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Abstract. Through calculations of  molecular packing 
constraints in crowded solutions, we have previously 
shown that dispersions of  filament forming proteins 
and soluble proteins can be unstable at physiological 
concentrations, such that tight bundles of  filaments are 
formed spontaneously, in the absence of  any ac- 

cessory binding proteins. Here we consider the modu- 
lation of  this phenomenon by capping proteins. The 
theory predicts that, by shortening the average illa- 
ment length, capping alleviates the packing problem. 
As a result, the dispersed isotropic solution is stable 
over an expanded range of compositions. 

T H~ cytoplasm is typically a very crowded solution, 
containing 20-30 weight % protein (4). It is widely 
assumed that the behavior of such nonideal solutions 

is qualitatively similar to that of dilute solutions, with simple 
quantitative corrections in the form of activity coefficients. 
There are at least two fundamental problems with this ap- 
proach. The first is that in crowded solutions asymmetrically 
shaped particles will spontaneously align due to packing 
constraints which cause the lateral and longitudinal transla- 
tional freedom gained upon alignment to exceed the rota- 
tional freedom lost (14). Such entropically driven alignment 
has been observed in solutions of F-actin (2) and in solutions 
of microtubules (11). Since these "symmetry-breaking" tran- 
sitions are usually first order, there is usually a range of con- 
centrations for which the single solution is unstable and 
spontaneously separates into isotropic and anisotropic do- 
mains with different compositions. The second problem is 
the reciprocal nature of the effect of activity coefficients on 
self-assembly and of self-assembly on activity coefficients. 

To take these complexities into account, in an extrapola- 
tion from dilute behavior to high concentrations, a statisti- 
cal thermodynamic treatment is needed that combines the 
phenomenology of self-assembly observed at lower concen- 
trations with a model of the interactions between particles 
that become important at higher concentrations. Such an ap- 
proach has successfully described spontaneous long-range 
order and osmotic effects in crowded solutions of self-assem- 
bling solutes such as sickle-cell hemoglobin (7-9), surfac- 
tants (20, 21) and polyaromatic drugs and dyes (12, 17-19). 
More recently (13), the approach has been extended to con- 
sider a solution of two proteins: one that reversibly self- 
assembles to form filaments and one that does not. Here the 
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most striking feature of the phase behavior is extreme demix- 
ing, such that a high-density phase consisting almost exclu- 
sively of tightly packed, highly aligned filaments separates 
from a relatively dilute isotropic phase depleted of the 
filament-forming protein. This spontaneous filament bun- 
dling (i.e., bundling in the absence of "bundling proteins") 
could not be predicted via the simple use of activity co- 
efficients. 

We now wish to consider the effects of filament-binding 
proteins. In the present paper, we examine the influence of 
capping proteins on the spontaneous formation of filament 
bundles under crowded conditions. A capping protein is one 
which binds reversibly to one end of a filament. In coopera- 
tively formed filaments, filament ends are relatively unstable 
and the tendency is to form relatively few, long filaments 
(i.e., few ends). The more numerous the capping molecules 
and the more strongly they bind, the more they stabilize fila- 
ment ends and the greater the tendency to form more short 
filaments (i.e., more ends). The theory thus leads to an esti- 
mation of the effects of capping proteins on the filament 
length distribution and the related changes in spontaneous 
filament bundling. 

The present work is motivated by the importance of cap- 
ping for control of the aggregation of action (5). Of course, 
the behavior of actin in vivo is complicated by many interac- 
tions. Here we consider only reversible self-assembly and 
capping. The filaments are assumed to be free in solution, 
with no cross-links or anchors. Thus the predicted behavior 
represents a baseline or reference scenario upon which other 
reversible attachments (e.g., by cross-linkers and anchors) 
elaborate. 

