
RESEARCH ARTICLE

Impact of axisymmetric deformation on MR

elastography of a nonlinear tissue-mimicking

material and implications in peri-tumour

stiffness quantification

Marco FioritoID
1¤a*, Daniel Fovargue1, Adela Capilnasiu1,

Myrianthi Hadjicharalambous1¤b, David Nordsletten1,2, Ralph Sinkus1,3, Jack Lee1*

1 School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom,

2 Department of Biomedical Engineering and Cardiac Surgery, University of Michigan, Ann Arbor, Michigan,

United States of America, 3 U1148, INSERM, Hôpital Bichat, Paris, France
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Abstract

Solid tumour growth is often associated with the accumulation of mechanical stresses

acting on the surrounding host tissue. Due to tissue nonlinearity, the shear modulus of

the peri-tumoural region inherits a signature from the tumour expansion which depends

on multiple factors, including the soft tissue constitutive behaviour and its stress/strain

state. Shear waves used in MR-elastography (MRE) sense the apparent change in shear

modulus along their propagation direction, thereby probing the anisotropic stiffness field

around the tumour. We developed an analytical framework for a heterogeneous shear

modulus distribution using a thick-shelled sphere approximation of the tumour and soft

tissue ensemble. A hyperelastic material (plastisol) was identified to validate the pro-

posed theory in a phantom setting. A balloon-catheter connected to a pressure sensor

was used to replicate the stress generated from tumour pressure and growth while MRE

data were acquired. The shear modulus anisotropy retrieved from the reconstructed elas-

tography data confirmed the analytically predicted patterns at various levels of inflation.

An alternative measure, combining the generated deformation and the local wave direc-

tion and independent of the reconstruction strategy, was also proposed to correlate the

analytical findings with the stretch probed by the waves. Overall, this work demonstrates

that MRE in combination with non-linear mechanics, is able to identify the apparent shear

modulus variation arising from the strain generated by a growth within tissue, such as an

idealised model of tumour. Investigation in real tissue represents the next step to further

investigate the implications of endogenous forces in tissue characterisation through

MRE.
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Introduction

Solid tumour growth is often associated with an increase of mechanical stresses acting on the

surrounding host tissue. Enhanced intra- and peri-tumoural stresses are mechanical indicators

of solid tumour progression [1] and directly result in the deformation of the typically softer

host tissues. Tumour-generated stress exerted on the adjacent soft tissue arises from two differ-

ent major sources:

• solid: cancer cell proliferation associated to tumour progression [2], electrostatic repulsive

forces generated among closely spaced hyaluronan chains [3] and the resistance of the host

tissue to the deformation generated by the growing tumour mass [4] define the solid-phase

component of the total stress;

• fluid: elevated tumour interstitial fluid pressure (IFP), caused by leaky or non-functional ves-

sels and poor interstitial fluid drainage, leads to the accumulation of a fluid stress [5].

Solid stress presents two directionality-dependent components: a radial and a circumferen-

tial component. While the former acts compressively and gradually decreases when moving

away from the tumour rim, the latter turns from compressive to tensile at the soft tissue inter-

face with the tumour [6]. Mathematical models and experimental data have instead shown

that IFP is responsible for compressive stress and uniformly distributed throughout the

tumour core. These two components add up to define a total stress, which simultaneously

compresses the tumour core and pushes against the host tissue. However, IFP quickly drops to

zero at the periphery of the tumour, making solid stress the sole responsible for host tissue dis-

placement [7, 8]. The strain generated by a pressurised tumour can shift the modulus of the

surrounding host tissue, due to the nonlinear stress-strain behaviour typically exhibited by soft

tissue when subjected to large-scale deformations [9]. The amplitude and distribution of the

generated variation in elastic properties will depends on the tumour shape, the magnitude and

direction of the generated deformation field, as well as on the underlying nonlinearity of the

tissue.

Altered mechanical properties of soft tissue can be useful in diagnosing pathological condi-

tions and cancer. A significant example is given by manual palpation in the case of breast can-

cer, a recommended practice for the detection of hard masses which was found to lead to the

early diagnosis of more than 50% of asymptomatic cancers [10]. Exploiting the same principle,

magnetic resonance elastography (MRE) has emerged in recent years as a valuable imaging

technique capable of characterising the biomechanical properties of basically every organ [11–

22]. Such technique relies on the processing of MR images of the harmonic micro-deforma-

tions generated by propagating shear waves, to reconstruct a shear modulus map of the imaged

tissue. Several studies have shown the possibility to differentiate between healthy tissue, benign

cancers and malignant lesions based on their stiffness using MRE [23–31]. However, all these

results neglect the presence of external or endogenous forces, in order to satisfy the linear vis-

coelasticity approximation usually made for the shear modulus reconstruction. Given the non-

linear nature of soft tissue, this can lead to a bias in the material properties estimation [32].

