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Are hemoglobin-derived peptides involved in the
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Follow-up of patients affected by COVID-19 has unveiled remarkable findings. Among the several
sequelae caused by SARS-CoV-2 viral infection, it is particularly noteworthy that patients are prone to
developing depression, anxiety, cognitive disorders, and dementia as part of the post-COVID-19
syndrome. The multisystem aspects of this disease suggest that multiple mechanisms may converge
towards post-infection clinical manifestations. The literature provides mechanistic hypotheses related
to changes in classical neurotransmission evoked by SARS-CoV-2 infection; nonetheless, the
interaction of peripherally originated classical and non-canonic peptidergic systems may play a
putative role in this neuropathology. A wealth of robust findings shows that hemoglobin-derived
peptides are able to control cognition, memory, anxiety, and depression through different mechanisms.
Early erythrocytic death is found during COVID-19, which would cause excess production of
hemoglobin-derived peptides. Following from this premise, the present review sheds light on a
possible involvement of hemoglobin-derived molecules in the COVID-19 pathophysiology by fostering
neuroscientific evidence that supports the contribution of this non-canonic peptidergic pathway. This
rationale may broaden knowledge beyond the currently available data, motivating further studies in the
field and paving ways for novel laboratory tests and clinical approaches.
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Introduction

COVID-19 quickly spread from China to the rest of the
world, reaching pandemic status, causing a shift in
routines to prevent contamination and leaving those
who survive infection by SARS-CoV-2 with a wide range
of sequelae. The incidence and prevalence of affective
disorders have increased strikingly as the pandemic
progresses, which might first be attributed to social
isolation.1 Intriguingly, however, humans infected by
SARS-CoV-2 are showing remarkable clinical findings:
anxiety, depression, cognitive disorders, and dementia
have been found in post-acute COVID-19 patients.2 The
post-acute COVID-19 syndrome consists of symptoms
that persist beyond 4 weeks from their onset, with long-
term complications.3 When compared to samples from
2017, depression is seven-fold higher in COVID-19

survivors, whereas the pooled prevalence of anxiety
was 47%, which jointly highlights a high impact of
SARS-CoV-2 infection on people’s mental health.2 The
retrospective study by Taquet et al.4 provides data
supporting a close causal correlation between COVID-
19 and neuropsychiatric disorders. The incidence of
clinical manifestations as measured within 90 days post-
infection was about 18%, while dementia was detected in
1.6% of COVID-19 patients older than 65 years.4

Rogers et al.5 compared psychiatric and neuropsychia-
tric manifestations in COVID-19 versus previous corona-
viruses outbreaks: severe acute respiratory syndrome
(SARS), starting in 2002, and Middle East respiratory
syndrome (MERS), starting in 2012. Although some
patients are able to recover without experiencing mental
illness, the impacts of SARS, MERS, and COVID-19
followed similar courses.5 Encephalopathy, stroke,
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confusion, dizziness, insomnia, and cognitive impairments
are the most common neurological findings in SARS-CoV-
2 infected patients.6 The cognitive impairments associated
with human COVID-19 emerged from executive function-
ing, memory encoding, and memory recall tasks.7 Attention
declines rapidly (over minutes) in people who have had
COVID-19 at all severity levels, with greater and faster
vigilance decline in tasks and mild episodic deficits, when
compared to age-matched controls.8 This body of evidence
points towards an undoubted necessity for elucidating the
neurobiological changes that might underpin these neu-
ropsychiatric consequences.9 The multisystemic nature of
COVID-19 supports the hypothesis that multiple mechan-
isms may converge to the aforesaid post-infection clinical
findings.10,11 Therefore, the search for the mechanistic
basis implicated in this neuropathology should move the
spotlight in different directions.

Multiorgan compromise in COVID-19 may suggest that
peripherally originated molecules are part of the multiple
mechanisms producing post-infection clinical manifesta-
tions. Indeed, early erythrocyte death has been observed
in COVID-19,12-14 which would cause excess production
of hemoglobin-derived peptides (HDPs). A wealth of
robust evidence shows that HDPs are able to control
cognition, memory, anxiety- and depression-like beha-
viors through different mechanisms,15 and may be
unbalanced in disease states.15-17 In this sense, the
present review is dedicated to fostering neuroscientific
evidence that supports working hypotheses on the
involvement of HDPs in post-COVID-19 neuropathology.

