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A B S T R A C T

Background: To understand the impact and volume of coronavirus (COVID-19) crisis, univariate analysis is tedious
for describing the datasets reported daily. However, to capture the full picture and be able to compare situations
and consequences for different countries, multivariate analytical models are suggested in order to visualize and
compare the situation of different countries more accurately and precisely.
Aims: We aimed to utilize data analysis tools that display the relative positions of data points in fewer dimensions
while keeping the variation of the original data set as much as possible, and cluster countries according to their
scores on the formed dimensions.
Methods: Principal component analysis (PCA) and Partitioning around medoids (PAM) clustering algorithms were
used to analyze data of 56 countries, 82 countries and 91 countries with COVID-19 at three time points, eligible
countries included in the analysis are those with total cases of 500 or more with no missing data.
Results: After performing PCA, we generated two scores: Disease Magnitude score that represents total cases, total
deaths, total actives cases, and critically ill cases, and Mortality Recovery Ratio score that represents the ratio
between total deaths to total recoveries in any given country.
Conclusion: Accurate multivariate analyses can be of great value as they can simplify difficult concepts, explore
and communicate findings from health datasets, and support the decision-making process.
1. Introduction

On December 31, 2019, the outbreak began in Wuhan, a province in
China. Reported cases of “pneumonia of unknown origin” originated
from Huanan Seafood Wholesale Market, where some animals like bats,
snakes, and rabbits are raised in captivity for consumption by people and
are illegally sold. A few days later, the Chinese government confirmed
that this outbreak is caused by a novel Coronavirus which was named
later by the World Health Organization (WHO), COVID-19 (Bai et al.,
2020).

OnMarch 11, 2020, and based on further assessments, WHODirector-
General made an announcement that COVID-19 can be characterized as a
pandemic (Wu and McGoogan, 2020). By March 16, 2020, the outbreak
outside China increased drastically and the number of countries, states,
or territories reporting infections to WHO had reached 143 (Huang et al.,
2020).
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As the situation escalates day by day, there is a growing need for a
visualization tool to guide better understanding on the disease pandemic
nature (Yoo, 2020). Reported data from the affected countries are
important to understand the disease risk and guide different preventive
measures. The reports include confirmed cases, confirmed deaths, total
recoveries, severe cases, and recovered cases ratio. The data show how
countries are promptly working to control the pandemic and trying to
preserve the resources to fight the disease spread. They are also sharing
practices and strategies needed to ensure that patients are best managed
(Dey et al., 2020).

It is very important to consistently record and report epidemiological
information for better understanding of disease transmission, geographic
spread, risk factors for infection, and different routes of transmission.
Also, to provide the baseline for various epidemiological modeling that
can guide authorities for optimum planning to minimize the disease
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burden. This detailed and accurate information is very important to
decide where surveillance should be prioritized (Xu et al., 2020).

To capture more clear information effectively, statistical analyses
along with data visualization are needed to serve as applications of the
powerful models of data science. The role of data scientists now is more
important than ever for identifying different trends, patterns, and outliers
to help researchers and decision makers to act in a more effective manner
towards medical researches and preventive public health measures
(Valdiserri and Sullivan, 2018).

Healthcare professionals have acknowledged for so long the impor-
tance of conventional disease mapping and geographic information sys-
tems (GIS), as some of the most important tools against the fight of an
outbreak. The very first disease map that was drawn to visualize the
relationship between a disease and its origin was in 1964 on plague
outbreak in Italy (Lipton, 2019). Disease maps would be valued and used
over the next 25 years aiming to understand and track most of the in-
fectious diseases such as Yellow fever, Cholera, and Influenza (Lyseen
et al., 2014).

There are many clinical outcomes reported from different countries
affected with COVID-19, these outcomes are likely to have potential
correlations with each other. Multivariate analysis is needed to explain
interactions among variables present in the dataset, allowing data
dimension reduction for better visualization, better hypothesis testing,
and explanation between the dataset, so we can have a better under-
standing to the data reported from affected countries (Clark, 2013; Riley
et al., 2017; Williams and Babbie, 1976).

