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A B S T R A C T

Before a deleterious DNA lesion can be replaced with its undamaged counterpart, the lesion must first be re-
moved from the genome. This process of removing and replacing DNA lesions is accomplished by the careful
coordination of several protein factors during DNA repair. One such factor is the multifunctional enzyme human
apurinic/apyrimidinic endonuclease 1 (APE1), known best for its DNA backbone cleavage activity at AP sites
during base excision repair (BER). APE1 preforms AP site incision with surgical precision and skill, by sculpting
the DNA to place the cleavage site in an optimal position for nucleophilic attack within its compact protein
active site. APE1, however, has demonstrated broad surgical expertise, and applies its DNA cleavage activity to a
wide variety of DNA and RNA substrates. Here, we discuss what is known and unknown about APE1 cleavage
mechanisms, focusing on structural and mechanistic considerations. Importantly, disruptions in the biological
functions associated with APE1 are linked to numerous human maladies, including cancer and neurodegen-
erative diseases. The continued elucidation of APE1 mechanisms is required for rational drug design towards
novel and strategic ways to target its associated repair pathways.

1. Introduction

Human apurinic/apyrimidinic endonuclease 1 (APE1) is the pri-
mary cellular apurinic/apyrimidinic (AP) endonuclease, playing a pi-
votal role in not only the removal and repair of numerous DNA lesions,
but also as a redox activator of numerous transcription factors, in-
cluding Egr1, NF-κB, p53, and HIF1a [1]. These two major functions of
APE1, repair and redox, are independent in their actions, as shown by
the observation that mutations abolishing the DNA repair function do
not affect the redox function, and vice versa [2,3]. Expression of the
gene encoding APE1 is essential, presumably due to its central role in
the repair of DNA lesions [4]. That said, the biological significance of
the APE1 redox activity in eukaryotic transcriptional regulation of gene
expression has yet to be fully elucidated [5]. Since the primary focus of
this perspective is its DNA repair activity, we direct the readers to re-
ferences [6] and [1,7] for a more thorough discussion of the APE1
redox and alternative functions, respectively.
During DNA repair APE1 functions as a nuclease, cleaving at select

phosphodiester bonds that compose the DNA backbone. For a com-
prehensive review of DNA repair nucleases, we point readers to an

insightful perspective from a previous issue in this series by Dr. Susan
Tsutkawa from the Tainer lab [8]. APE1 is exceedingly multifunctional
even among its nuclease activities, exhibiting endonuclease, 3′ phos-
phodiesterase, 3ʹ to 5ʹ exonuclease, and RNA cleavage activities [1].
Due to a wealth of structural and biochemical data, it is well understood
how APE1 endonucleolytically cleaves at AP sites during base excision
repair (BER) [1,9,10]. Recent X-ray crystal structures have revealed the
fundamentals of the 3ʹ to 5ʹ exonuclease mechanism, which can func-
tion to proofread 3ʹ mismatches inserted by DNA polymerase β during
BER and remove 3ʹ DNA end damage at single strand breaks [11]. This
newly uncovered mechanism used by APE1 for its exonuclease activity
provides new insights into the strategies used by APE1 to cleave during
some of its less-studied nuclease activities, such as those utilized during
nucleotide incision repair (NIR) and RNA metabolism. In this perspec-
tive, we examine what is known about the numerous APE1 cleavage
reactions as well as the mechanistic features and activities that remain
enigmatic with this essential multifaceted enzyme.
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2. APE1 overview

Reactive oxygen species generated by both endogenous and exo-
genous sources continuously bombard our DNA, resulting in oxidation
and fragmentation of the DNA nucleobases. Both oxidative DNA da-
mage itself and its repair mediate the progression of many prevalent
human diseases. The major pathway tasked with removing and repla-
cing oxidative DNA damage, and hence maintaining genomic integrity,
is BER (Fig. 1). The BER pathway requires the coordinated activity of at
least five enzymes including: (1) a DNA glycosylase capable of excising
the modified base; (2) an AP-endonuclease, such as APE1, to generate a
nick at the lesion site; (3) DNA polymerase β, which performs both
lyase and DNA synthesis activities to remove the 5′ dRP (deoxyr-
ibonucleotide-phosphate) and fill the resulting gap; and, finally (4)
DNA ligase III and (5) XRCC1 (X-ray repair cross-complementing pro-
tein 1) scaffolding to seal the nick and complete the repair, (Fig. 1). For
a more detailed discussion of BER, its protein components, and its re-
lationship to human disease, we direct the readers to the following
references [12,13].
During BER, damage specific DNA glycosylase-catalyzed reactions