Mechanisms involved in COVID-19
neuropathology

Early reports at the beginning of the COVID-19 pandemic
described loss of smell in infected humans; this exter-
oceptive disorder already suggested alterations in the
central nervous system.18 As outcomes from neuropsy-
chiatric studies were added to the literature, the possibility
that SARS-CoV-2 would exhibit neurotropism became
accepted fact, supported by signs, symptoms, and diag-
noses.2 Computational analyses suggest interactions of
SARS-CoV-2 proteins with human molecules governing
synaptic vesicle trafficking, endocytosis, axonal transport,
neurotransmission, growth factors, and mitochondrial and
blood-brain barrier elements.19 Since COVID-19 results
from a viral infection, it is also plausible to hypothesize that
neuroinflammation will play an essential role. Current
literature reporting on COVID-19 highlights that inflamma-
tory and immune aspects affect neural tissue, presenting
as encephalitis and Guillain-Barré syndrome, among other
manifestations.20 Other reports showed an association
of SARS-CoV-2 infection with diseases of the cerebral
microvasculature, encephalopathy, agitation, and confu-
sion, which might be related to cytokine-mediated changes
in frontal perfusion and function.21,22

It is now well established that SARS-CoV-2 neuroinva-
sion through the trigeminal and vagus nerves9 and blood-
brain barrier disruption23-25 are the mechanisms of viral

entry into neural tissue, causing direct effects beyond
those caused by peripheral infection.26 Activity of the viral
spike protein (S) seems to be deeply implicated in blood-
brain barrier disruption and leakage.27 Therefore, changes
in brain perfusion, neuronal lifespan, and microglial metab-
olism may be involved. Peripheral molecules overproduced
during COVID-19 penetrate the brain as a result of
increased permeability in astrocytic-neurovascular contact,
likely influenced by nitric oxide, oxidative stress, cytokines
(interleukins), and others.28 This combination may activate
central metabolic pathways capable of boosting the neuro-
transmission mediated by excitatory amino acids and
N-methyl-D-aspartate (NMDA) receptors; such massive
overactivation of pathways routes may lead to undesired
excitotoxicity-mediated neuronal death.29 Nevertheless,
modifications in levels and function of other neurotrans-
mitters would be expected, as manifested by depletions in
dopamine, serotonin and norepinephrine. This downregu-
lated neurotransmission would aid the concomitantly over-
activated excitatory glutamatergic pathways, resulting in
the neuropsychiatric symptoms of COVID-19.23 Postmor-
tem analyses performed in single-nucleus transcriptomes
sampled from the frontal cortex and choroid plexus
revealed that SARS-CoV-2 neuroinvasion modifies the
expression of genes mediating excitatory neurotransmis-
sion, such as VAMP2, SNAP25, and ATP6V0C.30,31

Besides altering the aforementioned classical neuro-
transmitters, other molecules, such as neuropeptides,
enzymes, and receptors, may play further roles in COVID-
19 neurobiology. Despite the current lack of consistent
clinical evidence on the neuroprotective effect exerted
by components of the renin-angiotensin system (RAS),
treatment with angiotensin converting enzyme (ACE) inhi-
bitors, or angiotensin receptor antagonists on COVID-19-
related neural damage,32,33 it has been clearly estab-
lished that ACE2 is the apparatus employed for host-cell
infection by different SARS-CoV-2 variants. Interaction of
the viral S protein with ACE2, a broadly expressed
transmembrane dipeptidyl carboxypeptidase, is one of
the mechanisms orchestrating viral infection in different
tissues.34,35 In this regard, it is plausible that some
hormone peptide cascades at different tissues would be
implicated in the puzzling multisystemic pathophysiology
of COVID-19.