The current study aims to initiatively utilize the widely applied
multivariate statistical procedures, PCA and PAM algorithms, for effi-
cient visualization and comparative inference of COVID-19 status in
different countries. PCA is commonly used to reduce the number of
variables that exist in many datasets, which indeed exhibit multi-
collinearity that alters the visualization and the application of many
statistical techniques and algorithms. Of the featured advantages of PCA,
it results into orthogonal components, i.e. uncorrelated/independent
factors. On the other hand, PCA may result in illogical or non-
interpretable factors when they are formed of non-homogenous set of
variables, as it relies on analyzing the correlation matrix of the variables,
the results may not make sense in some cases. Hence, a careful evidence-
based naming and interpretation of the formed factors should be con-
ducted. Finally, PCA may lead to losing some information since the
resulted factors usually explains a percentage of the variability existing in
the original dataset. But usually the cumulative percentage of total
variance explained is also used as a criterion to judge on the quality of
PCA since acceptable results that explains at least 70% of the total
variability (Karamizadeh et al., 2013; Lloret et al., 2017; Stewart et al.,
2014).

We performed PCA algorithms on five originally reported variables
(Total confirmed cases, Active cases, Total deaths, Critically ill cases, and
Mortality recovery ratio). We further performed PAM clustering algo-
rithms on the scores of different countries on the reduced dimensions (PC
scores), thus we were able to better visualize, categorize and better
describe the status of countries affected with COVID-19 pandemic.

2. Methods

We captured the available data about Coronavirus statistics from
Worldometer website https://www.worldometers.info/coronavirus/ for
March 30, April 15, and April 25, 2020. Data were captured on the next
day to these specified dates. Countries with COVID-19 total cases less
than 500 or countries with missing data were omitted from the analysis
to keep good representability of each variable. Number of countries
included in the analysis was 56 countries on March 30, 82 countries on
April 15, and 91 countries on April 25. Data manipulation and analysis
were performed using R software (R Core Team, 2019).

We used the following description for each of the variables included;
in any given country, total cases refers to total cases confirmed with
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COVID-19; active cases refers to total number of open cases (mild,
serious, or critical); total deaths refers to total deaths with COVID-19;
critically ill cases refers to number of serious/critically ill cases; mor-
tality recovery ratio refers to the ratio between total deaths to total
recovered patients.

Correlation matrices were visualized using performance analytics
package (Peterson et al., 2014). Principal component analysis (PCA) was
performed using FactoMineR package (Lê et al., 2008). Observations
within each variable were converted to Z-scores and subjected to PCA at
each time point. The main aim of PCA was to summarize patterns of a
relatively large number of observed variables into a smaller number of
latent factors that should be able to reflect the underlying processes that
caused eventually the correlations among the variables. Mathematically,
PCA develops linear combinations of observed variables; each of them is
a factor, these factors summarize the pattern of correlations in the
observed correlation matrix (Tabachnick and Fidell, 2007). Contribu-
tions and correlations of variables with the formed factors were deter-
mined at each time point.

We performed cluster analysis using cluster and Factoextra R packages
(Kassambara et al., 2017; Maechler et al., 2013). Partitioning around
medoids (PAM) algorithm was utilized to cluster the countries according
to their PC-1 and PC-2 scores on the latest time point (April 25). PAM
algorithm is a robust alternative to K-means clustering that is less sen-
sitive to noise and outliers (Salgado et al., 2016). Optimum number of
clusters was determined according to the highest average silhouette
width (Kaufman and Rousseeuw, 1990). We performed successive waves
of removal of noise clusters then reassessed the contributions and cor-
relations of variables with the formed dimensions.

We made projection on March 30 model utilizing data of April 15 and
April 25. Initial PC scores on March 30 and projected PC scores at the
next time points were compared with Friedman ANOVA for the countries
whose data were available at the specified three time points. The
experimental methodology and design are summarized in a flow chart
form (Supplementary material 1).

3. Results

Descriptive statistics of the original variables at each time point (30
March, 15 April, and 25 April 2020) are presented in (Table 1). The
univariate outlier analysis showed the presence of many outliers across
all tested variables. However, removal of univariable outliers would have
caused a large portion of data to be excluded; so, we made successive
waves of noise removal after performing PCA and cluster analysis. Cor-
relation matrices between variables at each time point are presented in
(Figure 1). Total cases, total deaths, active cases, and critically ill cases
were consistently strongly correlated. On the other hand, mortality re-
covery ratio had a unique pattern of variance through the tested time
points.

