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Abstract

Background: Sunflower is an important oilseed crop domesticated in North America approximately 4000 years
ago. During the last century, oil content in sunflower was under strong selection. Further improvement of oil
properties achieved by modulating its fatty acid composition is one of the main directions in modern oilseed
crop breeding.

Results: We searched for the genetic basis of fatty acid content variation by genotyping 601 inbred
sunflower lines and assessing their lipid and fatty acid composition. Our genome-wide association analysis
based on the genotypes for 15,483 SNPs and the concentrations of 23 fatty acids, including minor fatty acids,
revealed significant genetic associations for eleven of them.
Identified genomic regions included the loci involved in rare fatty acids variation on chromosomes 3 and 14,
explaining up to 34.5% of the total variation of docosanoic acid (22:0) in sunflower oil.

Conclusions: This is the first large scale implementation of high-throughput lipidomic profiling to sunflower
germplasm characterization. This study contributes to the genetic characterization of Russian sunflower
collections, which made a substantial contribution to the development of sunflower as the oilseed crop
worldwide, and provides new insights into the genetic control of oil composition that can be implemented
in future studies.
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Background
Sunflower is an important oilseed crop, domesticated
from wild populations in North America approximately
4000 years ago [1] and introduced into Europe in the
sixteenth century. Compared to wild sunflower, domesti-
cated lines show significant differences in branching,
flowering time, plant height, and various seed traits, in-
cluding oil content [2]. The cultivation of sunflower as
an oilseed crop dates back to the beginning of the nine-
teenth century. Russian academician V.S. Pustovoit and
his colleagues selected sunflower varieties with higher
seed oil content, culminating in developing the Peredo-
vik 11 variety in 1958 with the oil content increased to
51% [3]. Russian sunflower varieties with high oil con-
tent formed the basis of sunflower breeding worldwide,
leading to global sunflower cultivation for oil [4–6].
Today, sunflower is one of the main oilseed crops [7],

ranking fourth in global oil production after palm, soy-
bean, and rapeseed [8]. It is cultivated on 26 million hect-
ares, with an average yield of 1.78 metric tons per hectare
[9]. In addition to the food industry, sunflower oil is used
for polymer synthesis, as a biofuel source and as an emul-
sifier or lubricant [10]. Nutritional properties and indus-
trial use of sunflower oil depend heavily on the fatty acid
residue composition of the main oil lipids, triacylglycerides
(TAGs), and some of the minor lipids [11, 12].
Considering the need for varieties with improved oil

properties, developing novel varieties with desired oil
composition is one of the main directions in oilseed crop
breeding [13]. This work requires careful characterization
of oil composition using metabolomics and lipidomics
techniques, such as ultra-performance liquid chromatog-
raphy coupled with mass spectrometry (UPLC-MS). For
the past few years, there has been a significant increase in
the number of studies implementing these techniques in
plants. For instance, LC-MS-based techniques were suc-
cessfully implemented for profiling more than 260 polar
metabolites and non-polar leaf lipids in Arabidopsis thali-
ana [14], as well as for the characterization of polar me-
tabolites and lipids in the agronomics plants like tobacco
[15], potato [16], corn [17], soybean [18], sunflower [19],
and others [20].
Genome-wide association studies (GWAS) coupled

with high-throughput lipidome phenotyping can identify
genetic variants associated with fatty acid content in
sunflower seeds. This knowledge will aid genome-based
selection in sunflower breeding programs and speed up
the selection of genotypes providing desired fatty acid
composition [10]. With rapid development of high-
throughput phenotyping and genotyping approaches, as
well as the availability of well-assembled and annotated
genomes there is a dramatic increase in the understand-
ing of the genetic basis of oil composition in major oil-
seed crops like soybean and rapeseed [21, 22]. Although

sunflower is an important oilseed plant and its oil com-
position is one of the key agricultural traits, most of the
current association studies based on high-throughput
genotyping techniques in sunflowere are focused on un-
derstanding the genetic control of classical agricultural
phenotypes. These studies indeed succeeded in the iden-
tification of genetic loci associated with flowering time
[23–25], male fertility restoration [26], seedling growth
[27], the plasticity of oil yield for combined abiotic
stresses [28], basal and apical branching [29], and flower
morphology [30] traits. Further, functional analysis of
sunflower genome mapped 429 sunflower genes involved
in 125 chemical reactions corresponding to 12 oil bio-
synthesis pathways [31].
Lipidome profiling by UPLC-MS has already been

used as an input in GWAS for several plants, for ex-
ample, maize [32]. However, in sunflower, associated re-
gions have only been identified for some of the most
abundant FAs [33–35]. Other minor fatty acids consti-
tuting sunflower oil lipids, however, were not considered
for association mapping. Genomic predictions have been
made for the general oil content trait, but not for the in-
dividual components of the oil [36]. The presently docu-
mented natural diversity of lipids contained in seeds
demonstrates that domesticated oilseed crops like sun-
flower can serve as a source of rare FAs. This highlights
the importance of high-throughput lipid phenotyping,
which in combination with the genotype data generates
significant potential for oil improvement by customizing
its content [37].
In this study, we combined high-resolution lipidome

phenotyping and genome-wide genotyping of 601 inbred
sunflower lines to perform GWAS to identify genetic
variants associated with fatty acid composition-. Further-
more, this work has substantially widened the analyzed
sunflower genetic diversity by incorporating the geno-
types from Vavilov germplasm collections [38], which
nearly doubles the number of inbred lines ever used in
sunflower GWAS [30]. Our analysis yielded genetic vari-
ants and candidate genes associated with eleven fatty
acids, including five minor ones, which have not been
previously analyzed.