M e ~ o ~  

Our system contains two solutes," A" and "B: Our model filaments are rigid 
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spherocylinders formed by linear associations between A monomers and 
may, or may not, have a B monomer bound at one end. For the present we 
will consider only the case in which the radii of the two solutes are the same, 
aA = an = a. This model is, of course, only a crude representation of actin 
and actin end-capping proteins. Actin filaments are double stranded, which 
leads to a characteristic stoichiometry and cooperativity of microfilament 
growth. However, we have found in our studies of sickle-cell hemoglobin 
that the manifestations of long-range order in crowded self-assembling sys- 
tems generally depend more on the interactions between particles than on 
the stoichiometry of assembly (Madden, I". L., and J. Herzfeld, manuscript 
submitted for publication). Actin filaments are also somewhat flexible, but 
their persistence length is sufficiently long that description as a rigid rod 
is a reasonable first approximation. The special features of the more realistic 
system will be more readily calculated and better appreciated once the fea- 
tures of the simpler model system have been characterized. 

To simplify the computation, the filaments are distributed among three 
mutually orthogonal orientations. The diseretization of the particle orienta- 
tion distribution has also been shown to have minimal effect on predictions 
of long-range order in self-assembling systems (6). The state of this system 
can thus be described by specifying the number concentration cij, of parti- 
cles with orientation i (i = 1, 2, or 3), of type j (j = t~, t ,  or-y), and aggrega- 
tion number n. Spherocylindrical particles of aggregation number n are as- 
sumed to have the same volume as the n spherical monomers from which 
they are formed. The particles of type j = ot consist entirely of solute A. 
For j = t~, n ~ 1. If j = t ,  the particles are B monomers (n = 1). j = 7 
indicates an aggregate consisting of a B end-cap and one or more A 
monomers. FOrj = % n ~ 2. Note that while there are three particle types, 
there are only two solutes: A and B. 

The free energy for a given state has four contributions: the free energy 
of association to form aggregates, which drives aggregate growth; the free 
energy of mixing, which tends to suppress aggregation; the free energy of 
hard-core interparticle repulsions, which drives alignment; and the free 
energy resulting from soft, longer range, repulsions, that oppose alignment 
of panicles. Hence, the free energy density (free energy, in units of kT, per 
unit volume) is given by: 

f = fasoc + fmix + fhc + fsoa (1) 

The free energy of association is obtained by assigning a free energy of 
eAkT to every contact between two monomers of type A and a free energy 
of ¢akT for a contact between a monomer of type A and a monomer of 
type B. Thus, 

fas~ = - ~ '  Cijn fin 
ijn (2a) 

with 

(-~^ ( n -  1) i f j  =c~ 
~n = ~ 0  if j = /5 (2b) 

L.~bA(n 2) + t~a i f j  = 3' 

The remaining three free energy terms, for mixing and interparticle in- 
teractions, are formulated as in reference 13. The free energy of mixing 
is a classical term which derives from the entropy of mixing aggregates of 
various sizes, compositions and orientations taken as distinct species. The 
free energy due to hard-core repulsions (i.e., excluded volume) corresponds 
to the loss of configurational entropy due to the prohibition of interpenetra- 
tion of particles. This crowding term is calculated using scaled particle the- 
ory. The soft repulsions are approximated as a step potential of width g'a 
and height JkT, and their contribution to the free energy is calculated under 
the assumption that the potential is weak enough that there is no induction 
of short range order (Bragg-Wdliams approximation). This assumption will 
be valid if the pH is close to the isoelectric point or the ionic strength is 
very high. Although a sum of positive and negative stop potentials could 
be used to describe a potential of more realistic shape, we have found that 
such details of the potential do not have important effects on the long-range 
order of interest here. 

