures that can provide adaptation with different

input-output nodes. Therefore, it is important to identify a control strategy–perhaps the

Fig 3. Two node networks capable of adaptation subject to staircase disturbance. The abbreviations LPA, NLPA,

LPAFO, NLPAFO stand for linear perfect adaptation, non-linear perfect adaptation, linear perfect adaptation for once

and non-linear perfect adaptation for once respectively. The network architecture and necessary values for this

simulation have been provided in S1 Text.

https://doi.org/10.1371/journal.pcbi.1009769.g003
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inclusion of an additional controlling node–that can bring adaptation to the two-node protein

system with different input–output nodes.

From the perspective of a control-theoretic framework, the functionality of adaptation can

be thought of as a regulation problem. Considering the biological feasibility and the network

with only one external disturbance input (D), we propose a feedback control scheme where

another protein B can act as a controller node. If the concentration of B is u, the controller

dynamics can be written as

_u ¼ gðx1; x2; uÞ ð16Þ

We adopted g : R3
! R as a linear function of the states and the control input.

gðx1; x2; uÞ ¼ aabx1 þ acbx2 þ abbu ð17Þ

The parameters such as αab and αcb govern the strength and type (repression or activation) of

the edges. From feedback control theory [39] if the open-loop system is fully controllable by u
then consideration of u as a variant of dynamic state feedback control strategy does not alter

the controllability of the system.

3.3.1 Finding the minimal admissible topologies. The closed system can be written as

_x ¼
a11 a12

a21 a22

" #

x þ
b1 b2

0 b3

" #
d
u

" #

ð18Þ

For the system to provide adaptation, x2 has to be controllable by the control input u. For the

closed-loop system, the infinite precision condition for adaptation can be written as

9p 2 R : fx� ¼
p

0

" #

; u�g s.t.
_x

_u

" #

¼ 0jx� ;u�

For the system with controller,

_x ¼
a11 a12

a21 a22

" #

x þ
b1 b2

0 b3

" # d

u

" #

ð19aÞ

_u ¼ aab acb � xþ abbu½ ð19bÞ

_x
_u

" #

¼

a11 a12 b2

a21 a22 b3

aab acb abb

2

6
4

3

7
5

|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
Acl

x

u

" #

þ

b1

0

0

2

6
4

3

7
5d

ð19cÞ

Using the condition for adaptation,

0

0

0

2

6
4

3

7
5 ¼

a11 a12 b2

a21 a22 b3

aab acb abb

2

6
4

3

7
5

p
0

u�

2

6
4

3

7
5þ

b1

0

0

2

6
4

3

7
5d ð20Þ

) a21abb � b3aab ¼ 0 ð21Þ

The condition α21 αbb − β3 αab = 0 can be achieved in three scenarios:

1. All the terms are zero: this leads to singularity of Acl, and is hence not acceptable.
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2. α21 αbb = β3 αab = 0: this is feasible. Interestingly, if α21 = 0, the state x2 becomes unobserv-

able. Also, in order to attain the condition for adaptation, making α21 = 0 requires either (i)

β3 to be zero, which in turn, results making x2 an uncontrollable mode with respect to u or

alphaab = 0 leading to uncontrollability with respect to i.

3. α21 αbb = β3 αab 6¼ 0: this is acceptable as long as Acl is Hurwitz.

Combining each of the feasible possibilities with the infinite precision condition for adapta-

tion, we arrive at a superset of admissible motifs from the above possibilities.

As it can be seen from Table 1, the first three network motifs involve negative feedback

engaging node B. This type of network can be termed as negative feedback loop with a buffer
node (NFBLB). Since NFBLB involves negative feedback, the corresponding response becomes

damped oscillatory for most of the cases. However, as long as the adaptation criterion is satis-

fied, as it can be seen from Fig 4B and 4C, the output after a damped oscillatory transient

response goes back to its initial steady state.

The remaining motif carries an incoherency between the two forward paths (A! C and

A! B! C) from A to C. This is precisely the reason it is called incoherent feed-forward loop
with proportioner node (IFFLP). Owing to the structure of IFFLP, the underlying system matrix

A for IFFLP will always have real eigenvalues, thereby eliminating the possibility of oscillatory

transients as seen in Fig 4A.

3.3.2 All possible three-node motifs capable of adaptation. After finding the minimal

network structures—minimal in terms of edges and number of nodes—we extend the above

method to find the necessary topological properties, i. e. the existence of feedback or feed-for-

ward configurations without any restriction on the number of edges, for the three-node

network.

Remark 1: For any three-node network, the corresponding system matrix can be written as

_x1

_x2

_x3

2

6
6
6
4

3

7
7
7
5
¼

a11 a12 a13

a21 a22 a23

a31 a32 a33

2

6
6
6
4

3

7
7
7
5
þ

b1

0

0

2

6
6
6
4

3

7
7
7
5

d

y ¼ 0 0 1½ �

x1

x2

x3

2

6
6
6
4

3

7
7
7
5

Table 1. Necessary mathematical conditions for adaptation. These mathematical conditions can be translated to

structural requirements assuming the monotone property of the underlying autonomous dynamical system.

Possibilities Final condition

a21 αcb β2 < 0 Gross −ve feedback.