Results
GBS sequencing and SNP calling
We extracted DNA from inbred sunflower lines from
the Vavilov seed bank, VNIIMK Applied Agricultural In-
stitute, and Agroplasma Breeding Company collections
(Table S1). On average, three technical replicates for
each sample were sequenced on the Illumina HiSeq
4000 platform using a GBS protocol (see Experimental
Procedures), resulting in 1490 genotypes (601 unique ge-
notypes, some of them were resequenced once, some
twice). Reads were mapped onto the Helianthus annuus
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reference genome (HanXRQr1.0), with the mapping
rates varying between 75 and 90%. Variant calling identi-
fied 2,360,111 single nucleotide polymorphisms (SNPs)
spanning all 17 chromosomes. Homozygosity and Princi-
pal Component Analysis (PCA) showed no obvious bias
due to plate, batch or seed bank variables (Figure S1A-
B). Pairwise comparisons showed that technical repli-
cates grouped together, and samples have low discord-
ance with other technical replicates (Figure S1C).

Population structure, relative kinship, and linkage
disequilibrium
We assessed the population structure of the genotypes
used in the GWAS analysis using the ADMIXTURE
package. No visible clusters were observed in the cases
of K = 1:10 (Fig. 1A). However, visualization of genetic
variation using the first two principal components of
PCA revealed a distinct group of genotypes derived from
the Agroplasma collection (See Samples in Experimental
Procedures) which clustered separately (Fig. 1B). While

the average genotype correlation (r2) dropped to half of
its maximum value at 0.7 Mb, linkage disequilibrium
(LD) decay varied among the 17 chromosomes (Fig. 1C,
D; Figure S2A-B). Notably, some chromosomes, such as
chromosome 3, demonstrated extended LD within the
1–3Mb interval (ANOVA, p < 0.0001).

Genotypes variability and relation to other sunflower
germplasms
To place the analyzed cultivars on a broader map of sun-
flower genotype variation, we compared our genotypes
to the previously sequenced 1065 wild sunflower var-
ieties, 20 landraces, and 289 cultivated sunflower lines
[39]. Principal component analysis using just cultivated
lines and landraces based on 2345 SNPs shared between
the datasets showed that cultivated sunflower lines from
the Russian dataset are distinguishable from those col-
lected worldwide by the third principal component
(Fig. 2A, B). The analysis further reaffirmed the broad
genetic difference between cultivated and wild material

Fig. 1 Population structure of germplasm and linkage disequilibrium (LD) values. A Estimated cross-validation error value for possible cluster
number from 1 to 10. B Subpopulations were assessed using Principal Component Analysis. Each dot corresponds to a sunflower accession used
in the study. Color corresponds to sunflower lines from different collections. Agroplasma_SM indicates sterility maintainer lines from Agroplasma;
Agroplasma_FR indicates fertility restorer lines. C, D Genome-wide (C) and per-chromosome 3 (D) LD-decay. Lines correspond to loess curves
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(Figure S3A). However, it has to be noted that this ana-
lysis is confined to the genomic positions polymorphic
in both datasets and could, therefore, underestimate the
differences between them. The third principle compo-
nent further separated some of the Helianthus species
(Figure S3B). The landraces present in the Hübner data-
set mostly clustered between the cultivated lines from
both foreign and Russian collections, and the wild sun-
flower varieties (Figure S3A, B).

Oil lipidome quantification
We extracted the total lipid fraction from the sunflower
seeds of the same 601 sunflower lines used in the geno-
type analysis. We then divided the lipid extracts into two
fractions and analyzed them independently using UPLC-
MS technology. The first fraction was kept intact, while
the second was hydrolyzed before the analysis. The hy-
drolyzed fraction contained fatty acid residues of all oil
lipids and a minor fraction of free fatty acids present in
the intact samples before hydrolysis (FAs). Mass-
spectrometry analysis yielded 826 computationally anno-
tated lipid peaks and 27 post-hydrolysis fatty acids. We
focused on a specific lipid class, the triacylglycerides
(TAGs), which is the most important among sunflower
oil lipids. To optimize the detection of both low and
high abundance FAs and TAGs, we conducted the
UPLC-MS measurements at two extract dilutions (see
Experimental Procedures).

Quantification of genetic and environmental effects on oil
lipidome composition
To assess the environmental and biological reproducibil-
ity of FA and TAG data, we grew plants of six sunflower
inbreed lines (1 conventional and 5 high oleic) originat-
ing from the VNIIMK collection. The genotypes were

grown for 3 years with five biological replicates per year
and yielded a total of 89 data points (Table S1). We per-
formed genotyping using the same GBS protocol and
collected the UPLC-MS measurements at different ex-
tract dilutions to ensure quantitative coverage of the en-
tire concentration range. We then tested the effects of
the genotype by environment interaction (GXE) using
ANOVA with the following model: G + E + GXE (where
G is genotype and E is environment, i.e. year). All FAs
and TAGs measured in both dilutions displayed signifi-
cant differences between genotypes after BH-correction
(p < 0.05, Figs. 3А, S4А, S5A, S6, S7, S8, Table S2). FAs
(11 out of 15) and TAGs (32 out of 42 and 43 out of 59
for 1:25 and 1:3 dilutions, respectively) also showed sig-
nificant GXE interaction. The interaction effect, al-
though statistically significant, had a much smaller
amplitude than the effect of the genotype (Figure S9).
Biological replicates of the same genotype collected in
different years displayed greater similarity than those
collected in the same year (Figs. 3А, S4А, S5A). The
strongest variation among genotypes was observed for
oleic, linoleic and palmitic acids, the major fatty acids in
sunflower oil (Fig. 3B-G), as well as for the following
TAGs: 50:2, 51:3, 54:3, 54:4, 54:6 (Figure S4 B-G and S5
B-G). Analysis of Nei’s genetic distances between geno-
types obtained for the same seeds used for lipidomic
analysis showed the reproducibility of genotypes be-
tween biological replicates (Table S3).