Only recently have some MRE reconstruction methods begun to account for deformation of

the tissue in response to endogenous or external forces [33, 34]. Under the simplifying

assumption of uniaxial compression, previous mathematical analyses have shown that, by

using a linear viscoelasticity assumption in an underlying nonlinear material, the probed varia-

tion in shear modulus depends on the direction of propagation of the shear waves with respect

to the local deformation field [33]. Following such findings, the peri-tumoural habitat is

expected to inherit a displaced pattern of elastic modulus due to the forces exerted on it by the

pressurised tumour, which quantitatively correlates to the total stress distribution.
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Elevated solid stress has recently emerged as a marker of tumour growth, and it has been

associated to tumour invasion and metastasis [35–37], making its quantification crucial. While

a few ex vivo measuring methods have been proposed [2, 38], up to now in vivo solid stress

quantification remains an ongoing challenge. Nieskovski et al. (2017) have recently presented

a novel technique based on a modified piezoelectric pressure catheter [39], however its inva-

sive nature pushes towards the search for alternatives quantification methods. A recent paper

by Fovargue et al. (2020) presented a proof-of-concept method to non-invasively infer the

solid stress generated by a tumour by embedding a nonlinear mechanical model into MRE

reconstruction [40]. Understanding the underlying relation between mechanical loading and

evolution of an apparent elasticity tensor can allow a direct association between local variation

in stiffness and tumour growth, and could open up an avenue for non-invasive retrieval of the

underlying tumour-generated stress through an inverse approach.

In this paper we present a mathematical framework that models the altered shear modulus

in the host tissue in response to the pressure generated by an idealised growing tumour, as

measured by MRE. Starting from the formulation proposed by [33], the analytical model was

extended to the case of an expanding thick-shelled sphere and was used to predict the resulting

apparent anisotropic variation of the modulus. Experimental phantom results confirmed the

validity of the developed formulation, offering a way to bridge such analytical considerations

to an in vivo setting. This paper, combined with the results presented by Fovargue et al. (2020)

[40], provides the foundations for the development of a quantitative diagnostic approach

based on the integration of MRE data and tissue nonlinear mechanics.

Analytical model

The mechanical properties of soft tissue determine the propagation of the periodic waves

employed in elastography. Quantification, through MR imaging, of the micro-deformation

produced by the probing shear waves enables to estimate the shear modulus of the investigated

tissue. It is well established that a macroscopic deformation applied to a nonlinear viscoelastic

material leads to a variation of its mechanical properties; however, its impact on the additional

small-scale displacement produced by the harmonic waves is not obvious but can be deter-

mined through scale separations. In the first section, a set of equations of motion that captures

the combined viscoelastic effects of a large-strain and small-scale harmonic motion propaga-

tion, developed in [33], is presented. Supporting information on the basic concepts in contin-

uum mechanics could be found in standard texts [41]. This framework is then applied to the

case of the radial inflation of a thick-shelled sphere, an idealisation of the tumour and soft tis-

sue ensemble. Analytical quantification of the shear modulus anisotropic distribution around

the inner sphere is also presented, using a modified Mooney-Rivlin constitutive equation.

Finally, an analytical method to retrieve the shear modulus of the undeformed object from the

material parameters used to model its hyperelastic behaviour is presented.

Linearised constitutive laws of a large-strain viscoelastic body subjected to

small perturbations

The application of an external force onto a deformable incompressible solid, defined in the ref-

erence configuration O0 � R
3
, leads to the diffeomorphic mapping of each point from their

reference position X 2 O0 into a new location x(X, t). This new location is defined in the cur-

rent domain O � R3
at time t 2 [0, T] through the Lagrangian displacement U(X, t) = x(X,

t) − X. Considering periodic waves acting in a time domain I� [0, T] and under the
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assumption of steady state, the generated micro-deformation and associated hydrostatic pres-

sure

uεðx; tÞ ¼ RefuCðxÞeiotg and pεðx; tÞ ¼ RefpCðxÞeiotg ð1Þ

are complex-valued functions of space, where uCðxÞ ¼ urðxÞ þ iuiðxÞ and

pCðxÞ ¼ prðxÞ þ ipiðxÞ. Given the scale separation, we can consider the low-amplitude har-

monic waves uε as a perturbation of the pre-applied macro-deformation U. The two deforma-

tion fields and their associated hydrostatic pressures can then be linearly combined as follows