often result in an apurinic/apyrimidinic (AP) site, which is a baseless
sugar moiety. AP sites are among the most abundant oxidative DNA
damage types and can also occur as the result of spontaneous hydrolysis
of the N-glycosyl bond [14,15]. AP sites exert cytotoxic effects by
blocking DNA replication, repair, and transcription, and their lack of
coding potential can result in mutagenesis through base substitutions,
insertions, or deletions if bypassed by a DNA polymerase [15,16]. APE1
cleaves the DNA phosphodiester backbone on the 5′ side of an AP site,
generating a nick in the DNA with 3′ hydroxyl and 5′ dRP termini. The
pre-steady state kinetic description of strand incision at AP sites by
APE1 is that rapid catalysis is followed by slow product release [17,18].
This rapid catalysis is vital for genomic stability given the prevalence of
AP sites in the genome, while the slow catalysis step has been proposed
to conceal cytotoxic BER intermediates during DNA-damage processing
and facilitate substrate channeling between BER enzymes.
X-ray diffraction and site-directed mutagenesis experiments have

shown that APE1 is composed of a rigid globular C-terminal nuclease
domain and a flexible N-terminal domain [9,10]. The N-terminal do-
main is responsible for the redox activity of APE1 and is thought to
additionally mediate alternative APE1 functions and/or its protein-
protein interactions, whereas the C-terminal domain is responsible for
DNA binding and backbone cleavage activity. The nuclease domain of
APE1 belongs to the phosphoesterase superfamily of enzymes that
contain a common four-layered α/β sandwich structural core and bear
variable loop regions and active site characteristics to provide substrate
specificity. This domain binds directly to the DNA and slides along the

strand in search of an AP site primarily through interacting with the
DNA phosphate backbone [19–21]. The original crystal structures of
APE1 bound to DNA revealed a “flipped out” AP site positioned within a
compact active site, stabilized by four loops and an α-helix, leaving an
orphan base in the opposite strand [10]. Specifically, APE1 is proposed
to stabilize the flipped out abasic site via a double-loop mechanism
involving interactions with both the minor and the major grooves at the
AP site. The other two loop domains also interact with the DNA on the
5′ and 3′ side of the AP residue respectively to facilitate the formation of
a stable APE1:DNA complex. The role of these additional loop domain
interactions, Mg2+ ions, and active-site residues in defining substrate
specificity have been further characterized using site-specific APE1
variants [22–24].
More recent, higher-resolution APE1 product and substrate struc-

tures have provided not only additional mechanistic details, but also
clarification of mechanistic ambiguity of the APE1 AP-endonuclease
catalytic reaction [9,25–32]. Fig. 2A highlights the APE1 active site
residues when in a pre-catalytic complex with DNA containing tetra-
hydrofuran (THF, a stable AP site analog). These structures further
elucidated the APE1 AP-endonuclease mechanism. Prechemistry snap-
shots identified a single Me2+ coordinated by Asp70, Glu96, and a
water molecule in contact with a non-bridging oxygen of the phosphate.
Additionally, the nucleophilic water is in positon for inline attack of the
phosphorus atom and is coordinated by Asn212 and Asp210. The
structures imply a pentacovalent intermediate stabilized by Me2+ and
key active site contacts. It has been proposed that during catalysis the
metal shifts to coordinate a phosphate non-bridging oxygen and the
newly generated O3′ [33,34]. Fig. 2B shows the AP site within the
compact APE1 active site. In addition to clarifying the mechanism of
APE1 on AP sites, the product structure identified novel contacts that
mediate product release during APE1 catalysis.

3. APE1 DNA 3ʹ end processing activities

In contrast to the AP-endonuclease activity, the 3ʹ DNA end pro-
cessing activities of APE1 remain relatively poorly understood. The 3ʹ to
5ʹ exonuclease activity of APE1 removes 3′ end groups, including da-
maged DNA bases, chain terminating drugs, blocked termini, and mis-
matched bases [35–38]. The AP-endonuclease and exonuclease activ-
ities have significantly different optimal salt and pH conditions and it
remains unclear how these two activities are coordinated within the cell
[38]. It has been shown that the APE1 exonuclease activity is slower
than its exceedingly fast AP-endonuclease activity [17,18,39]. This has
often led to the misimpression that the exonuclease activity is not
biologically relevant. However, it is more appropriate to compare the
rate of APE1 exonuclease activity to the rates of the end processing