The free energy density ofEq. 1 is a functional of the aggregate size and 
orientation distribution [cij,,]. If we define X^ (Xs) as the difference be- 
tween the chemical potential of the solute A (B) and the chemical potential 
of the solvent, then the equilibrium state is that which minimizes 

~'([Cijn]) -~ f ( [c i i . ] )  - X^VA([Cijnl) - Xnvs([Cijnl) (3) 

where  

V^ = bl Z (cictn n + ci-fn In - 1]) (4a) 
in 

and 

va = bl E (Clan + Ci~n) (4b) 
in 

are the volume fractions of solutes A and B, and bl = (4/3)Ho~ 3 is the vol- 
ume of a monomer. It follows analytically, from the calculus of variations, 
that the equilibrium distribution function obeys the symmetry relation 

ci,~lexp(-x^b0 = ctaxexp(--xBb0 = K (5a) 

(for all three directions, i, since the spherical monomers must be istrophi- 
cally oriented) and the exponential length distributions 

fCicd(Cial Fi exp ~bA) n - I i f j  = ot (n /> 1) 
Cijn = ~Cial i f j  = /3  ( n =  1) (5b) 

L ciatexp(~B - ~A)(Ci,~l 1'i exp o^)n - I i f j  = 3' (n >I 2) 

where F 1 = 1"2 = Ia3 in the isotropic state and Fl > 1"2 = 1'3 in the 
anisotropic (nematic) state. The equilibrium state for given values of X^ 
and Xa is then obtained by numerically minimizing i ~ (Eq. 3) with respect 
to the parameters K, 1't, 1"2, and 1"3 in Eq. (5). These parameters define 
the equilibrium state, including the aggregate size and orientation distribu- 
tions (Eq. 5), the volume fractions, VA and vs, of each solute in the solu- 
tion (Eq. 4), and the osmotic pressure 

n = ~ -  ~c~j. 6~ (6) 
ijn ~ija 

For any value of X^ (Xa), the value ofxa (X^) at the isotropic-nematic tran- 
sition (i.e., where the free energies of the isotropic and nematic states are 
equal) is found by the numerical methods described in reference 13. For 
these (XA,Xa) pairs, the corresponding values of vA and vs in the isotropic 
and nematic states describe the compositions of the coexisting isotropic and 
nematic phases. 

Results 

The behavior of a ternary system is best represented in a 
Gibbs diagram. This takes the form of an equilateral triangle 
(as in Figs. 1 and 2) in which each point specifies the volume 
fractions of all three species. (This can be done in two 
dimensions because specifying two volume fractions deter- 
mines the third, since they must all add up to one.) The ver- 
tices of the triangle represent pure samples of each of the 
three species. Here we have solute A, solute B, and solvent 
(represented by .). With distance along any line from a given 
vertex, the volume fraction of the corresponding species 
decreases linearly, going to zero at the opposite leg. Thus, 
points on the , - A  (*-B)  leg of the triangle represent binary 
mixtures of solvent and solute A (B), with no solute B (A). 
More generally, the points on any line parallel to a given leg 
of the triangle represent mixtures with the same volume frac- 
tion of the species represented by the opposite vertex and a 
particular point on the triangle may be viewed as the inter- 
section of lines parallel to each of the legs of the triangle 
which define the volume fractions of each of the species in 
the mixture. (The equilateral triangle has the virtue that 
these volume fractions automatically sum to 1 as required.) 
Consider, for example, the point marked by the dot in Fig. 
1 a. This point lies on a horizontal line that is positioned 75 % 
of the way from the base to the apex. All points on this line 
comprise 75 vol % solvent and 25 vol % solute. At the left 
(right) end of the horizontal line, the solute is all A (B). 
Since the dot is located 90% of the way across from the left 
leg to the right leg, it represents a mixture in which 90 vol 
% of the solute is B and 10 vol % is A. 

All the calculated properties of the ternary mixture can be 
illustrated on the ternary triangle. For each point on the trian- 
gle, we calculate the equilibrium distribution of particle 
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types, sizes and orientations [cij°l. This is more information 
than we can use and it is more convenient to think about a 
few overall properties. For example, we want to know 
whether the solution is isotropic ("/", when clio = c2jo = c3jn 
for all j and n), or anisotropic (nematic, "NO, or separated 
into coexisting isotropic and nematic phases. The ternary tri- 
angle is therefore divided into corresponding regions, as in 
Fig. 2. Across the phase separated region, lines are drawn 
which show which isotropic solution (represented by the point 
at the isotropic end of the line) coexists with which aniso- 
tropic solution (represented by the point at the anisotropic 
end of the line). A mixture with a composition represented 
by a point on one of those lines separates into isotropic and 
anisotropic solutions with the compositions represented by 
the points on the ends of the line. In each of the phases (I 
or N) we also want some information on the state of aggrega- 
tion of the solute. A convenient measure used here is the av- 
erage aggregation number for A which is given by 