Peptides other than those belonging to the RAS are
capable of acting on many targets that include interac-
tions with angiotensinergic components. For example,
HDPs released as a result of hemoglobin hydrolysis,
which occurs naturally at the end of the erythrocyte life
span, are able to modulate RAS. Some HDPs are capable
of inhibiting ACE activity and of activating angiotensin IV
(Ang IV) receptor (AT4),36-38 a centrally expressed trans-
membrane protein that is characterized as an insulin-
regulated aminopeptidase (IRAP)39 and has been shown
to contribute to cognitive function (memory and learn-
ing).40,41 To date, about two dozen HDPs have been
identified, opening wide avenues for investigation.37 The
neuronal metabolic pathways potentially modulated by
these abundant peptides and by their interaction with the
RAS during COVID-19 warrant future research.
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Hemoglobin-derived peptides as an alternative
pathway underlying neuropsychiatric
manifestations in COVID-19

Erythrocytes, or red blood cells, are the blood compo-
nents in charge of transporting gases throughout the
tissues perfused by the bloodstream. These anucleate
cells contain a complex of proteins with relative affinity for
O2 and for CO2 – bicarbonate, through hemoglobin and
band-3/anion exchanger 1, respectively. The purpose of
this membrane-anchored protein complex is to define
erythrocyte function and the erythrocyte life cycle.42

During COVID-19, the morphophysiology of erythrocy-
tes is dramatically affected, disturbing their biophysical
properties to such an extent that cell deformation persists
during the post-COVID-19 recovery phase, increasing the
odds of impacting the cerebral microcirculation.43 SARS-
CoV-2 infection is able to affect erythrocyte dynamics as
well as hemoglobin13 and band-3 structure and function,44

provoking untimely erythrocyte death through oxidative
and inflammatory mechanisms.13,45-47 The extracellular
hemoglobin resulting from erythrocyte death also plays a
pathophysiological role by enhancing oxidative reactions
that hasten cell death.48

COVID-19-related early erythrocyte death may induce
excess release of peptides – the aforementioned HDPs –
through the action of several catalytic enzymes upon
hemoglobin. These HDPs are divided in two classes,
according to the hemoglobin subunits used as substrate
by proteolytic enzymes: hemorphins, which result from
hydrolysis of beta-globin, and hemopressins, which are
produced by enzymatic proteolysis of the alpha-globin
chain (Table 1). Both hemorphins and hemopressins are
able to act on different targets, including the central
nervous system.13,49 Starting from the premise that HDP
are pieces in the homeostatic puzzle, it is admissible that
decreases in the functional population of erythrocytes and
increases in HDP levels would modify the balance of
tissues in which HDP targets are expressed.

To date, there are no data on HDP involvement in
COVID-19. The few studies assessing the antimicrobial
potential of HDPs are from assays using bacteria51 and
this does not exclude a correlation between HDPs and
infections caused by other SARS-CoVs, influenza, Ebola
virus, and malaria, which are known to cause hemoly-
sis.52-54 Existing research has focused mostly on HDP
formation, usually dedicated to assessing the involvement
of non-viral enzymes (aminopeptidase, cathepsins, dipep-
tidyl-peptidase, ACE, and others)49 and HDP-molecular
interactions regulating physiological effects. Neverthe-
less, the protease enzymes which form HDPs may
coincide with those underlying viral infection and replica-
tion processes, such as 3CLpro.55 This possibility and the
impact of these potential protein interactions on HDP
levels are matters for further studies.

Mounting evidence shows that HDPs exert effects on
opioid receptors,56 endothelial-mediated vasomotion con-
trol,16 calmodulin-dependent cell actions, and additional
modulation of the kinetics of several enzymes,57,58

including some involved in the regulation of neuronal
function. For example, HDPs are capable of inhibiting
enzymes regulating enkephalin degradation59; ACE activ-
ity, thus reducing angiotensin II production and bradykinin
degradation49; and catalytic actions of AT4/IRAP upon
oxytocin.60 The expression of these molecular targets in
astrocytes and neurons supports the idea of a positive
correlation between changes in HDP levels and the
neuropsychiatric clinical manifestations of COVID-19. The
plausibility of this hypothesis is further strengthened by
evidence that HDPs regulate the release of neurotrans-
mitters such as serotonin, norepinephrine, dopamine, and
glutamate,38,61 whose unbalance underlies COVID-19
clinical manifestations.4,6,20,23,24,28

HDPs modulate the dynamics of neurohormones, such
as adrenocorticotropin and oxytocin, which are capable of
defining behaviors.37,49 Recently, we have reported the
effects of two HDPs, LVV-hemorphin 7 (LVV-H7) and
LVV-hemorphin 6 (LVV-H6), on the organization of