Fig. 1. Schematic of the BER pathway (black) showing the role of APE1 AP-endonuclease activity and APE1 exonuclease activity (blue) in proofreading 3ʹ mis-
matches and removing 3ʹ end damage. DNA damage and mismatches are highlighted in red.
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activities of other DNA repair enzymes. For example, the APE1 exo-
nuclease activity is either faster or within a single order of magnitude of
the catalytic rates for end processing by: apurinic/apyrimidinic en-
donuclease 2 (APE2), tyrosyl-DNA phosphodiesterase 1 (Tdp1), apra-
taxin, polynucleotide kinase (PNK), and the lyase activity of DNA
polymerase β to name a few (Table 1). In addition, the APE1 exonu-
clease activity occurs at a similar rate to the activities of other enzymes
in the BER pathway (Table 1). Variety in the type of end blocking group
and the assortment of possible DNA termini (i.e., nicks, gaps, over-
hangs, and double strand breaks) in need of processing during multiple
different repair pathways, further combined with the existence of
multiple end processing enzymes with varying substrate specificities
has resulted in a murky picture of the exact biological role of each end
processing enzyme, and underscores the importance of further char-
acterizing these enzymes and their activities [37,40–53]. This substrate
overlap implies a level of evolved redundancy among enzymes that may
play a particular biological role during different cellular stages and in
response to varying types of DNA damage. Despite this ambiguity and
overlap, the biological relevance of the APE1 exonuclease activity has
been identified in several instances, including: (1) APE1 removal of 3ʹ
α,β-unsaturated aldehyde (PUA) groups resulting from bi-functional
glycosylases during BER [54]; (2) the cleansing of oxidatively damaged
DNA dirty ends, such as 3ʹ PG (phosphoglycolate) and 3ʹ 8-oxoG (8-
oxoGuanine) by APE1 both in vitro and in cellular extracts [55,56]; (3)
APE1 proofreading of DNA ligation confounding misinsertions by DNA
polymerase β during BER, [11,57–59]; and (4) the association between
APE1 variants with reduced exonuclease activity and carcinogenesis
[60–62]. Below, we will discuss intriguing biological models for some

of these APE1 scenarios and how one protein active site can accom-
modate an array of nucleic acid substrates.

3.1. Proofreading 3ʹ mismatches during BER

The misincorporation of nucleotides by DNA polymerases during
DNA replication and repair promotes mutagenesis and carcinogenesis.
The primary BER DNA polymerase, polymerase β, only exerts moderate
fidelity, with 1 nucleotide misincorporation per 4000 insertion events
[63]. It is estimated that 20,000–80,000 base modifications take place
daily per cell in our genome [64]; therefore, polymerase β, which lacks
intrinsic proofreading activity, would be expected to introduce around
ten mutations into our DNA per cell each day. However, BER has been
shown to be robust and relatively error-free under normal conditions
[13]. This has led to the hypothesis of an extrinsic proofreader of
polymerase β during BER. Since the discovery of its exonuclease ac-
tivity on DNA mismatches, APE1 has been proposed to serve as an
extrinsic proofreader of polymerase β [22,33,65–67]. Supporting this
notion, the fidelity of pol β has been suggested to be increased when the
other BER components are present [66]. In addition, DNA polymerase β
has been shown to form a complex with APE1 on DNA [68]. This model
of APE1, utilizing 3′ to 5′ exonuclease activity, as an extrinsic proof-
reader results in a modified view of classical BER (Fig. 1, blue arrows).
In this scenario, polymerase β misinsertions are proofread by the APE1
exonuclease activity, possibly within a larger BER complex during
substrate channeling. How APE1 can accommodate a mismatched nu-
cleotide base (as opposed to a baseless AP site) within its compact ac-
tive site (Fig. 2B) is perplexing based on the APE1 AP-endonuclease
structures alone. As a result, its precise biological relevance has been
difficult to ascertain and the literature contains conflicting opinions on
the mechanistic details of the APE1 exonuclease activity [11,35,39].
To better understand how APE1 accommodates mismatched nu-

cleotides during the exonuclease activity, our group recently published
X-ray crystal structures of APE1 in complex with a C/T mismatch [11].
This substrate represents a putative BER intermediate in which poly-
merase β has incorrectly inserted a C across from a templating T. Then,
APE1 could enact its exonuclease activity to remove the 3′ misinserted
C. We chose a C/T mismatch because data collected in our lab, as well
as previously published by others, indicates that mismatches containing
C represent optimal substrates for the APE1 exonuclease activity
[69–71]. The active site of APE1 is shown in Fig. 3A with a nicked DNA
substrate containing a C/T mismatch at the 3ʹ end and a phosphate at
the 5ʹ end. In contrast to the AP site analog THF, which flips into the
active site during the AP-endonuclease reaction, the mismatched C
rotates into the open intra-helical cavity while APE1 keeps the phos-
phate backbone, metal ion, and nucleophilic water in almost identical
positions for cleavage (Fig. 3B). The base rotation is accommodated by