Oil lipidome variation analysis
Computational annotation of the intact lipidome of the
oil samples extracted from 601 sunflower lines yielded
687 lipids falling into seven lipid classes: glycerolipids
(GL), glycophospholipids (GP), free fatty acids (FA),
sterols (ST), prenols (PR), polyketides (PK), and

Fig. 2 The relationship between sunflower germplasm of different origins estimated based on 2345 SNPs shared between this and the Hübner
(2019) studies. A The first and the second PCA components. B The first and the third PCA components. Each dot corresponds to a plant
accession. Colors indicate the origin
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saccharolipids (SP) (Fig. 4A). A subclass of glycerolipids,
TAGs, constituted 87% of lipid intensities of uniquely
identified compounds (Fig. 4B, Table S4). The most
abundant TAGs were 54:6, 54:5, 54:4, 54:3, 52:4, 52:3,
and 52:2 (Fig. 5A). Among computationally annotated
27 FAs, the most enriched FAs were 18:1, 18:2, 16:0, and
18:0 (Fig. 5B). The statistics on each of the fatty acid are
presented in Table S5.

Association analysis
Of the 601 sunflower lines taken into the study, both
genotype and lipid intensity data for a total of 543 acces-
sions was obtained. We conducted GWAS analysis using
the mixed linear model (MLM) approach to test for gen-
etic determinants of FAs variation based on this data. A
total of 15,068 SNPs - passed the filtering criteria (miss-
ing calls rate < 0.3, DP > 4, MAF > 0.01) for oleic and
linoleic acids and 12,528 SNPs for other fatty acids
(missing calls rate < 0.3, DP > 4, MAF > 0.03). From 27
detected FAs, 23 satisfying the criteria for GWAS were

selected. We detected significant associations for eleven
FAs: stearic acid (18:0), oleic acid (18:1), linoleic acid
(18:2), nonadecanoic acid (19:0), eicosanoic acid (20:0),
docosanoic acid (22:0), tetracosanoic acid (24:0), tetraco-
senoic acid (24:1), and hexadecadienoic acid (16:2) and
rare fatty acids such as 17:2 and 19:2 (MLM, Bonferroni-
corrected p < 0.00001; Fig. 6; Figure S10A-F). We further
performed GWAS for the oleic-linoleic acid ratio yield-
ing six significant SNPs - (Bonferroni-corrected p <
0.00001; Figure S10G-I). Altogether, we identified 140
trait-associated SNPs (MLM, Bonferroni-corrected p < 0.
0.00001; Fig. 6A). Among them, docosanoic acid (22:0) -
showed the strongest association with 53 SNPs located
on chromosomes 3 and 14 (Table S6) explaining - 35.4%
of the quantitative variation of docosanoic acid abun-
dance in sunflower lines.

SNP annotation and candidate gene identification
To annotate genes potentially linked to the genetic vari-
ants significantly associated with FAs quantitative

Fig. 3 FAs concentrations in replication experiments. A M ultidimensional scaling plot (two dimensions, 1 - Spearman correlation coefficient
between FAs abundances was used as distance). One sample is shown by one point; accessions are shown by different colors; different years are
shown by points of different shapes. B Minus log10 p-values for the differences between lines (ANOVA) are shown, FAs are ordered by p-value
increase. Bonferroni adjusted 0.05 significance level is shown by red line; C-G) abundances of oleic acid (18:1) (C), linoleic acid (18:2) (D),) palmitic
acid (16:0) (E), eicosenoic acid (20:1) (F), and linolenic acid (18:3) (G) are shown across lines and years. Each point represents 1 sample, point
shapes, and colors as in (A), lines show per-year averages
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variation, we determined the boundaries of the corre-
sponding LD blocks (Figure S11, Table 1). We then re-
trieved the annotations of all genes located within these
LD blocks and checked their intersection with the genes
annotated to be involved in sunflower oil metabolism [31]
(Table S7). Of the 44,144 genes annotated in sunflower –
429 genes have been reported to be involved in oil metab-
olism [31]. - 124 of these genes are located close to signifi-
cant SNPs and four of them coincide with the genes

reported in Badouin’s list [31], which is significantly more
than expected by chance (Fisher exact test, p = 0.03, odds
ratio = 3.4). According to the sunflower genome annota-
tion, these genes encode putative beta-hydroxyacyl-(acyl-
carrier-protein) dehydratase FabZ, HotDog domain pro-
tein, probable phosphatidic acid phosphatase (PAP2) fam-
ily protein, and putative MYB-CC type transcription
factor, LHEQLE-containing domain and are located on
Chr3 and Chr14 (Fig. 6C, D).

Fig. 4 Lipid annotation. A Mz/rt. plot. One point represents one peak; different lipid categories are shown in different colors. Only peaks with
sample intensities at least two times higher than blank intensities are shown. B Relative intensities of all lipid categories. The intensity of a given
category was calculated as the sum of intensities of all lipids in the category. GL- glycerolipids, GP- glycophospholipids, FA -fatty acids, ST- sterols,
PR- prenols, PK- polyketides and SP-saccharolipids

Fig. 5 Schematic representation of fatty acid properties (fatty acid chain length and degree of saturation) for detected lipids. A Cumulative chain
length and double bonds number of the three fatty acid residues composing the detected TAG molecules. B Chain length and double bonds
number of fatty acid (FAs) released after lipid hydrolysis. Each circle corresponds to a FA or a TAG. The circles’ size corresponds to the mean
relative amount of this molecule in a sample (log-transformed MS peak intensity)
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Discussion
Our results broaden the list of candidate genes and gen-
etic variants associated with fatty acid composition in
sunflower. Our analysis, based on UPLC-MS mass-
spectrometry included the quantitative measurements of
fatty acids present in sunflower oil in minor amounts,
which have not been previously assessed. Our results in-
dicate that there are genetic loci with - substantial effect
on - some of these minor fatty acids, such as docosanoic
acid (22:0). Observed variation in docosanoic acid con-
centration between wild-type sunflower accessions paves
way into breeding sunflower lines with elevated levels of
minor fatty acids in the future [40].
The reason for the lack of significant signals for 12 of