αcb β3 < 0 −ve feedback between B and C

αab β2 < 0 −ve feedback between A and B

a21

b2

aab
< 0 Incoherency in A! C

https://doi.org/10.1371/journal.pcbi.1009769.t001
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For adaptation,
a21 a22

a31 a32

�
�
�
�
�

�
�
�
�
�
¼ 0 and A has to be Hurwitz.

jAj ¼

a11 a12 0

a21 0 0

a31 0 a33

�
�
�
�
�
�
�

�
�
�
�
�
�
�

|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
L1

þ

a11 0 0

0 0 a23

a31 a32 a33

�
�
�
�
�
�
�

�
�
�
�
�
�
�

|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
L2

þ

a11 a12 0

0 0 a23

a31 0 a33

�
�
�
�
�
�
�

�
�
�
�
�
�
�

|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
L3

þ

a11 0 0

a21 a22 0

a31 a32 a33

�
�
�
�
�
�
�

�
�
�
�
�
�
�

|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
L4

As it can be seen, the determinant of A can always be written as a combination of determinants

of elementary topologies containing exactly 3 edges. For A to be Hurwitz, |A| has to be nega-

tive, i. e. at least the determinant of any one of these four matrices has to be negative. If any of

the first three terms (L1, L2, L3) is negative, it indicates negative feedback. Note the condition

a21 a22

a31 a32

�
�
�
�
�

�
�
�
�
�
¼ 0 is ‘structurally’ satisfied for L1, L2, L3 but in the case of L4 it has to be satisfied

by the parameters. If L4 is the only negative term, then there exists an incoherent feed-forward

loop in the network. Similarly, multiple negative terms represent the presence of both types of

motifs. This implies that for any three-node network capable of adaptation with arbitrary

edges, the presence of negative feedback or incoherent feed-forward loop is a necessary condi-
tion (Fig 4D).

Since the negative determinant for A 2 R3�3 is a weaker condition for stability compared to

that of A being Hurwitz, the presence of either or both incoherent feed-forward and negative

feedback loops is only a necessary but not sufficient condition for adaptation.

Fig 4 depicts the response of different admissible three-node networks to identical distur-

bance input. The signals expressed in lines and dots refer to the responses of the non-linear

rate dynamics and corresponding linearized counterparts for the corresponding network

structure, respectively. For simulation, a variant of Michaelis Menten kinetics is considered. It

can be inferred from the figure that the IFFLP always produces hyperbolic responses. The rea-

son behind this can be traced to the spectrum of the underlying system matrix A 2 R3�3 in the

linearized dynamics. Due to the absence of any loop in the network, the associated A matrix

for a feedforward network is lower triangular, with the diagonals being the eigenvalues,

thereby resulting in hyperbolic responses. Unlike IFFLP, NFBLB can potentially give rise to

oscillatory responses along with perfect adaptation.

Remark 1. As established earlier, the infinite precision condition in Eq 5, presupposes BIBO
stability of the linearized system. From linear systems theory, a linear system is exponentially
(asymptotically) stable if and only if the system matrix A is Hurwitz. The investigation of the
Hurwitzness of a matrix of arbitrary size requires computation of all its eigenvalues which is
cumbersome for large matrices. We here present a set of necessary conditions to assess the stabil-
ity of any digraph matrix that is easy to compute and carries important information about the
structure of the network.

According to the Caley-Hamilton theorem, for any matrix A 2 RN�N
, the characteristic equa-

tion can be written as

CAðsÞ ¼ DetðsIN � AÞ ¼ 0 ð22Þ
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where, IN is the identity element in the fieldRN�N and the roots of these equation are the eigen-
values of A.

Let us denote the roots of Eq 22 as li 2 C, 8i = 1(i)N. Therefore, Eq 22 can be written as

YN

k¼1

ðs � lkÞ ¼ 0 ð23Þ

)
XN

k¼0

Cks
ðN� kÞ ¼ 0 ð24Þ

where, Ck is the associated coefficient of sN−k in CA(s).
Since, A is Hurwitz, Re(λk)< 0. Hence, the following set of conditions have to be satisfied for

stability

Ck > 0; 8k ¼ 1ðiÞN ðCAðsÞ is monicÞ ð25Þ

Fig 4. (a) shows the response of the output node for a three-node IFFLP topology. (b) shows the same for a three-node

NFBLB. The oscillatory behavior can be attributed to the complex eigenvalues of the A. Similarly, (c) shows a non-

oscillatory response of an NFBLB motif. (d) is the response of the output node of a network containing both the

admissible network structure i. e. incoherent feedforward path and negative feedback. The network architecture and

necessary values for this simulation have been provided in S1 Text.

https://doi.org/10.1371/journal.pcbi.1009769.g004
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Let us denote the spectrum of A to be ν≔ {λi}, 8i = 1(i)N. Ck can be expressed as

Ck ¼ ð� 1Þ
kPSk ð26Þ

where,

Sk ≔ fskðnÞg ð27Þ

where, σk is the kth order permutation operator that chooses all possible k–tuples of λi’s from ν
without repetition and the set Sk stores all such k-tuples. Therefore, the Nth condition in Eq 25 is
obtained as

CN > 0) ð� 1Þ
N PSN > 0

According to the definition of Sk in Eq 27, there can be only one way to choose the N–tuples of
λi’s without repetition from ν i. e. the cardinality of SN is unity. Therefore,

CN ¼ ð� 1Þ
NSN ¼ ð� 1Þ

N
YN

k¼1

lk > 0 ð28Þ

) ð� 1Þ
N
YN

k¼1

jlkj ¼ ð� 1Þ
NDetðAÞ > 0 ð29Þ

) SignðDetðAÞÞ ¼ ð� 1Þ
N ð30Þ

Obviously, Eq 30 is a weaker condition for stability than Eq 25 which implies that the necessary
structural requirements obtained using Eq 25 are stricter than the ones obtained by Eq 30.