Fig. 2. APE1 AP-endonuclease reaction. (A) The APE1 active site showing the nucleophilic water and key active site residues. (B) Surface representation of the
APE1:AP-DNA complex demonstrating the flipped out AP site and compact active site. Protein is shown in cyan and DNA residues in gray.

Table 1
Catalytic efficiencies for selected BER and end processing enzymes. Substrates
for end processing enzymes are indicated in parentheses.

Enzyme kcat/KM (s−1 μM-1) Reference

End Processing Enzymes
APE1 (3'-PUA) 2.7 [54]
APE1 (3'-Mismatch) 1 [1,11]
APE2 (3ʹ-Mismatch) 4× 10−6 [107]
PNK (3'-Phosphate) 30 [54]
Tdp1 (3′-Phosphotyrosine) 0.25 [108]
Aprataxin (5'-AMP) 3 [109]
Pol β (5ʹ-dRP lyase) 0.15 [110]

BER Enzymes
UNG 500 [110]
OGG1 0.03 [110]
APE1 (AP-DNA) 100 [110]
pol β (insertion) 1.5 [110]
Pol β (5ʹ-dRP lyase) 0.15 [110]
Lig I 0.4 [110]
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Fig. 3. The APE1 exonuclease reaction of a 3′ mismatch. (A) Overview of exonuclease substrate complex. The site of cleavage is indicated by the arrow. The 3ʹ
mismatched cytosine, its flanking base, and the opposing base are shown in stick format (gray carbons). (B) Focused view of the APE1 exonuclease active site showing
key catalytic residues, cleavage site, and nucleophilic water with key interactions indicated by dashed lines. (C) Surface representation of exonuclease DNA substrate
showing the bend of the DNA to accommodate the 3ʹ mismatched base. The protein is shown in green and the DNA in gray.
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the extra intra-helical space in the exonuclease conformation, com-
pared to the AP-endonuclease conformation (see positions of C1ʹ in
Fig. 2B and C). This results from several structural variations, including
a 10° sharper bend in the DNA, displacement of the 5ʹ phosphate at the
nick, and instability of the mismatched base. Flexibility at the 3′ end of
a DNA nick facilitates the APE1 dependent sculpting of the DNA, thus
providing a method to distinguish mismatches and other aberrant 3ʹ
ends from correctly matched DNA. Several residues are also positioned
to interact with the 5′ phosphate, providing an explanation for differ-
ences in incision efficiency based on the nature of the 5′ terminal group
[72,73]. Of note, comparison of the available APE1 structures indicate
that the APE1 active site is quite rigid; variations in the DNA cleavage
mechanisms between substrates likely result from altered DNA con-
formations instead of altered APE1 conformations. The observed dif-
ferences in optimal reaction conditions between the exonuclease and
AP-endonuclease activities may therefore likely reflect differences in
either the DNA binding/sculpting event or intermediate catalytic steps,
yet to be determined.

3.2. Removing 3ʹ oxidative lesions

The APE1 exonuclease activity is also involved in the cleaning of
DNA “dirty ends”, including DNA damage generated by reactive oxygen
species (ROS) during oxidative stress. Oxidative stress induced DNA
damage is both a major driver of human disease and a product of en-
vironmental exposure, radiation, and chemotherapeutic cancer treat-
ments. One common 3′ damaged terminal end generated by ROS is
phosphoglycolate (3′ PG). This stable end product blocks replication
and repair, and it must be removed prior to further DNA synthesis by a
DNA polymerase. While multiple enzymes are capable of removing 3′
PG ends, APE1 has been shown to be the major enzyme responsible for
this activity [48,55,74,75]. In the context of BER, APE1 is capable of
processing PG at the 3′ end of a nick to produce a 1-nt (1-nucleotide)
gapped DNA substrate with a 3′ hydroxyl suitable for gap filling DNA
synthesis by DNA polymerase β. Providing insight into how APE1
processes damaged DNA ends, we recently determined the crystal
structure of APE1 bound to a double stranded, nicked DNA substrate
containing a PG at the 3′ end and a phosphate at the 5′ end of the nick
[11]. The structure revealed 3′ PG in the APE1 active site with the
cleavage site phosphate group and nucleophilic water in a similar po-
sition to that observed for a 3′ mismatched base (described above).
However, in the absence of an intact nucleobase at the 3′ end, several
waters are observed in the more spacious active site. The mechanistic
role of these water molecules during catalysis and substrate specificity
remains to be determined.
APE1 has additionally been shown to remove 3ʹ 8-oxoG from nicked