[~ (ci~n n + ci.yo In - 1 ] ) ] /  <hA> 

[~ (ci,° + ci,°)] (7) 

The variation of <hA> with composition can be illustrated 
on the ternary triangle by suitably spaced contour lines that 
connect points with the same value of <nA>. Different tex- 
tures are used for contour lines and phase boundaries, in or- 
der to show both on the same diagrams. 

In this paper, we concentrate on the effects of capping and 
therefore consider variations only in ~bB, the strength of the 
association of a B monomer with an A particle. The results 
are presented for SA = 27, J = 1.0, and ~" = 0.10. The 
effects of varying $A and J have been considered in refer- 
ence 13. 

Idea l  L i m i t  

The primary effect of capping is a modulation of filament 
lengths by stabilizing the ends. It is instructive therefore, be- 

fore presentation of results for the full model, to consider the 
effects of capping under "ideal" conditions, where the inter- 
actions between particles are absent, and the only significant 
contributions to the free energy (Eq. 1) are the free energy 
of mixing and the free energy of association (Eq. 2). In the 
absence of interactions between particles, there is no align- 
ment transition and the solution is always isotropic. Fig. 1 
a shows contours for the average aggregation number for A, 
where capping is not favorable ( ~  <<  ~bA). A similar dia- 
gram was also presented in reference 13. Note that the length 
contours ran parallel to the right leg, signifying that <n^> 
depends only on the volume fraction of the aggregating sol- 
ute, A; in this case, solute B and solvent are interchangeable 
diluents of A. Results for strong capping (~^ = q~B) are 
presented in Fig. 1 b. The <n^> contours are no longer de- 
pendent solely on the concentration of A. Instead each con- 
tour follows a nearly constant ratio of volume fractions of 
A to B, (which would be a straight line that runs from the 
solvent vertex to the bottom axis). We also see, as expected, 
that the values of <n^> are much smaller for a given solu- 
tion composition when capping is strong than when it is 
weak. 