Table 1 Bioactive peptides derived from a- and b-globin chains

Hemoglobin chain Nomenclature Sequence

Hba Neokiotorphin Thr-Ser-Lys-Tyr-Arg
Hba Kyotorphin Tyr-Arg
Hba Hemopressin Pro-Val-Asn-Phe-Leu-Ser-His
Hba RVD-Hpa Val-Asp-Pro-Val-Asn-Phe-Lys-Phe-Leu-Ser-His
Hba VD-Hpa Arg-Val-Asp-Pro-Val-Asn-Phe-Lys-Phe-Leu-Ser-His
Hbb Hemorphin-4 Tyr-Pro-Trp-Thr
Hbb Hemorphin-5 Tyr-Pro-Trp-Thr-Gln
Hbb Hemorphin-6 Tyr-Pro-Trp-Thr-Gln-Arg
Hbb Hemorphin-7 Tyr-Pro-Trp-Thr-Gln-Arg-Phe
Hbb VV-hemorphin-4 Val-Val-Tyr-Pro-Trp-Thr
Hbb VV-hemorphin-5 Val-Val-Tyr-Pro-Trp-Thr-Gln
Hbb VV-hemorphin-6 Val-Val-Tyr-Pro-Trp-Thr-Gln-Arg
Hbb VV-hemorphin-7 Val-Val-Tyr-Pro-Trp-Thr-Gln-Arg-Phe
Hbb LVV-hemorphin-4 Leu-Val-Val-Tyr-Pro-Trp-Thr
Hbb LVV-hemorphin-5 Leu-Val-Val-Tyr-Pro-Trp-Thr-Gln
Hbb LVV-hemorphin-6 Leu-Val-Val-Tyr-Pro-Trp-Thr-Gln-Arg
Hbb LVV-hemorphin-7 Leu-Val-Val-Tyr-Pro-Trp-Thr-Gln-Arg-Phe
Hbb VD-Hpb Val-Asp-Pro-Glu-Asn-Phe-Arg-Leu-Leu-Cys-Asn-Met

Adapted from da Cruz.50
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behavioral responses to aversion, locomotion/exploration,
and depressive-like behaviors in rodent experimental
models. Through different mechanisms, LVV-H6 and
LVV-H7 reduced anxiety-like responses in the elevated
plus maze paradigm and depression-like behavior as
assessed by immobility time during forced swim tests.62,63

The effects of LVV-H7, in particular, were dependent on
oxytocin receptors, since agonistic actions upon the AT4
receptor are postulated as a path to reducing oxytocin
degradation exerted by this IRAP catalytic domain in
physiological conditions.15,39,64 Consequently, the antag-
onism of oxytocin receptors blocked the central effects of
peripherally injected LVV-H7 in naive rats. Our previous
study also reported mRNA expression of beta-globin
fragments (encoding HDP) in brain areas such as the
frontal cortex, amygdala, hippocampus, and hypothala-
mus, known for organizing different behaviors.63 In light of
our recent report, the assessment of modifications in
central and peripheral HDP levels is a field that should be
better explored in patients displaying neurological and
psychiatric manifestations of COVID-19.

While AT4 activation either by HDP or by Ang IV helps
maintain homeostasis and is implicated in improvement of
performance in cognitive tasks,40,41,64-66 previous studies
show that HDP levels are modified in the neocortex of
patients with Alzheimer’s disease.67 It raises the need for
considering changes in concentration, composition, and
duration of exposure to HDP as variables to be tested in
further experimental designs assessing COVID-19 con-
sequences. This increase in brain HDP levels is robust
evidence of their involvement in a dementing disease,
allowing us to propose that Alzheimer’s disease may
share pathophysiological mechanisms with the cognitive
impairments and dementia observed following COVID-19.
A recent report argues that AT4 is a target for the
pleiotropic actions of molecules mediating brain inflam-
mation in rodent models of Alzheimer’s disease, besides
showing that oxidative stress is another pathogenic
element.65

As stated above, AT4/IRAP has a catalytic domain that
is responsible for degrading molecules such as oxytocin,
which participate in the control of emotions, memory, and
learning, as well as an allosteric domain with high binding
affinity for the agonists Ang IV or LVV-H7.60,68 These
agonistic effects result in the activation of intracellular
pathways triggered from the allosteric domain, the main
molecular mechanisms through which AT4/IRAP contri-
butes to homeostasis.66,69,70 There is evidence that AT4
activation produces calcium influx, long-term potentials
mediated by glutamate receptors,71 and central dopami-
nergic and cholinergic release in neurons.40 AT4 is
functionally expressed in oligodendrocytes, astrocytes,
and neurons; therefore, the activity of this receptor would
be triggered by HDPs already at the terminals composing
the neurovascular junction and, subsequently, within
descending central pathways which control beha-
vior.39,41,64,70,72-74 These possible functions suggest that
AT4 overactivation by HDPs could be a pathway driving
the neurochemical changes seen in COVID-19.