23 analyzed fatty acids as well as relatively weak genetic
signals for many of the eleven fatty acids with identified
associations could -be due to the chosen sunflower lines.
The 543 lines used in the GWAS analysis as well as all
the 601 lines used in our study were not preselected to
have contrasting phenotypes for fatty acid content, with
the exception for oleic and linoleic acids, because until
now, only these fatty acids together with stearic and pal-
mitic acids were considered in breeding programs [41].
Another reason for the lack of associations can lie just

in the absence of variation within the Helianthus genus
for certain FA phenotypes [40]. Nonetheless, our ap-
proach involving a large number of diverse cultivated
lines yielded enough variability for nine other sunflower
fatty acids to produce significant genetic associations.
Further work involving lines specifically selected to vary
in - fatty acid content is required to determine the full
scope of genetic associations underlying sunflower oil
composition.
We have identified six large LD blocks containing

SNPs significantly associated with FA content - in
chromosome 3 (Table 1). Furthermore, among the re-
ported candidate genes predicted to affect oil quality,
three genes associated with lipid metabolism localized
within the large 1491 kb LD block of chromosome 3
(Figure S11, Table 1). These genes encode the putative
phospholipase A2 (this protein releases FAs from the
phospholipid), putative CRAL-TRIO lipid-binding
domain-containing protein, and putative ethanolamine-
phosphate cytidylyltransferase. Predicted functions of
these genes, although not yet assessed experimentally in
sunflower, single out this genomic region as one of the
key regulators of sunflower oil FA composition (Fig. 6B,
Table S7). - Among the genes located within the

Fig. 6 GWAS results for FAs in sunflower lines and candidate genes for docosanoic acid improvement. A Cumulative plot representing the
number of significant associations for each of the traits. Traits represented by colors. Chromosome number and the number of SNPs are
presented on the X and Y-axes, respectively. B LD block in Chr3 (Location 44,696,624–46,188,263). C LD block in Chr3 (Location 42,596,595–
43,078,214). D LD block in Chr14 (Location 91,496,885–91,547,710). Candidate genes in blue associated with lipid metabolism, Candidate genes in
green associated with lipid metabolism described by Badouin et.al (2017) [31]
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chromosome 14 region associated with FA 22:0 vari-
ation, two were annotated as membrane-bound proteins:
putative membrane-bound transcription factor site-2
protease, and putative membrane-bound O-acyl transfer-
ase (MBOAT). This finding agrees with the fact that
very-long-chain fatty acids in sunflower are synthesized
by membrane-bound enzymes [42].
Among the genes important for fatty acid metabolism

according to Badouin et al. [31] and located within the
LD blocks linked to FA variation, one of the most inter-
esting is the gene encoding a putative FabZ dehydratase,
the protein responsible for FA elongation (Fig. 6C).
Since the genomic resolution of our study is limited to
LD blocks, which typically include multiple genes, fur-
ther work is needed to map associations to specific genes
and causative genetic variants.

Genetic variants (SNPs) linked to the oleic-linoleic
acids ratio also map to a chromosome 3 region (302 kb
region; Figures S10I, S11). This LD block overlaps with
the one carrying SNPs significantly associated with lino-
leic acid content (Figures S10H, S11). This finding sup-
ports the notion that genomic regions underlying
linoleic acid content should also be involved in oleic-
linoleic acids ratio determination. Unfortunately, there
were no annotated genes in this region that were known
to be directly related to the biosynthesis or modification
of fatty acids-. Previous studies demonstrated that genes
encoding desaturases, the major enzymes responsible for
the oleic-linoleic acids ratio, are located on chromo-
somes 1, 14 [34]. Nonetheless, loci potentially associated
with oleic and linoleic acid contents were previously
identified on chromosome 3 by means of QTL mapping

Table 1 LD blocks with significant associations

Phenotype Chromosome LD block Location Length (kb)

Start position End position

Oleic Acid (18:1) 6 64,066,219 64,889,534 823

9 168,736,699 169,306,761 570

13 116,940,760 117,370,881 430

15 38,043,597 38,078,709 35

Linoleic Acid (18:2) 3 66,733,584 68,666,170 932

5 37,199,838 37,569,381 396

11 5,004,818 50,619,247 414

11 95,051,157 92,468,132 416

Linolenic acid (18:3) 11 43,846,946 44,328,722 481

Oleic/Linoleic ratio 3 66,733,584 68,666,170 932

12 121,534,492 121,906,701 372

Nonadecanoic acid (19:0) 2 179,620,148 179,872,251 252

14 53,394,600 53,480,813 86

14 59,829,070 60,503,626 664

Docosanoic acid (22:0) 3 32,332,262 32,562,669 230

3 42,596,595 43,078,214 481

3 44,696,624 46,188,263 1491

3 48,304,030 49,705,352 1401

3 53,949,047 54,230,339 281

3 57,635,146 57,714,809 79

14 91,496,885 91,547,710 50

14 96,632,645 97,927,934 614

16 176,846,705 176,869,659 22

Tetracosanoic acid (24:0) 2 56,777,868 56,880,436 102

2 73,398,255 74,229,960 831

3 102,040,303 102,070,280 29

Nervonic acid (24:1) 3 44,696,624 46,188,263 1491

3 57,635,146 57,714,809 79
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[33, 34], as well as by computational predictions [31].
These loci did not overlap with the locus obtained in the
current study. There could be a number of reasons why
the previously reported regions potentially related to
oleic-linoleic acids ratio were not identified in the
present study. First, the SNP coverage for these regions
might not have been dense enough in our data. Second,
previously identified associations might play lesser role
in determining linoleic and oleic-linoleic acid ratio under
Russia’s environmental conditions. Third, the lack of the
overlap could be related to the specific genetic features
of the studied cohort that was restricted to the lines
from the Russian collections.
In addition to the genetic variants linked to oleic-