DNA substrates in vitro [59,76]. Cellular studies using whole cell ex-
tracts and immunoprecipitation experiments support a cellular role of
APE1 in 3ʹ 8-oxoG removal [76–78]. Not only can 3′ 8-oxoG arise via
strand breaks, but also via genomic insertion of 8-oxodGTP by a DNA
polymerase [33,79–81]. This insertion is facilitated by 8-oxodGTP es-
caping general polymerase discrimination checkpoints by modulating
the highly-charged DNA polymerase active site [33]. Work by our
group and others has shown that 3ʹ 8-oxoG is not only potentially
mutagenic, but also destabilizes the primer termini, hindering DNA
repair and causing abortive ligation [33,59,82]. Combining the APE1
proofreading model during BER (Fig. 1, blue arrows) with the observed
3ʹ 8-oxoG exonuclease function raises the interesting possibility that
APE1 removes 3ʹ 8-oxoG during BER. Further biochemical, structural,
and cellular studies are required to fully understand the mechanism and
relevance of 8-oxoG removal by APE1. As previous studies have shown
that APE1 exonuclease activity preferentially cleaves mismatches
[11,57], it will be particularly interesting to see whether there is any
preference and/or mechanistic differences between when 8-oxoG pairs
with cytosine compared to its mutagenic base paring partner, adenine
[83,84].

4. Other APE1 nuclease activities

4.1. Nucleotide incision repair (NIR)

Unexpectedly, APE1 is reported to recognize and incise at particular
base damages within duplex DNA (i.e., 5,6-dihydro-2′-deoxyuridine
(DHU), 5,6-dihydrothymidine (DHT), 5-hydroxy-2′-deoxyuridine
(5OHU), and α-2′-deoxynucleotides), generating single-strand break
ends with a 3′ hydroxyl and a 5′ dangling modified nucleotide [85,86].
The majority of these lesions are generated under ionizing radiation
(IR) or exposure to certain DNA damaging therapeutics. This backbone
cleavage activity is distinct from both the AP-endonuclease and exo-
nuclease cleavage reactions, because the cleavage occurs in the absence
of either an AP site or a nick in the DNA, and is proposed to initiate a
damage response pathway termed nucleotide incision repair (NIR). In
this case, NIR serves as a back-up for the glycosylase-initiated BER
pathway discussed above. Reaction conditions, such as salt concentra-
tions and pH, seem to affect the NIR function of APE1, with the optimal
conditions for NIR activity very similar to those for the 3′ to 5′ exo-
nuclease activity [85]. Moreover, NIR is active at a 100-fold lower
MgCl2 concentration than the APE1 AP-endonuclease activity. Inter-
estingly, the N-terminal redox domain of APE1 (proposed to modulate
protein-protein interactions, but not AP-endonuclease activity) contra-
rily stimulates its NIR activity [85]. Mutation of certain active site re-
sidues has been shown to influence (though with variable effects) both
the APE1 NIR and BER activities, demonstrating that the APE1 active
site involved in NIR and BER pathways is the same, but differing con-
formational requirements are responsible for their corresponding clea-
vage mechanisms [87]. As the reaction conditions are similar to those
for the 3ʹ to 5ʹ exonuclease activity, and both substrates require similar
active site real estate, perhaps NIR activity occurs via a similar me-
chanism reported for the removal of a mismatched base [11]. That said,
it remains unclear how the absence of a DNA nick in the pre-catalytic
complex would affect the DNA binding and cleavage conformations
required to promote the conformational change within the DNA.
The NIR activity described above is consistent with earlier work

which found that APE1 can incise at benzene-derived base adducts,
similarly creating 3′ hydroxyl and a 5′ dangling modified nucleotide
ends. Importantly, structural insight via molecular modeling of a duplex
containing a benzetheno exocyclic adduct of cytosine (pBQ-C), and
subsequent molecular dynamics simulations with APE1, implied that
the pBQ-C adduct can be accommodated in the APE1 active site extra-
helically in a similar fashion to an AP site by specific structural re-
arrangements of both the DNA and protein [86]. Our exonuclease
structures indicate that the APE1 active site is quite rigid, with only
modest changes to the structure of APE1 to accommodate binding of
AP-DNA and 3ʹ mismatched bases [11]. As a result, we propose that
DNA conformational changes such as a modified intra-helical con-
formation of the adduct and increased DNA bending, akin to those in
the exonuclease structures where the APE1 active site must accom-
modate mismatches and damage, may contribute more than previously
expected.