Upon performing multivariate PCA at each of the three time points,
the variables (Total cases, total deaths, active cases, and critically ill
cases) were formed into one principal component (PC-1), that we called
“Disease Magnitude”, as they had higher loading scores on this formed
factor in the three models; while “Mortality-Recovery Ratio” was formed
into another principal component (PC-2), as it had higher score on this
formed factor. The percentage of contribution of original variables to the
formed factors at each time point are presented in (Table 2). The corre-
lation of the original variables with the formed factors are presented in
(Figure 2), which presents prefect correlations of the original variables
with their relevant formed factors (r > 0.8). The models retained about
87%, 95% and 95% of the total variance within the original variables at
each time point, respectively. The loading scores on PC-1 suggested
nearly equal contribution of each variable in forming the principal
component. Communalities of PC-1 variables (Percentage of explained
variance in each variable by the formed principal component) were
consistently above 80%, while PC-2 was explaining about 100% of
variance of mortality recovery ratio.

https://www.worldometers.info/coronavirus/


Table 1. Descriptive analysis for the selected variables.

Time Point Parameter Total Cases Total Deaths Active Cases Critical Mortality Recovery Ratio

30-Mar-2020 Min 515 1 99 1 0.01

1st Qu 954.8 9.75 866.8 11 0.0775

Median 1937 26.5 1867.5 38 0.335

Mean 12789.1 611.55 9416.5 499.1 3.1704

3rd Qu 7015.8 122 4628.2 170.5 1.325

Max 142746 10779 135695 5231 72

15-Apr-2020 Min 626 3 61 1 0.01

1st Qu 1297 30.75 1006 14.25 0.05

Median 3705 96.5 2764 60.5 0.17

Mean 23723 1463.67 16143 602.51 0.5683

3rd Qu 10100 345.75 6625 159.5 0.4175

Max 644089 28529 566859 13487 12.54

25-Apr-2020 Min 513 4 54 1 0.01

1st Qu 1444 31.5 842 8.5 0.035

Median 4361 94 1930 44 0.09

Mean 29392 1933.9 18455 610.2 0.2722

3rd Qu 12865 456.5 8108 143 0.245

Max 960651 54256 788233 15110 6.28
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The sign of the loading scores on PC-1 was positive in the three
models, so the increment in PC-1 scores indicates higher total cases, total
deaths, active cases, and critically ill cases. Sign of PC-2 loading score
also indicates that increment in PC-2 refers to higher mortality recovery
ratio.

At each time point, each country had two scores for two dimensions,
the first score (PC-1 or Disease Magnitude score) simultaneously repre-
senting the counts of total cases, total deaths, active cases and critically ill
cases, and the other score (PC-2 or Mortality recovery ratio) representing
the ratio between total deaths to total recoveries. The two formed vari-
ables of PC scores have efficiently stored the information within the
original five variables at each time point. The descriptive statistics for
both PC scores of countries in the three models are presented in (Table 3).
The PC-1 and PC-2 scores of 91 countries on April 25 were subjected to
successive waves of cluster analysis utilizing PAM algorithm. Each cluster
was represented with one country as a “Medoid”. The medoid country
had minimal average dissimilarity with the other members of the cluster
and was considered as centroid for each cluster. The medoid was pre-
sented by the relevant country scores on PC-1 and PC-2. At the first wave
of cluster analysis, the highest average silhouette width suggested that
optimum number of clusters was four. Hence, the first wave resulted in
four clusters, USA (16.263, -0.113) was solely representing cluster 1,
Italy (3.416, 0.171) was the medoid of cluster 2 which contained Spain,
Italy, France, Germany, and Brazil. Moldova (-0.452, -0.220) was the
medoid of cluster 3 which contained 84 countries of 91 countries in total.
Finally, Norway (-0.224, 8.546) was representing cluster 4 (Figure 3).

Our approach builds on the idea of decomposing the biggest cluster
produced in former wave into an optimum number of clusters until we
get a meaningful endpoint. To achieve that, first we have to perform a
new PCA on the original dataset of this cluster in order to detect any new
correlation pattern between the tested variables and the subsequent
changes in loading scores on the principal component away from the
influence of noise clusters. PCA was reperformed on the original dataset
of countries in cluster 3 in the previous model and followed by PAM
cluster analysis. The optimum number of clusters in the second clustering
step was 2. Iran (7.801, -0.823) was the medoid of cluster 1 which
contained Turkey, Iran, Russia, and Belgium; while Finland (-0.618,
-0.346) was the medoid of the rest 80 countries.