Uε ¼ U þ uε ð2aÞ

Pε ¼ P þ pε ð2bÞ

Following the formulation proposed by [33], the Eulerian form of the perturbed version of the

equations of motion describing the propagation of elastic waves through a macroscopically

deformed viscoelastic object with density ρ can be written as:

ro2uC þrx � ððG
0
þ iG@

Þ : rxuC þ pC1Þ ¼ 0 ð3aÞ

rx � uC ¼ 0 ð3bÞ

Eq 3b indicates the incompressibility of the material subjected to the micro-deformation uC,

while Eq 3a determines the dynamic behaviour of the propagating shear waves through the

real and imaginary components of the complex viscoelasticity tensor, G� ¼ G0 þ iG@
, defined

as

G0 ¼
1

J
rFPF

TFT and G@
¼
o

J
r@F

@t
PFTFT ð4Þ

Here, F is the deformation gradient, relating the particle positions before and after the defor-

mation, with J being its Jacobian. P is the first Piola-Kirchhoff (PK1) stress tensor. Further

details on the derivation of the presented equations of motion can be found in the S1

Appendix.

Wave propagation in expanded thick-shelled sphere

In this manuscript, we have idealised the tumour-soft tissue ensemble as a thick-shelled sphere,

with the inner void sphere representing the expanding tumour and exerting an isotropic pres-

sure onto the outer sphere, which represents the surrounding host tissue. Following the formu-

lation proposed by [42], we denote with X = X(R, Θ, F) and x = x(r, θ, φ) the location of a

material particle in spherical coordinates before and after the macro-deformation, where

A � R � B 0 � Y � 2p 0 � F � p

a � r � b 0 � y � 2p 0 � φ � p:

Here, A and B are the radii of the inner and outer sphere in its undeformed state, while a and b
are the corresponding radii after the expansion. A spherical deformation state can then be
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described by the following tensors

F ¼

R2

r2

r
R

r
R

2

6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
5

C ¼ FTF ¼

R4

r4

r2

R2

r2

R2

2

6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
5

C2 ¼

R8

r8

r4

R4

r4

R4

2

6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
5

ð5Þ

where r is a pure function of R at each point and θ = Θ and φ = F due to symmetry.

In the case of a hyperelastic material, the mechanical response of the outer sphere can be

modelled through a strain energy density function W = W(IC, IIC, IIIC), which, in light of the

isotropy assumption, is a direct function of the invariants of the right Cauchy-Green stress ten-

sor C. The PK1 stress tensor can then be calculated using the following relation: P = @W/@F.

Through tensor decomposition, we can express P as

P ¼
@WðIĈ ; IIĈÞ

@F
þ PJF� T ð6Þ

with the first term containing an incompressible strain energy density function, dependent on

the unimodular invariants IĈ ¼ J � 2
3IC and IIĈ ¼ J � 4

3IIC, and the second containing the hydro-

static pressure P. Application of the chain rule to the derivative leads to the following expres-

sion:

P ¼ � 2
@W
@IĈ

IĈ
3
þ
@W
@IIĈ

2IIĈ
3

� �

①

F� T þ2J � 2
3
@W
@IĈ
þ
@W
@IIĈ

IĈ

� �

②

F

� 2
@W
@IIĈ

J � 4
3FC

� �

③

þ PJF� T:
ð7Þ

The radial stress component in the current configuration is defined as the inflating pressure pi
(i.e. solid stress) exerted on the inner surface of the sphere. This can be evaluated by substitut-

ing the Cauchy stress tensor, σ = J−1PFT, into the Cauchy momentum equation at equilibrium

in the spherical coordinate system and integrating between r 2 [a, b]. Since the stress gener-

ated by the expanding inner sphere decreases with radial distance, if we assume that r = b is far

from the centre, then the stress would approach 0. In the presence of alternative data at the

boundary, this value can be substituted in and the formulation can be adapted accordingly. As

such data is absent, in this work we assumed σrr(r = a) = pi and σrr(r = b) = 0, from which we

obtain

pi ¼

Z b

a

dsrr

dr
dr with

dsrr

dr
¼ 2

syy � srr

r
ð8Þ

Assuming a specific strain energy density function, an analytical expression of the inflating

pressure as a function of the radial stretch can be found. Considering a steady-state where

transient material relaxation has ceased, we choose to model the rheology of the deformed

thick-shelled sphere using a second order polynomial constitutive equation based on the