3.4 Structural requirements for adaptation in networks of any size

The above framework, developed for three-node networks, can be extended to larger networks

with N–nodes and P–edges. As shown in the previous section, a three-node network compris-

ing an input, output, and controller can provide adaptation. In this sense, an N (N� 3) node

network can be thought of as the closed-loop system incorporating I/O nodes along with the

controller network comprising of the remaining N − 2 nodes. In that case, the stability condi-

tion for an Nth order linear system has to be characterised.

At first, we derive the admissible elementary N−node network structures i.e. networks that

contain at most N−edges and can provide perfect adaptation. We then use these results to estab-

lish the necessary structural conditions for perfect adaptation in case of any N−node network.

3.4.1 Condition on minimum number of edges in an N−node network for adaptation.

In the following theorem, we first derive the lower limit on the number of edges required for

an N−node network to provide perfect adaptation.

Theorem 2. For a network with N� 3 nodes, at least N edges are required to provide perfect
adaptation.

Proof. It has already been established that in the case of biochemical networks, the system

matrix A for the linearized dynamics serves as the digraph generating matrix. Let us assume

that the above statement in the theorem is wrong i.e. there exists an N− node, N − 1 edge net-

work that can achieve adaptation. For an N-node, N − 1-edge network to show adaptation, it

has to satisfy (i) the controllability condition and (ii) infinite precision condition. The mathe-

matical expression for the second has already been derived in Eq 9. However, here we modify

the equation for convenience.

_x ¼ Axþ Bd ð31Þ
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where, x ¼ x1 x2 � � � xN½ �
t
2 RN is the state vector with each element (xi) representing

the concentration of each node (ith node) and B ¼ b 0 � � �½ �
t
2 Rn�1

. Let the output be

concentration of the Kth node and input be applied on the first node. This implies that the

steady state concentration (x�k) of the output node is zero in linearized representation. At the

steady state,

Ax�
ðx�K¼0Þ

þ Bd ¼ 0 ð32Þ

) j~Aj ¼ 0 ð33Þ

where, x�
ðx�K¼0Þ

is the steady state solution to Eq 31 with the Kth component being zero and ~A is

the minor of the component in A representing the edge from the output to the input node.

From elementary network theory, it can be said that it is always possible to design a control-

lable network of N nodes with N − 1 edges if and only if there is no feedback loop. Since the

possibility of an isolated node is eliminated, the only feasible structure for a N-node, N − 1

edge is a feed-forward network (N-node networks with a lower number of edges are eliminated

for the same reason). Further, since the number of edges is N − 1, no node can have more than

one incoming or outgoing edge. In order to satisfy the controllability condition, it requires at

least one forward path from input node to the output. In the case of an N-node network with

N − 1 edges and no isolated nodes, there can exist one forward path from the input to output

node maximum.

The second condition, i.e., the infinite precision condition requires the minor of the com-

ponent of A matrix that represents a direct edge from the input to output node be zero. For

any digraph matrix inRN�N
, every term in the determinant expression contains N! terms, each

a product of N−tuples chosen from the matrix. Further, from combinatorial matrix theory

[42], each of these N−tuples can be expressed as a multiplicative combination of the matrix ele-

ments that map to existing loops of the network and the diagonal elements. It can be stated

that except the product of all the diagonal elements, every other term in the determinant

expression of a digraph matrix maps to the product of the diagonals and the loops. Using this

result, it can be claimed that each of the (N − 1)! terms obtained through multiplying A1k with

its minor in the determinant expression of A is composed of products of the loops and diago-

nal elements. Also, each of these terms must contain exactly one loop that involves the edge

from kth to the first (input) node. According to this result, each term in the minor of A1K has

to contain at least one forward path from the first to the Kth node. Since in the case of N − 1

edge networks, there can only be one forward path possible, the minor of A1K is a singleton

set. Thus fulfilling the infinite precision condition in this scenario amounts to deleting the

only forward path from the input to the output node rendering the system uncontrollable.

On the other hand, it has been already been derived that for a network with N = 3, the num-

ber of edges required to produce adaptation is also three. By virtue of the foregoing discussion,

we conclude that the minimum number of edges required for adaptation is N.