C r o w d i n g  

Fig. 2 a shows the results of the full model for the limiting 
case in which ~e is sufficiently negative that monomers of 
solute B do not bind to the ends of the polymers. This phase 
diagram for ~B = - 2  looks exactly like that shown in 
figure 3b of reference 13, where B is not allowed to bind to 
the polymer at all (in effect ~B = ao). For low total solute 
volume fractions (near the apex of the triangle) the contours 
in Fig. 2 a agree with the ideal results in Fig. 1 a, as we ex- 
pect. At higher concentrations, the effects of interparticle in- 
teractions become apparent. In the absence of solute B (on 
the left leg of the triangle), the effect of the excluded volume 
of solute A on itself is to push more monomer into ag- 
gregates so that the <hA> = 102'° contour occurs at a much 
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Figure/. Ternary diagrams with contours for constant average aggregation number <hA> (F_,q. 7) for CA = 27 in the absence of interparti- 
cle interactions. (a) ~a = - 2  and the contours from the solvent vertex down are for <n^> = 101.25, 10 t'5, 10 2.0. (b) On = 27, and the 
contours from right to left are for <flA> = 10 °"25, lO °'5, 10 °"75, and 10 l°. 
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Figure 2. Ternary phase diagrams for qbA = 27, J = 1.0, and ~" = 
0.10. The stippled parts of the diagram were numerically intracta- 
ble. The isotropic state (/) is stable for mixtures that don't contain 
too much A (upper right). The anisotropic (nematic, N) state is sta- 
ble for mixtures with enough A and not too much B (left). In the 
intervening region a single phase is not stable: a solution with a 
composition represented by a point on one of the straight solid lines 
in this region will decompose into coexisting isotropic and aniso- 
tropic solutions, with the compositions of each given by the points 
at the corresponding ends of the line. The dashed lines are contours 
for constant average aggregation number <hA> (Eq. 7) in the 
isotropic and anisotropic phases. (a) ~bB = --2 and the contours 
from the solvent corner down are for <na> = 101'25, 1015, 102°, 
and 102'5. (b) As in a, except that ~B = 18. (c) q~B = 21 and the 
contours from right to left are for <hA> = 101°, 10125 , 10 LS, and 
102 .°. (d) q~B = 24 and the contours from right to left are for, 
<(nA~ > = 10 °'5, 10 °"75, 101"°, 10 L25, and 10 ts. (e) OB = 27 and the 
contours from right to left are for <hA> = 10 °5, 10 °'75, 10 l'°, 
and 10 LS. 
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lower concentration of A than in the ideal case. Excluded 
volume interactions also cause the alignment of polymers 
above •5 vol % A. The effects of the excluded volume of 
solute B can be gauged by the effects of replacing solvent by 
B (i.e., leaving a particular point on the left leg of the triangle 
along a line parallel to the right leg). Whereas in the ideal 
case (Fig. 1 a), <n^> is unaffected by replacing solvent by 
B, when interparticle interactions are taken into account 
(Fig. 2 a) we find that <n^> increases as solvent is replaced 
by B. Again crowding pushes more monomer into polymer. 
Largely for this reason, the isotropic-nematic transition oc- 
curs at lower concentrations of A when B is present. 

The most striking feature of this phase diagram is the ex- 
treme demixing that eventually occurs as B is added. For ex- 
ample, a mixture of the composition represented by the large 
dot (,~25 vol % protein, of which ,x,10% is A, and ~90% 
is B) will decompose into a dense anisotropic solution of 
closely packed, highly aligned filaments (*40 vol % protein 
of which '~88% is A and only "~12% is B), leaving behind 
a relatively dilute isotropic solution, somewhat depleted of 
A and enriched in B. This process is entropically driven. At 
high concentrations, randomly mixing spherical solutes (B) 
with rodlike solutes (A) creates many pockets of wasted 
space around the spheres and the translational freedom of the 
rods is reduced in disproportion to the volume actually oc- 
cupied by the spheres. Demixing relieves this packing prob- 
lem and yields a gain in translational entropy that exceeds 
the loss of the entropy of mixing. 

Fig. 2 (b-e) show the effects of stronger capping (increas- 
ing q~B). In all cases, the left legs of the diagrams, where B 
is absent, are necessarily the same as in Fig. 2 a. In Fig. 2 
b we see that the overall behavior for eB = 18 is very simi- 
lar to that in Fig. 2 a where B does not bind. However, at 
solute volume fractions above 15% there is a noticeable de- 
crease in the average aggregation numbers. This is because 
crowding drives capping of filaments even though the bind- 
ing affinity of B is weak. In Fig. 2 (c-e) the effects are more 
dramatic. The average aggregation numbers here depend 
more on the ratio A/B than on concentration. For a given 
mixture, the average filament length decreases and the con- 
centration of free B decreases (not shown), as ~bB increases. 
Both of these trends relieve the rod-sphere packing problem. 
As a result, the region of isotropic stability is progressively 
expanded and the region of demixing progressively recedes. 

Discussion and Conclusions 

A typical cell contains about 25 vol % protein, of which per- 
haps 10% is of a filament forming variety (1, 10, 15). If the 
other 90 % of the protein does not bind to the filaments at 
all, then the composition of the cytoplasm is represented by 
the large dot in Fig. 2 a. We see that this mixture is unstable 
and separates into domains with aligned filaments (nematic 
order) at very high concentrations, coexisting with a more 
dilute dispersion (isotropic solution) which is depleted of the 
filament forming solute. Thus we have the spontaneous for- 
marion of filament bundles without filament binding pro- 
teins. Such crowding-induced bundling has been observed 
experimentally in mixtures of F-action with nonassociating 
molecules (3, 16). 