Upon performing the final PCA on the original dataset of the 80
countries in cluster 2 in the previous model, significant weak to moderate
correlations between mortality recovery ratio and the rest of variables on
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PC-1 were observed (Figure 4). Changes were detected accordingly in the
correlations between the original variables and the formed factors
compared to the model performed initially on 91 countries (Figure 5).

The 80 countries were further optimally clustered into 2 groups.
Romania (1.249, 0.165) was the medoid of the first group which con-
tained 24 countries, and Cameroon (-1.015, -0.184) was the medoid of 56
countries (Figure 6).

We were also concerned with tracking changes in PC scores across the
3 time points. This was vital for detecting significant changes in the
variables that contribute to each principal component. We made pro-
jection on March 30model with the data of 15 and April 25. PC-1 and PC-
2 scores of March 30's model, projected PC scores of 15 and April 25 were
tested by Friedman ANOVA test. PC-1 scores were found to be signifi-
cantly changed (P ¼ 0.000), while PC-2 scores were insignificantly
changed (P ¼ 0.946).

4. Discussion

An overwhelming number of studies shed the light on COVID-19 from
various dimensions: medical, biological, and epidemiological di-
mensions, its social correlates and its implication, its impact on economic
status worldwide and even on micro-level. A few studies focused on
tracking COVID-19 data, for the purpose of summarizing and organizing
these data and to find solutions for how this huge amount of data should
be visualized and presented into one or two representative graphs.
Among the initial descriptive mathematical models for COVID-19 was
that introduced by N. E. Huang and F. Qiao. They aimed at tracking the
disease course with detecting the efficacy of the local interventions made
for disease containment. Despite being robust, it did not provide real-
time comment on the disease burden and progression across countries
(Huang and Qiao, 2020). Q. Lin et al. developed a conceptual model
based on 1918 influenza pandemic modeling framework in London, UK,
taking into consideration the governmental actions and individual re-
actions trying to to forecast the disease behavior patterns of COVID-19
under different scenarios. The model functioned well in forecasting
COVID-19 behavior when applied to data from Wuhan, China, but it was
built on a unidimensional dependent variable, total confirmed cases (Lin
et al., 2020). Dey and colleagues exerted valuable efforts to gather and
analyze epidemiological data on COVID-19 outbreak from many open
datasets. They utilized visual exploratory data analysis procedures on the
available datasets for certain provinces of China and outside China, from



Figure 1. (a) Correlation matrix between the original variables on 30 March 2020. (b) Correlation matrix between the original variables on 15 April 2020. (c)
Correlation matrix between the original variables on 25 April 2020.
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Table 2. Percentage of contribution to PCs at each time point.