Mooney-Rivlin model, under the simplifying assumption of a purely elastic material:

W ¼
1

2
m1ðIĈ � 3Þ þ

1

2
m2ðIIĈ � 3Þ

2 ð9Þ
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where μ1 and μ2 are the material parameters. This model was previously employed in [33] to

validate the impact of large scale deformations on the estimation of the mechanical properties

in PVA samples. Given the roughly incompressible nature of most soft tissues, no volumetric

energy component was added to the employed strain energy density function [9, 43]. The

resulting inflating pressure reads

pi ¼
R

5r4

�

� 5ða3 � A3Þðm1 þ 4m2Þ þ 25ðm1 þ 4m2Þr3

� 8m2

ða3 � A3Þr6

R6
� 28m2

r6

R3
þ 60m2

r2ða3 � A3 þ r3Þ

R2

�r¼b

r¼a

ð10Þ

where R = (A3 − a3 + r3)1/3 following the incompressibility assumption.

Substituting Eq 9 in Eq 7, we can also evaluate the apparent variation in the elasticity tensor

G0 (see Eq 4) caused by the macro-deformation U. The derivatives of the three terms in brack-

ets in Eq 7, i.e.: ①② and ③, are given by the following equations:

@①
@Fkn

¼
1

3
J � 2

3 m1 þ 4m2IĈð2IIĈ � 3Þ½ �Fkn �
4

3
J � 4

3m2ð2IIĈ � 3ÞFnlFlnFnk

� 1

9
m1IĈ þ 8m2IIĈð2IIĈ � 3Þ½ �F� 1

nk

ð11aÞ

@②
@Fkn

¼ 2J � 4
3m2ðI2

Ĉ þ IIĈ � 3ÞFkn � 2J � 2m2IĈFnlFlnFnk

� 1

3
J � 2

3 m1 þ 6m2IĈðIIĈ � 1Þ½ �F� 1
nk

ð11bÞ

@③
@Fkn

¼ 2J � 2m2 IĈFkn � J � 2
3FnlFlnFnk �

2

3
J2

3 IIĈ J � 4
3 � 1

� �
� 3

h i
F� 1

nk

� �

ðFCÞis

þJ � 4
3m2ðIIĈ � 3Þ

@ðFCÞis
@Fkn

:

ð11cÞ

In order to obtain a complete expression for the PK1 stress tensor, the hydrostatic pressure

must also be calculated. This can be derived by comparing the rr component of the Cauchy

stress tensor, defined as a function of P expressed in Eq 7, with the definition given in Eq 8,

yielding

P ¼ m1

R6ð� 10r6 þ 9r4R2 þ R6Þ

6r4R8

þm2

ðr � RÞ2ðr þ RÞ2ðr2 þ 2R2Þð5r6 þ 9r2R4 þ 34R6Þ

6r4R8
:

ð12Þ

Using these results, finally the analytic expressions for G0 and the stress-like tensor G0 : rxuε
previously introduced can be derived. The double contraction between the stiffness tensor and

the gradient of the wave-generated micro-deformation quantifies the apparent shear modulus

sensed by the probing waves. In the simple case of plane waves, only one component of sec-

ond-order tensor G0 : rxuε is non-zero and is identified by the scalar G0. The apparent varia-

tion in G0 caused by a spherical macroscopic compression will be presented in the Results.

Intrinsic shear modulus

Estimation of the parameters characterising a hyperelastic material allows to retrieve its intrin-
sic shear modulus μ in the absence of deformation. Considering a simple shear deformation x1
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= X1 + βX2, where β� 1 under the limit of small strain, μ can be modelled as [44]:

m ¼ lim
b!0

2
@W
@IĈ
þ
@W
@IIĈ

� �

ð13Þ

Assuming a strain energy density function in the form presented in Eq 9, the intrinsic material

shear modulus is calculated as

m ¼ 2m1: ð14Þ

Materials and methods

Plastisol phantom to mimic soft tissue nonlinear behaviour

To validate the developed mathematical framework, we have built an experimental set-up

made of an inflatable balloon/catheter inserted into a cuboid phantom, characterised by a non-

linear viscoelastic behaviour. In the next section, the details of the phantom construction are

given. A uniaxial harmonic loading was carried out to identify the rheological behaviour of the

material subjected to harmonic stress, as presented in the following section. Afterwards, a

mathematical model to describe the viscoelastic response of tested material samples is given,

while the last section explains the fitting process employed to assess its suitability to predict the

experimental rheological data.