linoleic acids ratio, we have identified 9 and 22 SNPs sig-
nificantly associated with individual oleic and linoleic
acid content, respectively. These SNPs localized on chro-
mosomes 9, 13, 15 for oleic acid and 3, 11, 12, 14, 15,
and 17 for linoleic acid. Previously, a study reported
QTLs identified using ORS markers for oleic acid con-
tent on chromosomes 8 and 9, and linoleic acid content
on chromosomes 8 and 14 [43]. In addition, previous
studies reported a QTL for oil and phytosterol content
on chromosome 14 [44]. We have also identified signifi-
cant associations and putative candidate genes on these
chromosomes for linoleic acid and on chromosome 9 for
oleic acid. However, our chromosome 9 LD block did
not overlap with the QTL associated with oleate re-
ported by Badouin et al. [31].
Interestingly, we have additionally identified a putative

FAO1 gene on chromosome 9 as a candidate for oleic
acid abundance. This is a long-chain fatty alcohol oxi-
dase gene involved in the omega-oxidation pathway of
lipid degradation [45]. For minor FAs, we identified a
large LD block on chromosome 14 containing the asso-
ciations with docosanoic and noncosanoic acids, in line
with the computational predictions of Badoun et al. [31].
All the genes which were previously described in associ-
ation with sunflower lipid metabolism and SNPs in these
genes could be good candidates for further functional
studies.

Conclusion
This is the first large-scale study on Russian sunflower
germplasm, which will make a significant contribution
to sunflower development as the oilseed crop worldwide.
Comparison of the Russian sunflower lines with the data
on the cultivated and wild sunflower published by Hüb-
ner et al. 2019 [39] showed that Russian sunflower
germplasm contains unique variation which is not pre-
sented in the international collections.
As a result of climate change, sunflower can become

the leading plant in oil production because of its ability
to grow under different environmental conditions [46].

In this view, sunflower varieties with oil properties cus-
tomized for specific applications may become in-
demand in the future. Our study makes a step in this
direction by identifying genetic associations for both
major and minor FAs present in sunflower oil. Genetic
markers for minor FAs, such as docosanoic and nonco-
sanoic acids, have not been previously studied. We hope
that future sunflower breeding programs will benefit
from understanding the genetics governing the ratios of
these oil components important for industrial
applications.

Methods
Samples
Sunflower samples were provided by N.I. Vavilov Institute
of Plant Genetic Resources (VIR, St. Petersburg, Russia)
(https://www.elibrary.ru/item.asp?id=32542976; http://
www.vir.nw.ru/en/), V.S. Pustovoit All-Russia Research In-
stitute of Oilseed Crops (VNIIMK)(https://vniimk.ru/
science/geneticheskaya-kollektsiya-podsolnechnika/), and
LLC Agroplasma Seed and Breeding Company (Krasno-
dar, Russia) (https://agroplazma.com/contacts). Samples
are accessible upon request. (https://agroplazma.com/
contacts).
Two hundred ninety-two (255 were sequenced) inbred

lines from N.I. Vavilov Institute of Plant Genetic Re-
sources (VIR, St. Petersburg, Russia) are mostly conven-
tional lines in terms of fatty acid composition (18:2
range from 36 to 79%), 3 middle – oleic (18:1 > 50%), 1
high-oleic line (18:1 > 80%).
One hundred ninety-nine inbred lines were from V.S.

Pustovoit All-Russian Research Institute of Oilseed
Crops (VNIIMK) (Krasnodar, Russia). Fatty acid com-
position is known for 99 lines: 2 lines high-oleic (18:1 >
80%), 7 middle – oleic (18:1 > 50%), other lines with 18:2
range between 36 and 70%.
One hundred forty-seven oil-producing sunflower lines

were provided by Agroplasma Seed and Breeding Com-
pany (Krasnodar, Russia). Fatty acid composition is
unknown.
All plants were grown and seeds collected in the

Krasnodar region in Russia. For UPLC-MS analysis
seeds themselves were used. For DNA extraction,
seeds were germinated in the lab. All the reagents can
be found in Methods S1.
All lines are diploid, 2n = 34. All seeds were stored for

1–3 years. All lines were obtained by at least 8 rounds of
self-pollination.
Plants were grown in field in the middle part of the

Krasnodar Region.
Soils of the leached black earth soil type. Sunflower

was sowed following the preceding crop, fall wheat, at
the seeding rate of 40,000 plants per hectare.
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Sowing was carried out according to the following sow-
ing system: 70 × 35 cm, a single plant per planting pit.
Farming techniques, as commonly used for sunflower.
Each line was grown on the plot with an area of 9.1 m2.

Details on the dataset can be found in Additional file 23:
Appendix S1. More information can be found in VIR
and VNIIMK databases, Agroplasma is a private com-
pany, but information can be achieved by a special
request. Also, information on VIR genealogy was previ-
ously published [38, 47].
Plants for environmental studies experiment (6 lines)

were selected from VNIIMK dataset. They were grown
on the regular basis by collection holders at one loca-
tion: The Central Krasnodar Region, GPS coordinates
45°04′50′’ N and 39°04′57.′

DNA extraction
DNA was extracted from chlorophyll-free sprouts after
1 week of germination without light. 100 mg of tissue for
each sample was grounded to powder using FastPrep-
96™ Automated Homogenizer (MP Biomedicals). Total
DNA was extracted according to the CTAB protocol
using the NucleoSpin® Plant II plant DNA extraction kit
(Macherey-Nagel, Germany) and stored at − 20 °C until
needed. The purified DNA sample quality and concen-
tration were determined by gel electrophoresis and
Qubit 3.0 Fluorometer (Thermo Fisher Scientific, USA).