Time Point Parameter PC-1 PC-2

30-Mar-2020 Total Cases 26.85608277 0.053066567

Total Deaths 23.11722557 0.147716968

Active Cases 24.69648432 0.154690657

Critical 24.92980116 0.069682407

Mortality Recovery Ratio 0.400406173 99.5748434

15-Apr-2020 Total Cases 26.15492901 0.124785181

Total Deaths 23.63840822 0.002791971

Active Cases 24.68984622 0.026416251

Critical 25.45451308 0.000735775

Mortality Recovery Ratio 0.062303474 99.84527082

25-Apr-2020 Total Cases 26.3734431 0.032498244

Total Deaths 24.89942018 0.002296381

Active Cases 25.17725371 0.002195602

Critical 23.49289556 0.091217583

Mortality Recovery Ratio 0.056987461 99.87179219
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22 January to 16 February 2020. The datasets contained number of
confirmed cases, deaths, and recovered cases. They draw heat-maps and
heat-bar graphs for china and outside, this was done for each indicator
separately and comparisons were done in a univariate manner of analysis
(Dey et al., 2020). Another research aimed to develop predictive model
for predicting COVID-19 cases, deaths, and recoveries. The researchers
utilize SEIR modelling to forecast COVID-19 outbreak inside and outside
China based on the daily observations. According to the developed
model, they assumed that the outbreak would reach its peak in late May
2020 and would start to drop around early July 2020. They also found
that negative sentiments about the virus are more prevailed than positive
ones. Positive sentiments were mainly reflected through articles about
Figure 2. (a) Heat map presenting the correlation between the original variables and
between the original variables and the formed factors on 15 April 2020. (c) Heat map
on 25 April 2020.
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“collaboration and strength of individuals in facing this epidemic’, while
negative articles were related to “uncertainty and poor outcomes of the
disease such as deaths” (Binti Hamzah et al., 2020). Another modelling
study tried to identify individuals at high risk of severe COVID-19 and
how this varies between countries. The identification process was based
on individual's age, sex, country-disease prevalence data, multimorbidity
fractions, and infection–hospitalization ratios. This study concluded that
men are at higher risk compared to women, elder people are at highest
risk categories and at the macro-level, the share of the population at
highest risk categories in countries with older populations, countries
with high prevalence of HIV/AIDS, Chronic kidney disease, Diabetes,
Cardiovascular disease, and Chronic respiratory disease (Clark et al.,
the formed factors on 30 March 2020. (b) Heat map presenting the correlation
presenting the correlation between the original variables and the formed factors



Table 3. Descriptive statistics for PC scores of countries at three time points.

Time Point Parameter PC-1 PC-2

30-Mar-2020 Min -1.0783 -0.35948

1st Qu -0.7619 -0.34469

Median -0.719 -0.28947

Mean 0 0

3rd Qu -0.4824 -0.07821

Max 7.17 6.69222

15-Apr-2020 Min -0.5908 -0.3961

1st Qu -0.5725 -0.3184

Median -0.523 -0.2522

Mean 0 0

3rd Qu -0.3959 -0.1066

Max 14.5236 7.4888

25-Apr-2020 Min -0.5373 -0.36979

1st Qu -0.5212 -0.33052

Median -0.4711 -0.24926

Mean 0 0

3rd Qu -0.3432 -0.05522

Max 16.2632 8.54622

Figure 3. Clustering of countries according to their PC scores on 25 April 2020.
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2020). It is clearly noticeable that all of the previous studies analyzing
COVID-19 data items were using univariate analysis techniques in order
to forecast future outcomes or relate to any other individual featur-
es/variable in a one to one basis. In other words, none of those studies
dealt with COVID-19 data items using multivariate analysis techniques.
Figure 4. Correlation matrix between the original varia
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A real challenge has emerged, which is how to identify the proper
time to escalate or deescalate the nationwide intervention measures
along the course of the pandemic. A current need for a robust tool
incorporating the at-hand variants based on the available data in a one
multivariate analysis, our current work presented here is an example of
bles after successive removals of outlier countries.



Figure 5. Heat map presenting the correlation between the original variables
and the formed factors on 25 April 2020 after successive removals of the
outlier countries.
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how visual representation can be enhanced using multivariate analysis
techniques. The available visual graphs on the websites tracking COVID-
19 status utilize the univariate presentation of data, presenting the pro-
gression of confirmed cases or deaths as a function of time (CDC, 2020;
Worldometer, 2020). Despite being informative in a way, advanced
inference for better decision making needs a more advanced methodol-
ogy to reproduce high dimensional data into less dimensions, which
should facilitate description and comparison of countries. Serving that
purpose, we developed multivariate models aiming at studying and
visualizing the current situation of every affected country by COVID-19
using PCA and cluster analysis. This was in terms of disease burden
against mortality/recovery ratio at a certain time point. This will help
further inference by governments and non-governmental organizations
(NGO's) committed to respond to COVID-19 burden in their countries, to
implement priority public health measures to support national plans and
interventions.

In the current study, the affected countries had two numerical vari-
ables, in which the information within the original five variables are
efficiently stored. The PCA algorithms were performed on the calculated
Z-scores of the original variables. That is why the averages of the PC
scores on the formed dimensions were consistently equal to zero
(Table 3). Hence, countries with positive values of disease magnitude
score (PC-1 score >0) had relatively higher confirmed cases, deaths,
active cases and/or critically ill cases. Similarly, countries with positive
values of mortality recovery ratio score had a relatively higher ratio of
mortality to recovered cases, while negative values of disease magnitude
or mortality recovery ratio scores indicated a relatively controlled status.
This can be explained with the PC scores of USA at the first wave of
cluster analysis (16.263, -0.113), despite being far in terms of disease
Figure 6. Clustering of countries according to their PC scores on 2
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magnitude (presented by PC-1 score, 16.263), the mortality recovery
ratio was relatively controlled (presented by PC-2 score, -0.113). This is
strongly indicating a well-established healthcare system that could
absorb the relatively high disease magnitude without increasing the ratio
of mortality compared to recovered cases.