Phantom construction. The phantoms prepared for the inflation experiment were made

with 80% soft-grade plastisol (Lure-solutions, UK) and 20% additional softener (non-phthalate

plasticiser), following the protocols proposed by [45, 46]. 700 mL of the mixture were con-

stantly stirred and heated up to * 170˚C. The solution was then poured into a 86 × 86 × 115

mm3 tin cuboidal mould (Tinware Direct Ltd, Bedford, UK) and left to solidify at room tem-

perature for a minimum of 12 h. 1% w/v silica particles were homogeneously scattered into the

mixture when the material was still in a semi-liquid state, to help track the deformation field

from the analysis of the MR images. Compression tests from a different study demonstrated

that the addition of 1% w/v of micro-sized beads had little or no impact on the intrinsic elastic

modulus of plastisol samples [47]. Once gently removed from the mould, the meniscus formed

on the open side of the mould, caused by a quicker polymerisation around the walls, was cut

off to preserve the cuboid geometry, leaving an approximately 86 × 86 × 70 mm3 cube.

Rheological characterisation of plastisol material. To assess the viscoelastic behaviour

of the phantom, a rheological characterisation of the material was carried out at the Institute of

Bioengineering of Queen Mary University of London (London, UK). Material samples were

subjected to uniaxial harmonic micro-compressions, assumed to mimic the conditions gener-

ated by the propagating waves used in MRE. Additional static macro-compressions were

superimposed to the periodic loading. In detail, each sample was placed between the parallel

plates of a BOSE Electroforce 5500 controlled stress rheometer, ensuring that both plates were

fully in contact with the cuboid. This instrument allowed for a compression in the vertical

direction (σ(3,3) = σ), while keeping the other directions stress-free (σ(1,1) = σ(2,2) = 0), and for

the simultaneous measurement of the displacement of the top plate. All samples were precon-

ditioned through an initial 13% compression for 5 min. Each sample was then re-positioned

between the plates, compressed along the vertical direction and subjected to six cycles of

0.5mm (* 1.5%) harmonic micro-deformations along the same direction, at increasing fre-

quencies for a pre-determined period. This procedure was repeated for four different levels of

compression (7%, 13%, 20%, 26%) while alternating the samples. Afterwards, each sample was

re-positioned and a 4 mm (*11%) harmonic macro-deformation was applied around a mean
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compression level of 13%, using the same set of frequencies as in the previous cases. The details

of the experimental protocol are summarised in Table 1, where all compressions refer to the

original sample height, while an illustration of the experimental setup and an example of the

acquired data are presented in Fig 1.

Using this protocol, three cuboidal samples were employed to investigate the material prop-

erties under varying plastisol concentrations: 70%, 80% and 90%, respectively, with 1% w/v

trackers.

Viscoelastic modelling. Following the mathematical framework presented in [33], we

developed a viscoelastic model to describe the rheological behaviour of the plastisol samples,

probed through the mechanical test presented in the previous section.

The vertical strain, λ = Δh/h, can be calculated from the measured height of the sample, h,

and its variation under compression, Δh, at any point of the oscillation. Under the assumption

of incompressible isotropic material [46], the deformation gradient and the right Cauchy-

Green deformation tensor are given by

F ¼

1
ffiffiffi
l
p

1
ffiffiffi
l
p

l

0

B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
A

; C ¼

1

l

1

l

l
2

0

B
B
B
B
B
B
@

1

C
C
C
C
C
C
A

: ð15Þ

The stress arising from the applied deformation can be modelled in terms of the second Piola-

Kirchhoff (PK2) stress tensor S defined inO0. Again, it is convenient to separate its deviatoric

component, S0, from a term containing the hydrostatic pressure P and to further decompose S0

into the sum of a purely elastic component, S0e, and a viscous one, S0v:

S ¼ S0 þ PJC� 1

¼ S0e þ S0v þ PJC� 1:
ð16Þ

Here, the elastic term captures the stress generated by the total sum of macro- and micro-

deformations, while the viscous term accounts for the time-dependent response of the material

resulting from the small-amplitude oscillations. An analytical model of S0e for a hyperelastic

material can be obtained from Eq 7 using the relation S0 = F−1P0 and choosing a specific

incompressible strain energy density function We:

S0e ¼ 2
@We

@IĈ
J � 2

31 �
IĈ
3
C� 1

� �

þ 2
@We

@IIĈ
J � 2

3IĈ1 � J � 4
3C �

2IIĈ
3

C� 1

� �

ð17Þ

In the absence of a known strain energy density function capable of capturing the elastic and

viscous response of this material, we employed the same model for both the elastic and viscous

Table 1. Details of the protocol used for the rheological test. Either harmonic micro- (*1.5%) or macro-deformation (*11%) was applied on top of the uni-axial com-

pression of the samples.

Uniax.-compression Frequency (Hz) 0.1 0.5 1 2 5 10

Micro-oscill. ±1.5% 7%

13%

20%

26%

Duration (s) 100 40 40 40 40 60

Macro-oscill. ±11% 13% Sampling freq (kHz) 0.1 0.5 0.5 1 1.25 1

https://doi.org/10.1371/journal.pone.0253804.t001
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component of the PK2 stress tensor, with the latter term further subjected to the Caputo frac-

tional time derivative of order α [48]:

S0e ¼ S0eðμÞ; S0v ¼ S0vðδÞ ¼ Da
t S
0

eðδÞ ð18Þ

Here μ = [μ1, μ2] and δ = [δ1, δ2] are the sets of material parameters defined in the model. Frac-

tional calculus models have been proposed as a simple and effective way to represent the visco-

elastic properties of complex systems like soft tissue [49], and the suitability of this approach

was validated on the experimental data. The complete expression of the PK2 stress tensor thus

reads [33]:

S ¼ m1S
0

e1 þ m2S
0

e2 þ d1Da
t S
0

e1 þ d2Da
t S
0

e2 þ PJC� 1 ð19Þ

where the material parameters have been factored out due to the linearity of the model in the

parameters. Given the mild viscosity observed in the hyperelastic material employed to vali-

date the model (see Results), it is relevant to present the case when the fractional derivative

order α approaches zero. In this case, S0v approaches the same form as its elastic counterpart

Fig 1. Viscoelastic characterisation of plastisol material. The experimental setup used for the viscoelastic characterisation of the phantom material (left).

The moving plate was used to apply a fixed vertical compression on the sample and the load was measured through an integrated sensor. For each

compression level, the phantom was subjected to four consecutive micro-oscillations and one macro-oscillation test (right). Each of those tests consisted of

a series of oscillatory compression cycles centred around the selected compression level at different frequencies, as presented in the zoomed panel.

Figure produced after the model proposed in [33].

https://doi.org/10.1371/journal.pone.0253804.g001
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[50] and the full S0 can be written as

S0 ¼ S0eðmÞ þ lim
a!0

Da

t S
0

eðdÞ ¼ S0eðmÞ þ S0eðdÞ: ð20Þ

Similar to what done for the PK2 stress tensor, when viscosity is non-negligible, the strain

energy density function can be expressed as the linear combination of an elastic and viscous

term:

W ¼Weðm; IĈ ; IIĈÞ þWvðd; IĈ ; IIĈ ; @
a

t IĈ ; @
a

t IIĈÞ ð21Þ

As a consequence, by applying the addition rule for limits, also the intrinsic shear modulus

presented in Eq 13 can be written as the addition of two components:

m ¼ me þ mv

¼ lim
b!0

2
@We

@IĈ
þ
@We

@IIĈ

� �

þ lim
b!0

2
@Wv

@IĈ
þ
@Wv

@IIĈ

� �

:
ð22Þ

For small fractional derivative orders, the same constitutive law can be employed for both We

and Wv, however keeping the scaling parameters μ and δ. Thus, using the modified Mooney-

Rivlin law given in Eq 9, the intrinsic material shear modulus is calculated as

m ¼ 2ðm1 þ d1Þ: ð23Þ

Rheological data analysis and model fitting. The modified Mooney-Rivlin strain energy

density function proposed in Eq 9 was used to fit the measured traction to the (3,3) component

of the Cauchy stress tensor obtained from the vertical displacement. Specifically, using the

relationship [41]

σ ¼ J � 1FSFT ð24Þ

and substituting Eq 16 into Eq 24 it is possible to express the Cauchy stress tensor as a function

of the material parameters of the selected hyperelastic law:

σðμ; δÞ ¼ σ0eðμÞ þ s
0
vðδÞ þ P1

¼ J � 1FS0eðμÞF
T þ J � 1FS0vðδÞF

T þ P1
ð25Þ

To model the vertical normal component of the total Cauchy stress tensor measured by the

rheometer ðsð3;3Þ ¼ s
0
ð3;3Þ
þ PÞ, the hydrostatic pressure must still be evaluated. Since no stress

is applied on the free surfaces of the sample, e.g. n1 = (1, 0, 0)T, then ðσ0 þ P1Þn1 must be zero.