3.4.2 Feedforward networks are adaptive only when incoherent. We are now ready to

present below the most essential and generic results emanating from this work. According to

Theorem 2, it requires at least N edges for any N−node network to provide adaptation. It can

also be shown that there exist only two principal means to satisfy Eq 33 for any elementary N
−node network (refer to subsection 3.1 of the S1 Text). The admissible elementary network

structures can be divided into two further categories i) network without and ii) with loops. In

the first scenario, we argue in the following theorem that the existence of at least two opposing

feed-forward paths is a necessary condition for adaptation.
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Theorem 3. For an N−node network without any loop, the only way to provide perfect adap-
tation is to have at least a pair of feed-forward paths from the input to output loop with opposing
effects.

Proof. Let us consider the concentration of the kth node as the output variable. It is trivial

that in absence of loops, for the output variable to adapt to disturbances, k has to be greater

than two. Given an N−node, controllable network structure with no loops, it is always possible

to order the nodes so that the resultant digraph matrix is lower diagonal. Since the system

matrix A is equivalent to the digraph matrix, it shall also inherit the lower diagonal structure.

Assuming k> 2, for the output node of the network structure to provide adaptation, it has

to satisfy the i) controllability (Eq 5) and ii) infinite precision (Eqs 9 and 33) conditions. It can

be shown that a feed-forward network is always controllable (refer to Theorem 3 of S1 Text).

Also, the lower diagonal property of A guarantees the stability of the system, given the diago-

nals are strictly negative.

The infinite precision condition in Eq 33, requires the minor of the component A1k

(Denote it as M) to be zero. It is important to note here, each of the (N − 1)! components of

the minor of A1k is composed of the elements that represent at least one forward path from the

input to the output node and the diagonals. Since, there is no loop present in the network the

terms in the minor of A1k should contain exactly one possible forward path from the input

node to the output node along with the diagonal elements.

Let us define the set F k 8k = 1(i)N − 1 where each element in F k contains the product of

the elements in the A matrix that represents a forward path with k edges and N − 1 − k diago-

nals with no common indices with the former. Consequently, the minor expression can be

written as

M ¼
XN� 1

p¼1

XNp

j¼1

ð� 1Þ
pF pj ð34Þ

for adaptation; M ¼ 0 ð35Þ

0 ¼
XN� 1

p¼1

XNp

j¼1

ð� 1Þ
pF pj ð36Þ

where, Np is the cardinality of the set F p, F pj is the jth element of F p. If F pj has a forward path

fpj and the product of the diagonals as Dpj the associated cumulative sign (Sp) of F pj in the

minor expression can be written as

Sp ¼ ð� 1Þ
psignðFpjÞsignðDpjÞ ð37Þ

) ð� 1Þ
psignðFpjÞð� 1Þ

ðN� 1� pÞ
ð38Þ

Sp ¼ ð� 1Þ
N� 1signðFpjÞ ð39Þ

It is evident from Eq 39, Sp is independent of p, the no of nodes engaged in the forward path

but a function of the effective sign of the forward path. For Eq 36 to hold, there should be at

least one pair with mutually opposed cumulative signs. This can only be possible if there exists

at least one forward path with the effective sign being positive, and at least one of the remain-

ing forward paths has to be of the effective sign negative (Fig 5A).

3.4.3 Conditions on elementary networks with loops for adaptation. In the second case

(N−node, N−edge networks with at least one loop), one of the possible network structures with
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N edges can be composed of two or multiple loops without any connecting edge and the com-

mon node. In the following theorems, we argue that only a certain class of loop modules can

attain adaptation.

Theorem 4. An N− node network containing a single loop with either only one forward path
from the input to the output node or multiple coherent forward paths, provides perfect adapta-
tion if the cumulative sign of the feedback loop is negative and it does not contain the edge from
output to the input node.

Proof. For the first part of the proof, let us consider an N−node network G containing a sin-

gle loop Lp composed of p nodes. Therefore, according to the assumption 3, the corresponding

system matrix A obtained by evaluating the Jacobian of the nonlinear system at a steady state

serves as the digraph matrix for the associated network structure. As it has been shown in

remark 1, the necessary condition on A 2 RN�N
to be Hurwitz can be broken down to N sub

conditions. Further, from remark 1 it can be seen that all the N conditions are satisfied for G if

the cumulative sign of Lp is negative.

Fig 5. (a) shows the response of the output node for a five node IFFLP topology. (b) shows the same for a five node

NFBLB with a hyperbolic response. The oscillatory behavior in (c) can be due to negative feedback, leading to complex

eigenvalues of the underlying A matrix. (d) demonstrates the modular behavior of an NFBLB motif when connected to

a downstream system. (e) is the response of the output node of an IFFLP network connected with a downstream

system. Although the functionality of adaptation is not compromised, the oscillatory behavior is undoubtedly due to

the negative feedback associated with the output of the IFFLP module and the downstream node. The network

architecture and necessary values for this simulation have been provided in S1 Text.

https://doi.org/10.1371/journal.pcbi.1009769.g005
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For the second part of the proof, let us consider the cumulative sign of Lp is negative and it

also contains the edge from output to the input node. To avoid the trivial case, we assume that

there exists at least one forward path from the input to every node in the network. Without

any loss of generality, the concentration of the p nodes involved in Lp are denoted as

x1 x2 � � � xp

� �
with x1 and xk: k 2 {2, p} being the concentration of the input and the output

nodes respectively. Since there are no more loops in the network, rest of the N − p nodes have

to be connected in a feed-forward fashion. Further, there are no edges possible from any of the

remaining N−p nodes to the p nodes engaged in loop Lp. We can prove this by contradiction.