GBS library preparation
Illumina libraries were constructed using two restriction
endonucleases – HindIII (rarely cutting enzyme, A/
AGCTT) and NlaIII (frequently cutting, CATG/) accord-
ing to the protocol described by [48] with minor modifica-
tions. Details of the method are provided in Methods S2.

GBS sequencing and primary data analysis
Each 96-multiplexed library was sequenced across three
lanes in Illumina HiSeq 4000 (San Diego, CA, USA) at the
Skoltech Genomics Core Facility as either 150 bp or 75 bp
paired-end reads. The sequencing dataset can be found in
NCBI repository: https://www.ncbi.nlm.nih.gov/
bioproject/620114 [49]. Illumina reads were mapped onto
the Helianthus annuus reference genome HanXRQr1.0
[31] using BWA MEM 0.7.9a-r786 [50] with consideration
for uniquely mapped reads whose PE ends mapped within
1 K of each other. Variants were called using the GATK
pipeline, which considers indel realignment and base qual-
ity score recalibration and calls variants across all samples
simultaneously through the HaplotypeCaller implemented
in GATK. Variants were filtered using hard filtering pa-
rameters: MQ> 36, QD > 24, and MQRankSum< 2, ensur-
ing that reads were mapped to a unique place in the
reference with high quality (MQ), that the reads carrying
both alleles were comparable in terms of mapping quality

(MQRankSum), and that the actual variants were called
with high quality (QD), filters that were not applied by de-
fault by GATK’s HaplotypeCaller, resulting in the 2.3M
SNP calls. To retain SNPs for population and GWAS ana-
lyses for oleic and linoleic acids missing calls rate < 0.3,
DP > 4, MAF > 0.01 were applied, resulting in 15,068
SNPs, for GWAS for other fatty acids more strict MAF >
0.03 was used resulting in 12,528 SNPs.
VCF file with SNP variants is provided in the support-

ing information (missing calls rate < 0.1, DP > 4, MAF >
0.01).
Validation of SNP calls was performed using the

MALDI-TOF MS technology (Agena Bioscience’s
MALDI-TOF-based scalable MassARRAY). 75 lines were
selected and re-genotyped for 11 SNPs, which were sig-
nificantly associated with at least one studied trait and
with MAF higher than 0.05 in the 75 selected lines
(Table S8). For six SNPs, genotypes identified by the two
technologies were completely identical across all the
lines studied. For the remaining five lines, the proportion
of lines with identical genotypes varied from 0.91 to
0.95. For eight SNPs, the agreement between two
methods was statistically significant (Permutation test,
BH-corrected p < 0.05).

Population structure
Genetic diversity of analyzed lines was estimated using
PCA with the aid of PLINK (http://pngu.mgh.harvard.
edu/purcell/plink/) [51] based on 15,068 SNPs with
minor allele frequency (MAF) > 0.01 called on all 17
chromosomes. Population structure was analyzed using
ADMIXTURE v1.3.0 [52] with the number of clusters
varying from 1 to 10. To compare the dataset from
Hübner et al. 2019 [39] with the lines analyzed in the
current study, common SNPs between 2 datasets were
identified by merging 2 datasets. The merging proce-
dures were performed using the bcftools’s functions isec
and merge. The merged SNPs were filtered using the
MAF filter of 0.03.

Linkage disequilibrium
LD was estimated across the sunflower genome using
VCFtools [53] to calculate frequency correlation (r2) be-
tween 25,431 biallelic SNPs with MAF > 0.03 whose ge-
notypes were supported by at least 4 reads called in at
least 60% of individuals.

Lipid extraction
For lipid extraction, 10 mg (for each line) of sunflower
seeds (1 sample-1 seed) with 400 uL of methanol/methyl
tert-butyl ether mixture (1:3 v:v) were homogenized in
Precellys evolution (Bertin corp. USA) (6800 rpm, 3* 20
s, pause 30 s) coupled with Cryolis filled with dry ice
with 6 2.8 mm zirconium oxide beads (Bertin corp.
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USA) at the temperature not higher than 10 degrees.
Then, extraction was performed using methanol/methyl
tert-butyl ether mixture, according to [54] with minor
modifications (Methods S3).
For FAs analysis, the extracts obtained in the previous

steps were hydrolyzed using the protocol adopted from
[55] (Methods S3).

UPLC-MS profiling
Samples were processed using mass-spectrometry
coupled with reversed-phase ultra-performance liquid
chromatography (UPLC-MS) (ACQUITY UPLC System;
Waters, USA) in positive and negative ionization modes
in Q-TOF Maxis Impact II, Bruker Daltonik, Germany.
Settings: Ion Polarity: positive/negative, Scan mode: MS,
Mass range: 50 -1200 m/z, Spectra rate: 2 Hz.
UPLC separation was performed on the C8 Acquity

Beh column (2.1 mm Х 100 mm, 1.7-μm particle size;
Waters) and the Acquity BEH C8 1.7 μm Vanguard pre-
column (Waters) at 60 °C.
The detailed information can be found in Methods S3.
Previously we have validated the extraction and profil-

ing technique for FAs [56] and TAGs [57] in sunflower.