P can then be formulated as

Pðμ; δÞ ¼ � ½s0eð1;1ÞðμÞ þ s
0
vð1;1ÞðδÞ� ð26Þ

which can be replaced in Eq 25 to obtain the traction applied on the loaded surface, returning

an analytical expression of the applied traction:

sð3;3Þ ¼ ½s
0
eð3;3ÞðμÞ � s

0
eð1;1ÞðμÞ� þ ½s

0
vð3;3ÞðδÞ � s

0
vð1;1ÞðδÞ� ð27Þ

For each sample, let now tDij be the set of traction data measured in the direction of compres-

sion at all time points k = 1, 2, . . ., N of the jth frequency cycle (with j = 1, 2, . . ., 6, as 6 vibra-

tion frequencies have been investigated, excluding the data points corresponding to the initial

loading of the sample) and ith level of compression (with i = 1, 2, . . ., 5, accounting for the four

compression levels chosen for the micro-oscillation tests plus the compression level employed
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in the macro-oscillation test). In the same way, let tMij ¼ sijð3;3Þð~μÞ be the modelled traction

(from Eq 27), where ~μ ¼ ½μ; δ� is the combination of the free parameters to be estimated, such

that σ 0ð~μÞ ¼ σ 0eðμÞ þ σ0vðδÞ. Given the oscillatory nature of the data, the Fourier spectra

F ðtMÞ and F ðtDÞ of the modelled traction and the measured data were employed to define the

objective function to minimise. The objective function, representing the distance between the

fitting model and the observed data, was designed as follows and minimised through linear

least squares regression:

error% ¼ 100�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X

i;j;k

jFðtDij Þk � FðtMij Þkj
2

jFðtDij Þkj
2

v
u
u
t ð28Þ

The normalisation factor is such that the fitting error reaches 100% when all free parameters

are equal to zero.

Note that α, the order of the Caputo fractional derivative, is not part of ~μ. Instead, the range

between α = 0 (Hooke’s Law) and α = 1 (Newton’s fluid model) was iteratively investigated,

seeking the value that produced the best fit with a ±0.005 precision.

Experimental validation of analytical framework in phantom

An inflation experiment was devised to validate the mathematical framework. An inclusion

inside a soft tissue-mimicking phantom was inflated to different levels, to reproduce the stress

generated by an expanding tumour. The pressure applied on the surrounding material was

quantified as detailed in the next section. For each inflation state, the shift in shear modulus of

the phantom material was reconstructed using MR elastography. Details of the wave genera-

tion, image acquisition and G0 reconstruction are then presented. High-resolution MR images

of the inclusion were also acquired and estimates of the strain fields were obtained using

image registration. Given the expected increase in complexity of the wave-behaviour com-

pared to the modelled results, where a simple form of the deformation gradient F was chosen,

an improved method to assess the local deformation sensed by the probing waves is finally

proposed.

Inflating pressure measurement. A CH6 Foley catheter (The Vet Store, Bradford, UK)

was inserted into the phantom and inflated with water using a SOFT-JECT1Luer syringe. To

provide an access for a tumour-mimicking inclusion, a metallic tube with the diameter of the

catheter was inserted in the plastisol matrix during the curing period and gently removed

afterwards. To minimise viscous wave attenuation for the MRE data acquisition, the pre-made

catheter access was located less than 20 mm away from the side of the phantom in contact with

the piston used for the generation of the shear waves.

The pressure applied by the injected water onto the inner wall of the inflated balloon was

measured using an MPXV5100DP integrated silicon pressure sensor, connected to the catheter

through a series of 3-way tap stopcocks (Fig 2a). The output signal, read through an Ardui-

no1Mega board, returned the average radial stress exerted onto the compliant balloon inner

membrane (Fig 2b). To retrieve the actual pressure exerted by the balloon walls on the phan-

tom itself, the pressure required to expand the compliant balloon when no external resistance

is applied was characterised and subtracted from the acquired measurements (Fig 2c).