Let us assume that there exists an edge from ~pth node x~p (where ~p > p) to τth node xτ (where τ
� p). Since the network is structurally controllable there exists at least one path from the input

node to x~p . Denote it as Sf . Also, since, the input node x1 and xτ are in Lp there exists a path

from xτ to x1. Denote it as Sb. In this case, if Sb and Sf shares a common node xc, then

x1!
Sa xc!

Sf
x1 can be conceived as another loop. This violates the assumption of the network

containing single loop. Therefore, the resultant structure of the associated A matrix for the net-

work can be written as

A ¼
Lp�p 0p�N� p

QN� p�p FN� p�N� p

2

4

3

5 ð40Þ

It can be inherited from Eq 40 that F is lower diagonal for it represents a feed forward network

structure between the remaining N − p nodes.

For adaptation, the infinite precision condition described in Eq 5 requires the minor of A1,k

has to be zero. Since the output node xk is involved in Lp, and as shown in section 3.1 in the S1

Text file that for an negative feedback loop to provide perfect adaptation at least one of the

diagonal elements in the loop has to be zero, the minor ( ~A) of A1,k can be written as

~A ¼ LðLpÞ=A1;k � DetðFÞ ð41Þ

where, LðLpÞ refers to the term in the determinant expression of L that represents the loop Lp.

Since F is lower diagonal, Det(F) is product of the diagonals which can never be zero for

stability purpose which implies the minor can never be zero. Therefore, the network with a sin-

gle loop and coherent or single forward path from input to the output can never provide per-

fect adaptation if the loop contains an edge from the output to the input node (Fig 5B).

3.4.4 General structural requirements for adaptation. The above important results help

us find out the necessary structural conditions for a network of N nodes and P edges, (8N� 2,

8P� 2) to provide adaptation that are formalized below.

Theorem 5. Statement 1 serves as a necessary condition for Statement 2

1. There exists either at least one negative feedback that does not contain the edge from the out-
put to the input node or incoherent feed-forward loop in the network.

2. The network attains perfect adaptation in the presence of a step type disturbance.

Proof. From computational matrix theory it is well known that each term of the determi-

nant expression of the digraph matrix contains a combination of loops and diagonal elements

[42]. Further, each term in the coefficient of sN−k in Eq 24 can be of three types i) loops with k
edges ii) product of k diagonal elements and iii) possible combinations of Lk number of non-

intersecting loops (loops that do not share any common node or edge) totaling Nk number of
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edges and product of k − Nk diagonals. Also, in terms of the third type, the total number of

edges consumed by a single loop is k − 2 given there exists more than one loop in that term.

As we know, for networks with the digraph matrix A 2 RN�N
to be Hurwitz stable, it has to

satisfy Eq 25. Also, any element Ek in the coefficient of sN−k in Eq 24 can be expressed as

Ek ¼ ð� 1Þ
k
� ðSpÞ � Lk

Q
Dk� Nk

ð42Þ

where, Sp 2 {−1, 1} is called the prefix sign attached to each component of Ck, Lk refers to the

combination of Lp loops with no common nodes engaging Nk edges and Dk� Nk
are the diago-

nals concerning the remaining rows of A matrix.

From combinatorial matrix theory, the prefix sign of each term in the coefficient expression

of any matrix can be determined by calculating the minimum number of exchanges needed to

arrange them as products of diagonals. Therefore, the sign Sp is determined by the number of

co-ordinate exchanges required to perform within Lk (Dðk� NkÞ
is already composed of the diag-

onals.) such that the combined expression (~Ek) gets modified to a product of k diagonals. It is

easy to verify (refer to the subsection 3.2.1 of the S1 Text file for detailed derivation) that for

any loop with p edges, it requires exactly p − 1 number of exchanges to modify the loop expres-

sion to a product of p diagonals. Similarly, Lk containing Lp loops with a total of Nk edges

necessitates Nk − Lp number of exchanges to be transformed to product of Nk diagonals of A

thereby making Sp ¼ ð� 1Þ
Nk � Lp . Again, the sign of Dðk� NkÞ

being composed of k − NK diagonals

can be obtained as ð� 1Þ
k� Nk given all the diagonals are negative. Therefore the actual sign of Ek

can be written as

SignðEkÞ ¼ ð� 1Þ
k
� ð� 1Þ

Nk � Lp � SignðLkÞ � ð� 1Þ
k� Nk ð43Þ

SignðEkÞ ¼ ð� 1Þ
L
p � SignðLkÞ ð44Þ

Since,

Ck ¼
P

Ek ð45Þ

) SignðCkÞ ¼ Signð
P

EkÞ ð46Þ

It can be seen that the element containing the k diagonals correspond to the feedforward struc-

ture due to the lower diagonal property of the associated A matrix (refer to sec 3.1 of the S1

Text file). Also, from Theorem 4, for a network with single forward path (or multiple with all

sharing same sign) to provide adaptation, it requires at least one feedback loop that does not

contain any edge from the output to the input node. Further, any network with loops to pro-

vide perfect adaptation, at least one of the diagonal elements concerning any of the nodes

engaged in the loop has to be zero.