4.2. RNA processing

APE1 is capable of endonucleolytically cleaving abasic RNA, sug-
gesting it participates in some aspect of RNA quality control, pre-
sumably as a “cleansing” factor [88]. Importantly, RNA is single
stranded and consequently its bases are not protected by hydrogen
bonding, making it more susceptible to base oxidation than DNA. In
addition, recent findings have shown APE1 to be involved in the re-
moval of trapped RNA molecules in DNA–RNA duplex structures [89]
and 3ʹ phosphate groups from RNA decay products (facilitating their
further degradation). Moreover APE1 cleavage within the coding region
of c-myc RNA (specifically at UA and CA sites) was shown to result in
down regulated expression of c-myc, directly linking the
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endoribonuclease activity of APE1 with mRNA turnover. In this study,
HeLa cells depleted of APE1 express two- to five-fold more c-myc RNA
in comparison to control cells [88]. Other recent studies have demon-
strated that APE1 cleavage of RNA is not unique to c-myc, as micro-
RNAs, CD44, and components of the SARS-corona virus are also cleaved
by APE1 [90,91]. Puzzlingly, APE1 cleavage of RNA does not require
Me2+ [90]. However, cleavage does absolutely require the 2ʹ hydroxyl
[92]. These two striking features of the RNA cleavage reaction are
unique to RNA, and have yet to be explained at the molecular level. We
point readers to an elegant review recently published by the Tell lab to
learn more about the biological role of APE1 in RNA processing [91].

5. Conclusions

In this perspective, we concentrated on the diverse nuclease func-
tions and mechanisms of the nucleic acid surgeon APE1, applying
particular emphasis on structural and mechanistic considerations. The
base flipping mechanism used by APE1 to cleave the DNA at AP sites is
well characterized, and recent structures of several biologically relevant
exonuclease complexes have also shed new light on additional APE1
DNA repair mechanisms. While these structures have aided in our un-
derstanding of how a single active site can accommodate such a wide
variety of substrates (Fig. 4), the precise mechanisms used by APE1 to
cleave many of its other substrates remain mysterious. Along these
lines, APE1 is the primary exonuclease that removes the stereo-
chemically unnatural L-configuration anticancer nucleoside analogue,
β-L-dioxolane-cytidine (brand name Troxacitabine), and other L-con-
figuration nucleoside analogues from the 3′ ends of DNA [93]. Ad-
ditionally, APE1 can remove the anti-HIV nucleoside analogues 3′-
azido-3′-deoxythymidine and 2′,3′-didehydro-2′, 3′-dideoxythymidine
from 3ʹ DNA termini [57]. As a result, APE1 might have an impact on
the therapeutic index of certain anticancer and antiviral compounds
that target DNA replication and repair pathways. Indeed, studies em-
ploying various methods have revealed that APE1 deficient cells exhibit
hypersensitivity to a number of DNA damaging agents [94–102] and
additionally promote cellular senescence [103].

In addition to its role in surgically removing DNA damage, APE1 is
also a redox factor and involved in both RNA metabolism and antibody
class switch recombination [91,104]. Disruptions in the multifarious
biological functions associated with APE1 can be linked with various
human pathologies such as cancer and neurodegenerative diseases
[12,13]. Since APE1 has roles in both disease suppression and ther-
apeutic agent resistance, it is apparent that if APE1 DNA repair activ-
ities can be strategically regulated that the protein would be a poten-
tially druggable target in both preventative and therapeutic treatments.
An entire array of knowledge on this multifunctional protein is neces-
sary to completely understand the origination of these diseases and to
develop methods of selectively perturbing the associated processes of
repair, transcription, and cell proliferation for beneficial human health
impacts as has been done in other nuclease systems [105,106]. The
continued elucidation of APE1 mechanisms will hopefully provide ad-
ditional ways to target the enzyme and the associated DNA/RNA repair
pathways.
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