The extent of multiorgan manifestations in the post-
acute COVID-19 syndrome shows a coexistence of

neuropsychiatric and hematologic sequelae,3 which
raises the possibility that hemoglobin and HDP are
playing roles in both acute and long-lasting clinical signs.
It is worth hypothesizing that the need for dialysis in
chronic renal disease and in COVID-19 patients with
compromised renal function may change hematopoiesis
and erythropoietin (EPO) balance and increase levels of
circulating HDP, since this therapeutic approach is likely
to produce hemolysis and low hemoglobin-related ane-
mia.75 A stimulus for increasing the secretion of endo-
genous EPO or the use of exogenous EPO as a therapy
may improve COVID-19-related symptoms, since this
cytokine hormone is responsible for stimulating hemato-
poiesis.76 These hypothetical primary benefits would
result from reductions in tissue hypoxia, boosting the
immune system to fight SARS-CoV, 2 and perhaps the
neuroprotective effects of EPO.77 Nevertheless, the
hypoxia likely found in severe COVID-19 seems para-
doxically related to low EPO levels, thus supporting the
therapeutic choice of using EPO while considering
possible long-term side effects.78 Viruez-Soto et al.79

assessed whether the high levels of EPO which occur
naturally in populations living at high altitude would
interfere with clinical status in COVID-19. Higher mortality
rates were found in permanent residents of high altitudes
with low EPO and hemoglobin levels.79 Although the
literature shows promising data on the neuroprotective
effects of EPO and EPO-derived peptides,80,81 further
research is needed to unravel the potential interrelation
among hypoxia, EPO, and HDP in COVID-19 patients
displaying neuropsychiatric symptoms. Whether hypoxia
and the activity of proteases related to SARS-CoV-2
infection would modify EPO secretion, HDP formation,
and activity remains to be investigated.

Reductions in EPO levels caused by COVID-19 may
result in HDP changes. This raises the possibility that the
cognitive functions well known to be controlled by AT4
agonism by HDP38,41,60,65,68,70 are impaired as a sec-
ondary consequence of reductions in EPO-evoked
hematopoiesis and neuroprotection. However, the vast
majority of HDPs are poorly studied in health and disease.
The literature still lacks reports on a correlation among
EPO, HDPs, and COVID-19 neuropathology. In regard to
the wide range of mechanistic possibilities involving
HDPs, the neural consequences arising from SARS-
CoV-2 infection and the interrelation among hematologi-
cal alterations, HDP, and long-term neuropsychiatric
manifestations of COVID-19 warrants better understand-
ing. Pathways triggered by erythrocyte death and result-
ing HDP release should be considered in further research,
since COVID-19 neuropathology is undeniably associated
with exacerbated influences of peripheral molecules on
the central nervous system. Figure 1 illustrates the
neurobiological mechanisms potentially involved in
COVID-19 clinical manifestations.

Conclusions

How long the COVID-19 pandemic will continue to plague
humanity is still unknown. Uncontrolled contagion and
newly arising SARS-CoV-2 variants may cause terrible
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consequences, including neuropsychiatric manifestations.
Study of the systemic molecular pathways inducing
neurobiological responses to COVID-19 is key. Pathways
triggered by early erythrocyte death and the routes
potentially influenced by HDP warrant further research,
as novel approaches may emerge from deeper knowl-
edge on these molecular mechanisms. For example, the
development of drugs interfering with AT4 activity and
with pathways potentially activated by HDP represent
promising pharmacological treatments, either to prevent
complications or to treat neuropsychiatric manifestations
in COVID-19 patients. These approaches may empower
the scrambling to prevent long-term damages, ultimately
improving quality of life and diminishing healthcare
expenditures.
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