From Eq 46, it is clear that if all the loops share common nodes amongst themselves and the

network has N − 1 diagonal elements then LN shall contain exactly one loop. In that case, for

Eq 25 to be satisfied there has to exist at least one term EN in the expression of CN such that

) SignðENÞ > 0

) ð� 1Þ
L
p � SignðLNÞ > 0

Since Lp ¼ 1) SignðLNÞ < 0

This concludes the necessity of the presence of negative feedback loops as admissible elemen-

tary motifs in this particular scenario for perfect adaptation. Meanwhile, in the case of digraph
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matrices with<N diagonal elements and multiple loops, Eq 44 suggests if any element Ek con-

tains even number of loops each with positive feedback, the accumulated sign shall be positive.

We argue here that if all the loops of the networks are positive, then it can not provide perfect

adaptation.

Consider a structurally controllable network with no incoherent feed-forward characteris-

tics and the jth diagonal element of the corresponding digraph matrix A is zero. The co-efficient

expression of sN−k in the characteristics equation of A contains ðN� 1ÞCk numbers of elements

each of which is made out of k diagonal components. Let us define a set SK� p
containing deter-

minants obtained from choosing all possible K − p columns from matrix A. The set Lp
j contains

all the p-node loops involving node j. Therefore, the expression of Ck can be written as

Ck ¼
Xk

p¼2

X
Lp

i;j ð� 1Þ
kþp� 1Sðk� pÞ

Lp
i;j

� �

þ Rk þ
X
N Ck

i¼1

ð� 1Þ
k
si

kDiagðAÞ Sðk� pÞ
Lp

i;j
:¼
X

Sk� p
=DLk� p

j

� �� �

ð47Þ

where, Dk� p
Lj
� Sk� p

contains determinants of all possible k − p columns and rows of A except

the jth row (and ipso facto the jth column), Rk contains the remaining elements made up of

loops other than the elements of Lp
j and the diagonals, and σk(Diag(A)) refers to the set of all

possible k diagonals chosen from A without repetition.

We argue that, apart from the third term of Eq 47, the first and second terms individually

are negative if all the existing loops are of positive sign. As it can be seen this assertion holds

true for j = 1(i)3, (refer to subsection 3.1.1 of S1 Text file). We here assume that there exists a

non-zero finite integer k − 1 up to which the above assertion holds true. As shown earlier, for

elements in Ck with single loop, the sign of the term is negative if the signs of the underlying

loop is positive.

Therefore, for Ck to be positive either the of the two term of Eq 47 has to positive. Let us

first consider the first term is positive. Let the cardinality of the set Lp
i;j be Q(p). Thus,

given p, for the first term to be opposite at least one of Q(p) elements (denote it as Qp) in
P

Lp
i;jð � 1kþp� 1Sðk� pÞ

Lp
i;j
Þ has to be positive. Since, we are only considering positive feedback all

the elements of Lp
is positive. Therefore, ð � Sðk� pÞ

Lp
Qp ;j
Þ has to be positive and greater than other

elements in absolute value which, in turn, is possible if at least one of the elements of � Sðk� pÞ
Lp

Q;j

(Denote it as tth element) is positive and greater than others. Assume it is the tth element of

� Sðk� pÞ
Lp

Q;j
. It is to note at this juncture that according to the assumption for i < k the sign of both

the first and second term are negative. Since p� 2) k − p + 1< k therefore, only the third

term i. e. sum of product of k − p + 1 diagonals are positive. If � Sðk� pÞ
Lp

Qp ;j

� �

is positive then the

second and the third term of Ek−p+1 can be combined as

Rk� pþ1 þ
X

N Ck� pþ1

i¼1

ð� 1Þ
k� pþ1

si
k� pþ1

DiagðAÞ ¼
X

ð� 1Þ
k� pþ1Sðk� pÞ

Lp
Qp ;j;l
al

� �

ð48Þ

Through a constructive proof provided in subsection 3.2.2 of the S1 Text file, it can be shown

that αt is the largest of all αl. Also, since from the condition derived for the first term of Ck,

ð� 1Þ
k� pþ1Sðk� pÞ

Lp
Qp ;j;t

� �

is also the greatest in the set ð� 1Þ
k� pþ1Sðk� pÞ

Lp
Qp ;j

� �

. Therefore, the term

Rk� pþ1 þ
P

N Ck� pþ1

i¼1

si
k� pþ1

DiagðAÞ is negative rendering overall Ek−p+1 to be of negative sign (as

PLOS COMPUTATIONAL BIOLOGY Systems theory in discovering the design principles for perfect adaptation

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009769 January 21, 2022 21 / 28

https://doi.org/10.1371/journal.pcbi.1009769


per the hypothesis the first term of Ei is always negative for i< k). This violates the stability cri-

terion shown in Eq 25.

For the second possibility, the second term, Rk of Eq 47 is made up of all the loops without

the jth node along with the diagonal elements of A. We first set aside the terms containing diag-

onal elements and only one loop with more than m edges where m ¼ bk
2
. We define this as ~Rk.