Lipidomic data analysis and annotation
For data processing, optimal parameters were generated
using the Bioconductor IPO package. The subsequent
peak peaking, chromatogram alignment, chemical noise
subtraction and intensity thresholding were performed
using the XCMS 3.1 package (https://bioconductor.
riken.jp/packages/3.1/bioc/html/xcms.html) [58]. The
output was a list of peaks, with retention time, m/z, and
intensity for each sample. To exclude possible contami-
nants, mean intensities of all sunflower peaks were com-
pared to mean intensities in blank samples. (Figure S12).
Only lipids with sample intensity at least two times
higher than blank intensities were used in the analysis.
To annotate FAs and TAGs, formulas of the possible

lipids (irrespective to isomers) in these classes were gen-
erated. For FAs, chain lengths from С10:0 to С28:0 with
not more than 6 double bonds were considered. For
TAGs, the total chain length varied between 30 and 85
carbon atoms, and the number of double bonds varied
from 0 to 12. Then, the masses of generated lipids were
compared to the m/z of detected peaks. For FAs just one
adduct (−H+) was considered; for TAGs four adducts
(H+, Na+, K+, and NH4

+) were considered. All peaks with
ppm (ppm = abs(m1 −m2)/max(m1, m2) × 106), where
m1 and m2 are the mass of the lipid and m/z of the
peak, respectively) below 10 were considered as the pos-
sible lipids of the given class. Then, for each of the two
lipid classes and for each adduct, peaks were manually
filtered based on the assumption that correct FAs and
TAGs should form a net-like pattern on the RT-m/z

scatter plot. To annotate non-TAG lipids measured in
the positive mode, lipid Befdatabase (The LIPID MAPS®
Lipidomics Gateway, https://www.lipidmaps.org/) was
used. First, all isomers were collapsed, then m/z of all
non-TAG peaks were compared with the masses of all
lipids from the lipidmap. Same adducts as were used for
TAGs were considered. All lipid-peak pairs with ppm <
10 were considered to be a valid annotation. All peaks
annotated with lipids of just one category were assigned
to this category; peaks annotated with lipids of more
than one category were considered as ambiguously
annotated.
Reproducibility experiments with 3 years of replicates

and the main dataset were measured and processed
separately.
In the reproducibility experiment, only TAGs with the

NH4
+ adduct and FAs were considered. For both dilu-

tions in the case of TAGs and for FAs, the intensity of
individual lipids was divided by the total intensity of all
TAGs/FAs in the given sample and multiplied by 100.
To assess the role of genetic and environmental factors
ANOVA with the following model was used:

Lipid concentration � lineþ yearþ line : year:

MDS analysis in two dimensions was performed based
on one minus Spearman correlation coefficient distance.

Association analysis and annotation
Since sunflower genotypes were obtained from three dif-
ferent seed banks, it was important to account for their
genetic relatedness and hence the mixed linear model
was implemented (MLM: Y = SNP + PCs + Kinship + e,
where Y – phenotype, SNP and PCs – fixed effects, Kin-
ship – random effect, e - error). In addition, internal
standards intensity and LS-MS batch numbers were used
as co-factors to account for the batch effect and sample
weight in the model.
Before GWAS, FAs distribution between the samples

were estimated (Figure S13). For GWAS, all the samples
with 10% and more missing data (for phenotypes) were
excluded from the analysis. GWAS was performed using
TASSEL 5 [59]. SNPs for the analysis were filtered out
using the following criteria: missing calls rate < 0.3, DP <
4, and minor allele frequency (MAF) < 0.01 for such
traits as oleic and linoleic acids and MAF < 0.03 for the
other traits. Filtering was performed using VCFtools. A
mixed linear model was used where the SNP effect and
population structure estimated by PCA were treated as
fixed effects and kinship was included in the model as a
random effect. The genetic relatedness analysis was per-
formed with the relative kinship coefficients (K-matrix)
being calculated using the TASSEL software (Centered
IBSmethod). The collection and the batch number were
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also used as factors and sample weight and internal stan-
dards intensity as covariates. To estimate the mixed lin-
ear model performance, quantile-quantile plots (q-q
plots) were used. Observed p-values were plotted against
the expected probability of their distribution. To repre-
sent GWAS results, Manhattan plots were used where
p-values were plotted for all sunflower linkage groups
one by one. GWAS results were visualized with the help
of the qqman R package (version 0.1.4).
To determine the significance of observed hits, 0.05/

5000 p-value threshold was used. This is a Bonferroni
correction based on the average number of LD blocks.
The total number of SNPs used in GWAS was divided
by 5000 - the number of LD blocks estimated from LD
analysis. LD block analysis was performed using the
Haploview software [60]. Gene annotation within each
LD block was performed using the sunflower genome
browser (https://sunflowergenome.org).
To estimate the variance in docosanoic acid concen-

tration explained by identified 53 SNPs, the linear model
with same covariates as was used in GWAS analysis and
with all 53 SNPs was used. The results show that these
SNPs could explain 35.4% of the variance.
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Additional file 1: FigS1. ((A) PCA plots reflecting the relationships
between sunflower technical samples based on 15,068 SNPs segregating
in the Russian collection. Each dot corresponds to a sunflower technical
sample used in the study. Dots are colored by sequencing batch (A) or
collection samples were obtained from (B) (C) Nei’s genetic distance
matrix between each 2 samples.

Additional file 2: FigureS2. Linkage disequilibrium (LD) decay plot. (A)
Genome-wide LD. Gray dots correspond to a SNP pair, y-axis show r2 be-
tween two SNPs calculated using whole dataset. SNP pairs with distance
less than 5 Mb are shown. (B) LD per each chromosome. Lines corres-
pond to loess curves; 95% confidence intervals are shown by shades.

Additional file 3: FigureS3. Joint principal component analysis of
sunflower accessions genotyped in this study and in Hübner (2019)
based on 2345 shared SNPs. The first and the second (A) or the first and
the third (B) PCs are shown. Each dot corresponds to a plant accession.
Colors indicate the origin (wild/line/landrace). Shapes indicate species.