On 25 April, the first wave of cluster analysis detected a meaningful
number of noise clusters. USA was solely representing cluster 1 with the
maximum disease magnitude score, Italy (3.416, 0.171) was the medoid
of cluster, having relatively higher disease magnitude score compared to
the main cluster 3 (84 countries of 91 countries in total). Norway (-0.224,
8.546) was solely representing cluster 4 by far in terms of high score on
mortality recovery ratio (presented on PC-2). Of note, the second cluster
whose medoid is Italy represents a group of countries with shared bor-
ders between Italy, Germany, France, and Spain, which may partly ac-
count for the grouping in one cluster.

Further PCA was performed on data of countries in cluster 3 in the
previous model, followed by PAM cluster analysis. The detected changes
in the correlations between the tested variables and the subsequent
changes in loading scores on the principal component denoted that noise
reduction was needed to extract more data overlapped by the noise
clusters in the previous PCA. The number of clusters in this step was 2.
Iran (7.801, -0.823) was medoid of cluster 1 which contained Turkey,
Iran, Russia, and Belgium while Finland (-0.618, -0.346) was medoid of
the rest of 80 countries. Again, geographical proximity does appear to
contribute to data explanation by our model. The final multivariate
analysis for data of the 80 countries in cluster 2 of the previous model
showed significant weak to moderate correlations between mortality
recovery ratio and rest of variables on PC-1, it also showed a subsequent
changes in contributions to each PC; denoting changes compared to the
model performed initially on 91 countries. The 80 countries were further
optimally clustered into 2 groups. Romania (1.249, 0.165) was medoid of
the first group which contained 24 countries, Cameroon (-1.015, -0.184)
was medoid of 56 countries. The change in correlations between mor-
tality recovery ratio and variables on PC-1 along with an encountered
pattern of signal homogeneity in both PC-1 and PC-2 simultaneously and
reciprocally in cluster 1 and cluster 2 in this wave of multivariate analysis
revealed that our model has reached a logical outreach point. Each
cluster finally represents a disease pattern where PC-1 representing dis-
ease magnitude is changing in the same direction of PC-2 representing
mortality recovery ratio. This means that successive waves of PCA and
cluster analysis were needed to properly group countries with similar
disease patterns for better visualization and subsequent data extraction
and projection. Moreover, results interpretation in this last step that
showed significant weak to moderate correlations between mortality
recovery ratio on PC-2 and rest of variables on PC-1. This may indicate
that mortality recovery ratio is more influenced by the disease magnitude
in themajor 80 country cluster. Meaning that health care systems in these
countries are beginning to be inadequately accomodative to the increase
in disease magnitude, or may mean that these countries need augmen-
tation of their capacity to regain independence of PC-2 from PC-1 and
subsequently more disease control.
5 April 2020 after successive removals of the outlier countries.
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The methodology of multivariate analysis utilized in this study
represents a powerful tool to describe and visualize data at certain
time points to study the disease burden in terms of disease magnitude
and outcome in each country by terms of readily available data in the
light of the dynamic disease attributes. The formed PCs are more
convenient and informative upon proper utilization as dependent
variables in further predictive regression models. Using this method-
ology will enable both the scientific and the policy making commu-
nities to better organize, analyze, and visualize these growing data.

5. Strengths and limitations

The presented multivariate data analysis approach was quite power-
ful for storing the information within the daily reported COVID-19 sta-
tistics in a lower number of dimensions/variables, resulting in better
visualization and enhanced comparative inference. However, the vari-
ance pattern of the original variables is changing day to day. Hence, the
quality and appropriateness of these multivariate procedures should be
tested at single day level. The correlation between the original variables
should be strong enough for performing dimension reduction procedures.

6. Conclusion

Using multivariate analysis techniques, we were able to develop
models and simple data visualization tools that can help in interpreting
the status of a given country or cluster of countries. COVID-19 daily
published statistics were summarized by two scores, disease magnitude
score and mortality recovery ratio score, where these reduced di-
mensions were efficiently able to store the information within the orig-
inal datasets. Significant correlations detected between both scores in
some countries is a warning alarm for saturation of healthcare systems.
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