Since, there exists only one loop and all the loops considered are of the positive sign, all the ele-

ments of ~Rk are negative. From this logic, the remaining elements in Rk should contain at least

one loop with less than or equal to m edges. Again, if Lp
be the set of all the loops with p edges

in the network, then Lp
=Lp

j refer to all the p−edge loops that do not engage node j.

Rk ¼
Xm

p¼2

X

i
ðLp

=Lp
j Þi ð� 1Þ

kþp� 1Sðk� pÞ
Lp

i;ðLp=Lp
j Þi

 !

þ ~Rk ð49Þ

For Rk to be positive at least one of the terms in
Pm

p¼2

P

i
Lp
=Lp

j

� �

i
� 1Þ

kþp� 1Sðk� pÞ
Lp

i;j

� �

has to be

positive. That is possible if at least one of the product of p−edge loop without the node j and

the corresponding term in ð� 1Þ
kþp� 1Sðk� pÞ

Lp
i;j

is positive. Let us denote for a given p, the wth term

is positive. Then

Rk ¼
Xm

p¼2

X

i6¼w
ðLp

=Lp
j Þi ð� 1Þ

kþp� 1Sðk� pÞ
Lp

i;ðLp=Lp
j Þi

 !

þ O ð50Þ

where; O ¼ ððLp
=Lp

j Þw �
Y

Ai;i
|fflfflffl{zfflfflffl}

i2nodeðLp=Lw
j Þw

Þ ð� 1Þ
kþp� 1Sðk� pÞ

Lp
i;j

� �

þ ~Rk ð51Þ

It is already established in the first case that,
P

i
Lp
=Lp

j

� �

i
is always negative given all the

loops in the network are positive. Further, it is possible to write

X

l

ð� 1Þ
kþp� 1Sðk� pÞ

Lp
l;j

al

maxðaÞ

� �

> 0 ð52Þ

For Rk to be positive,

ððLp
=Lp

j Þw �
Y

Ai;i
|fflfflffl{zfflfflffl}

i2nodeðLp=Lw
j Þw

Þ >
X

i6¼w

ðLp
=Lp

j Þi ð� 1Þ
kþp� 1Sðk� pÞ

Lp

i;ðLp=Lp
j Þi

 !

Again, if this holds true it can be shown via proof by construction that Ep+1 is negative render-

ing the matrix A unstable. Therefore, it can be concluded that in Eq 47, both the first and sec-

ond term has to be individually negative in order to satisfy all the N stability conditions shown

in Eq 25.

Since, there are N − 1 diagonal elements, every element in EN consists exactly one loop con-

cerning the jth node. Therefore, the elements of EN can be grouped as following

CN ¼
XN

p¼2

X
Lp

i;j ð� 1Þ
N� pþ1SðN� pÞ

Lp
i;j

� �

ð53Þ
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Now, it has already been proven that for any k� N, the coefficients E1, � � �, Ek−1 have to be

individually positive

XN

p¼2

X
Lp

i;j ð� 1Þ
N� pþ1SðN� pÞ

Lp
i;j

� �

< 0 ð54Þ

This implies that for C1, � � �, CN−1 to be positive, CN has to be negative. This implies violation

of the stability criterion in Eq 25. Therefore, given all the loops of a network are of positive

sign and at least one diagonal component of the corresponding A matrix is zero, the system

becomes unstable thereby failing to provide adaptation.

It is to be stressed that these structural conditions for adaptation only serve as necessary

conditions for two reasons. Firstly, the sign of the determinant condition used here in Eq 25 is

only a weak (necessary) property of a stable system. Secondly, there are additional quantitative

constraints that are to be satisfied by fine-tuning the parameters. For instance, in a three-pro-

tein system, the negative feedback requires αbb = 0, which needs to be guaranteed by the

parameters. Similarly, a three-protein network with incoherent feed-forward loop requires α21

αbb = β3 αab 6¼ 0 to be satisfied by the parameters.

Interestingly, it is found that adaptation is preserved against the connection with a down-

stream system (Fig 5C and 5D). The connection considered here is canonical, i. e. only the out-

put node is connected with the downstream network.

Lemma 6. If the stability of the system is not altered, then the functionality of perfect adapta-
tion for an upstream system does not get altered if the output node is connected with a down-
stream system.

Proof. Given an upstream adaptive network containing N nodes and P edges, it is to be

proved that the system preserves its functionality if it is connected with another arbitrarily

connected network. Without any loss of generality, let us assume the 1st and the Nth nodes are

the input and output nodes of the upstream network, respectively. The downstream system is

connected in a feedback fashion with the output node.

Let the system matrices of the upstream and downstream networks be A1 2 R
N�N

and

A2 2 R
P�P

, respectively. As per the statement, the upstream system can provide adaptation, i.
e. detj ~A1 j ¼ 0, where ~A1 is the matrix associated with the minor of a1N. Due to the assumption

of the structure, the modified system matrix A0 for the augmented system can be written as

A0 ¼
A1 E1

E A2

" #

where, the elements of E1 2 R
N�P are zero everywhere other than the Nth row. Similarly, the

elements of E 2 RP�N
are zero everywhere other than the Nth column. For the combined sys-

tem to produce adaptation, the minor of a0
1N has to be zero. The matrix associated with the

minor of a0
1N ( ~A1

0) can be written as

~A1
0 ¼

~A1ðN� 1�N� 1Þ E2ðN� 1�PÞ

0ðP�N� 1Þ A2ðN� 1�N� 1Þ

2

4

3

5

Since ~A1
0 can be expressed as a block diagonal matrix with the lower non-square matrix being

zero, the determinant is the product of the individual determinants of ~A1 and A2. According

to the assumption on the upstream system detð ~A1Þ ¼ 0, therefore the matrix ~A1
0 is singular.
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This, in turn, implies that the combined system can provide adaptation if the stability is not

altered.