Additional file 4 (A) Multidimensional scaling plot (two dimensions, 1 -
Spearman correlation coefficient between TAGs abundances measured
using LC-MS with dilution 1:3 was used as distance). One sample is
shown by one point; accessions are shown by different colors; different
years are shown by points of different shapes. (B) Minus log10 p-values
for the differences between lines (ANOVA) are shown, TAGs are ordered

by p-value increase from top left to bottom right. Bonferroni adjusted
0.05 significance level is shown by red line; (C-G) abundances of five se-
lected TAGs are shown across lines and years. Each point represents 1
sample, point shapes, and colors as in (A), lines show per-year averages.
This figure complements main Fig. 3.

Additional file 5: FigureS5. (A) Multidimensional scaling plot (two
dimensions, 1 - Spearman correlation coefficient between TAGs
abundances measured using LC-MS with dilution 1:25 was used as dis-
tance). One sample is shown by one point; accessions are shown by dif-
ferent colors; different years are shown by points of different shapes. (B)
Minus log10 p-values for the differences between lines (ANOVA) are
shown, TAGs are ordered by p-value increase from top left to bottom
right. Bonferroni adjusted 0.05 significance level is shown by red line; (C-
G) abundances of five selected TAGs are shown across lines and years.
Each point represents 1 sample, point shapes, and colors as in (A), lines
show per-year averages. This figure complements main Fig. 3.

Additional file 6: FigureS6. Replication experiment on 6 accessions:
relative abundances of all the fatty acids with significant (FDR < 0.05)
effect of genotype, FAs are ordered by p-value increase. Each point repre-
sents 1 sample, point shapes, and colors denote years and accessions, re-
spectively, lines show per-year averages.

Additional file 7: FigureS7. Replication experiment on 6 genotypes:
relative abundances of all TAGs detected by LC-MS with dilution 1:3 with
significant (FDR < 0.05) effect of genotype, TAGs are ordered by p-value
increase. Each point represents 1 sample, point shapes, and colors denote
years and accessions, respectively, lines show per-year averages.

Additional file 8: FigureS8. Replication experiment on 6 genotypes:
relative abundances of all TAGs detected by LC-MS with dilution 1:25
with significant (FDR < 0.05) effect of genotype, TAGs are ordered by p-
value increase. Each point represents 1 sample, point shapes, and colors
denote years and accessions, respectively, lines show per-year averages.

Additional file 9: FigureS9. Replication experiment on 6 accessions.
(Left) Distributions of FAs (top) or TAGs (middle and bottom) by
percentages of variance explained by genotype (G), environment (year,
E), interaction between genotype and environment (G:E) or percentage
of residual variance. Distribution of the same percentages divided by
number of degrees of freedom of corresponding factor are shown on
the right.

Additional file 10: FigureS10. GWAS Manhattan plots for (a) Stearic
acid; (b) Nonadecanoic acid; (c) Eicosenoic acid; (d) Docosanoic acid; (e)
Tetracosanoic acid; (f) Nervonic acid; (g) Oleic acid; (h) Linoleic acid; (i)
Ratio between oleic and linoleic acids. FDR and Bonferroni thresholds are
shown by blue and red, respectively.

Additional file 11: FigureS11. LD blocks containing significant SNPs.
Each panel represents one significant association, traits and chromosome
names where significant loci is located are shown in panel titles. Each
panel schematically shows associated loci with all detected SNPs. LD-
blocks detected by Haploview software are shown by heatmaps, r2 (%)
for each SNP pair is shown by color and numbers.

Additional file 12: FigureS12. Data clean up using blank samples. Top
panels show dependence of average log2 seed sample intensity of FAs
and TAGs (two dilutions) on average log2 intensity of same lipids in
blank samples (see Methods). Straight and dashed lines correspond to
equal intensities in both types of sample and to two-fold higher concen-
tration in seed samples compared to blanks, respectively. Bottom panels
show the same lipids as top panels in coordinates of total FA (TAG) chain
length (x-axis), and number of double bounds (y-axis), point size is pro-
portional to log2 average intensity in seed samples. Only lipids with
log2(sample/blank) > 1 were used in analysis, remaining FAs and TAGs
(shown in red) were filtered out.

Additional file 13: FigureS13. Distributions of natural logarithm of row
LC-MS fatty acids intensities across accessions.

Additional file 14: TableS1. The list of samples used in the study.

Additional file 15: TableS2. ANOVA p-values for FA content in
replication experiment.

Chernova et al. BMC Genomics          (2021) 22:505 Page 12 of 15

https://sunflowergenome.org/
https://doi.org/10.1186/s12864-021-07768-y
https://doi.org/10.1186/s12864-021-07768-y


Additional file 16: TableS3. Nei’s genetic distances between samples
from replication experiment.

Additional file 17: TableS4. Annotation of all LC-MS peaks detected in
positive mode. For all peaks lipidmap category is given, “unk” denotes
that no relevant annotation was found, “ambig” means that peak has am-
biguous annotation on category level. For TAGs annotated more precisely
using net-like patterns exact formula, adduct and ppm are provided.

Additional file 18: TableS5. Summary statistics on FAs abundances.

Additional file 19: TableS6. List of found significant associations.

Additional file 20: TableS7. Functional annotation of genes from LD
blocks harboring SNPs with significant association with at least one lipid
trait.

Additional file 21: TableS8. SNP validation using MALDI-TOF. Table
provides genotypes determined using MALDI-TOF for selected SNPs in
sunset of lines.

Additional file 22: Supporting experimental procedures. Method S1.
Reagents, Method S2. GBS library preparation, Method S3. Lipid
extraction and UPLC-MS.

Additional file 23: AppendixS1. Description of the lines used in the
study.

Additional file 24. maxmiss.7.maf0.01.vcf VCF file with SNP calls.
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