Suzuki et al. (16) polymerized G-actin at 0.5 mg/ml in 
F-buffer containing varying concentrations of the inert poly- 

mer poly(ethylene glycol) (PEG) t, or the soluble protein 
ovalbumin. These preparations would correspond to points 
in Fig. 2 a on a line parallel to the right leg of the triangle, 
about 0.05% of the way to the A vertex. Suzuki et al. (16) 
already find filament bundles when ovalbumin exceeded 15 
weight %. This is even stronger demixing than shown in our 
phase diagrams, which is not surprising considering that the 
values for the model parameters were not chosen to cor- 
respond specifically to the experimental conditions (see be- 
low). Both Suzuki et al. (16) and Cuneo et al. (3) have found 
that PEG induces bundling at a still lower concentration 
(wt/wt). However these results are difficult to interpret since 
PEG is not as compact as ovalbumin and its molecular vol- 
ume will vary with conditions. 

In Fig. 2 a, the cytoplasmic mixture represented by the dot 
is close to the isotropic edge of the region of demixing. If 
some of the nonbinding B were replaced by a capping spe- 
cies B', then the isotropic solution might be stable and fila- 
ment bundles might not separate out. This is because the 
rod-sphere packing problem would be relieved from both 
directions. When B' binds to filaments, those "spheres" are 
removed from the mixture. And, more importantly, by cap- 
ping filaments, B' makes the "rods" shorter. To predict the 
amount of capping protein with a given binding affinity that 
is required to prevent bundling, it would be necessary to con- 
sider the quaternary solvent-A-B-B' system for which the 
Gibbs diagram would be a three-dimensional tetrahedron. 
This is beyond the scope of the present work. However, the 
series of ternary systems considered here is sufficient to il- 
lustrate that the rod-sphere packing problem that drives 
spontaneous bundling is relieved when otherwise nonag- 
gregating molecules bind to the ends of the filaments. Varia- 
tions of the quantity and binding affinity of capping proteins 
are thus two mechanisms by which a cell could control the 
bundling of reversibly assembled cytoskeletal filaments. 

The behavior illustrated here is only for ~bA = 27, J --- 
1.0, ~ = 0.10, and aa = aB. Since q~ ,̂ J, and ~ will vary with 
conditions, there is no one correct set of values. A larger 
value of 4^ would probably be more representative and, by 
increasing the average filament length, would have the effect 
of shrinking the isotropic region of the phase diagram and 
extending the region of extreme phase separation to lower 
concentrations (i.e., toward the apex of the diagram) (13), 
as seen experimentally (3, 16). Control of the effective value 
of ~^, through variations in the concentrations of the effec- 
tors of aggregation (e.g., nucleoside triphosphate and cal- 
cium), thus represents another mechanism by which the cell 
may control the formation and dissolution of filament bun- 
dies. The region of extreme phase separation is also extended 
to lower concentrations when the radius of B is less than that 
of A (as < a~) and when soft repulsions are weaker (J is de- 
creased) (13). The reason for not using such parameter 
values here is that the important qualitative features of the 
phase behavior are difficult to decipher when compressed 
into the apex of the phase diagram. 

To evaluate the effects of crowding in the highly poly- 
disperse systems of interest, we have made a number of ap- 
proximations in the theory. However, as discussed in the 
Methods section, we expect that the results that we have 
presented here will be qualitatively useful in spite of the sim- 

1. Abbreviation used in this paper: PEG, poly(ethylene glycol). 
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plifications used. Our results show that crowding is expected 
to play an important role in the organization of cytoskeletal 
elements. Even in the absence of filament binding proteins, 
packing constraints lead to the spontaneous separation of 
filament bundles from the cytosol. End capping can dissolve 
the filament bundles by shifting the filament size distribution 
to shorter lengths and thereby moderating the difficulty of 
mixing the variously shaped particles under crowded condi- 
tions. 
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