This is intuitively a well-expected result because, typically, adaptation networks are

mounted on the big downstream network to provide robustness with respect to external dis-

turbances, and the above lemma shows that the adaptation networks are not retroactive and

context-dependent.

4 Discussion

Biological networks are complex yet well-coordinated and robust in nature. Although the

form of the reaction dynamics underlying a network governs specific characteristics of the bio-

logical system, the major roles of controlling and coordinating different levels of hierarchy in

the networks can be attributed to the very structure of the network. Previous research works

have adopted one of a brute-force, graph-theoretic or a rule-based approach for identifying

admissible structures for perfect adaptation. The nature of results obtained from these

approaches are limited by the computational cost, inability to capture all necessary structures

and/or the challenges in handling networks of arbitrary sizes. In this work, we appeal to the

linear systems and control theory for obtaining formal and generalised results without being

bounded by any of the aforementioned limitations.

Intuitively, it is apparent that for any (biological) system to exhibit adaptation, it should

internally possess a feedback and / or feedforward configuration as mandated by control the-

ory. However, deeper and concrete answers, especially on how such results scale-up with the

size of network, inevitably call for a formal study. The primary questions that formed the basis

of this work are (for perfect adaptation) (i) how do these intuitions formally manifest in bio-

logical networks? (ii) what are the possible signature structures and very importantly (iii)

whether a generalised result can be obtained for networks of any size? These are somewhat for-

midable questions, especially given the non-linear nature of biological processes. However, it

turns out that linear systems theory can still provide concrete answers. Essentially, the linear-

ized structure of the system provides the answer to a binary question of whether the network is

able to provide adaptation or not. If yes, further conditions on the linearized system are

obtained and the problem of determining suitable network structure is resolved. The proposed

framework is systematic and generic as against computationally demanding search methods

and finding specific control strategies for a particular network to achieve adaptation.

Deriving the necessary conditions for adaptation, we show that a minimum of N edges are

required for an N-node network to produce adaptation. We use this result to deduce further,

that there exist only two ways, namely (1) feedback loop, and (2) multiple forward paths in an

N−node network, to provide adaptation.

Finally capturing the above results in Theorem 5, we show that existence of either a negative

feedback loop or incoherent feed forward node acts as a necessary condition for adaptation.

This result agrees with the observations in the seminal work of Ma et al [11] (2009), in their

seminal study of three node networks. Furthermore, this also proves the conjectural assertion

by Araujo R. et al [36] (2018) that in absence of an opposer module a balancer requires at least

one negative feedback to provide perfect adaptation. Lemma 6 establishes that adaptation is

retained in presence of a canonical downstream connection. This non-retroactive nature of

these networks implies that they are highly likely to preserve their function in synthetic circuits

designed with various modules.

It should also be noted that the topologies obtained from the linearized hyperbolic system

provide perfect adaptation in the practical (nonlinear) scenario. The more generic case com-

prising of the possibility of a non-hyperbolic system providing adaptation can be an interesting
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future study. Also, the controllability condition used in this paper works as a sufficient condi-

tion for the controllability of the actual nonlinear system. The area of nonlinear controllability

can be explored in this context to avoid missing out on false negatives.

In sum, we see four definitive contributions of this study. We first proved via Theorem 1

that the network structures for adaptation ipso facto reduce peak time because of the infinite

precision (zero-gain) requirement. Secondly, the control-theoretic approach enabled us to

address the question of non-zero sensitivity for the first time along with the standard infinite

precision requirement for perfect adaptation. In this context, concise conditions inspired from

systems theory were proposed regarding the well-known toilet-flush phenomena for the first

time. Third, we argue that the structural conditions obtained as the necessary conditions for

adaptation herein, are most stringent among the ones in the existing literature (Refer to S1

Table). We make this claim on the basis of two results obtained in this work. Firstly, in Theo-

rem 5, we proved that the sign of at least one feed back loop has to be negative for ensuring

adaptation in absence of opposing forward paths. This is a significant reduction for it elimi-

nates the possibility of balancer module with no negative feedback providing adaptation. Sec-

ondly, we showed in Theorem 4 that negative feedback loops that do not contain any edge

from the output to the input node are the only modules admissible for perfect adaptation in

absence of incoherency of the forward paths. Fourth and most notably, the entire algorithm

remains agnostic to the particularities of the reaction kinetics. Our approach lays the founda-

tion for the application of LTI systems theory to predict topologies and fine-grained con-

straints for robust adaptation. Further, as an extension to this approach, building a nonlinear

dynamical systems-theoretic approach to unravel the design principles of adaptation can be a

promising area of future study.
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