Preliminary experiments showed that injected volumes larger than 0.4 mL could lead to

phantom rupture, hence limiting the maximum balloon size to said value. Over a volume

range of 0 to 0.4 mL, the balloon was inflated in steps and the pressure was recorded for 5 to 10

min, to allow the time-dependent stress relaxation of all solid components in the system

(phantom+balloon) to reach an equilibrium. A more accurate volume estimation was obtained

PLOS ONE Impact of axisymmetric deformation on MR elastography and implications in peri-tumour stiffness quantification

PLOS ONE | https://doi.org/10.1371/journal.pone.0253804 July 9, 2021 11 / 28

https://doi.org/10.1371/journal.pone.0253804


through the intensity-based segmentation of the balloon from high resolution MR images. The

principal axis of the segmented balloon were calculated to assess its dimensions. While one of

the principal axes was fixed along the catheter line, the other axes grew in relative magnitude

at each inflation state. This was due to the fact that the balloon was not located at the tip but

some distance back along the catheter. A ratio of the axis close to 1 indicates a closer approxi-

mation of a perfect sphere. A close approximation of a spherical shape was achieved when 0.4

mL of water were injected into the catheter line, as can be seen in Table 2. Because of the par-

ticular manner in which the balloon underwent inflation (whereby the equatorial region

would bulge out before the poles) the quoted major axis lengths are worst-case estimates,

meaning the balloon was likely more spherical than indicated in the table. However, the pre-

cise shape could not be determined due to imaging resolution limit. Three replicates of the

Fig 2. Details of the inflation experiment. (a) The Foley catheter used to mimic tumour expansion was connected to

a MPXV500DP pressure sensor to measure the radial stress generated through inflation. (b) Schematics of the pressure

data acquisition scheme. (c) The actual pressure exerted on the surrounding material is obtained through the

subtraction of the intrinsic balloon resistance from the measured pressure.

https://doi.org/10.1371/journal.pone.0253804.g002

Table 2. Minor-to-major principal axes ratio in the segmented balloon. The figures correspond to worst-case esti-

mates, as the balloon would typically inflate from the equatorial region at low volumes but the major axis could not be

accurately determined due to the limits in imaging resolution.

Injected volume (mL) Average ratio (-)

0.0 0.25 ± 0.07

0.1 0.33 ± 0.10

0.2 0.50 ± 0.15

0.3 0.74 ± 0.18

0.4 0.85 ± 0.16

https://doi.org/10.1371/journal.pone.0253804.t002
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inflation experiment were carried out; in the last replicate, gadolinium (Gadovist1) was

diluted in water to a 0.3 mM concentration to provide better MR contrast.

For the entire duration of each experiment, the time interval during which the balloon was

kept inflated at each volume was recorded, so that the pressure acquisition could be repeated

one more time on the bench for reproducibility. This was not possible for the second replicate

as the balloon popped.

Eq 8 was then used to fit the experimental data. In this case, we assumed that any residual

viscoelastic relaxation of the material had reached asymptote at the time of measurement. Con-

sequently, unlike the viscoelastic model employed for the rheological characterisation of plasti-

sol, the purely elastic constitutive equation in Eq 9 was deemed sufficient to describe the

material behaviour.

MR images. MR images of the phantom were acquired at the different levels of inflation

of the balloon catheter after each pressure measurement. During both processes, the phantom

was positioned on a supporting stage, located at the centre of the bore of a 3 T Philips Achieva

Multi-Transmit scanner (Philips Healthcare, Best, Netherlands), and kept in position by a

back wall and top plate with adjustable height. All contact surfaces were coated with lubricant

to avoid friction with the supporting stage, that would result in different boundary conditions

from those assumed in the analytical model. To generate the shear waves required for elasto-

graphy imaging, the custom-made electromagnetic transducer presented in [33] was

employed. A schematics of the vibration rod used to propagate shear waves through the phan-

tom is shown in Fig 3.

High-resolution MR images of the balloon (Fig 3) were acquired at each inflation state

using a spin echo sequence with TR/TE = 1394 ms/ 13 ms (TR = 1239 ms for the third repli-

cate). The image matrix was 144 pixel × 144 pixel, while the number of slices was set equal to

80 or 90, depending on the final size of the phantom, with no gaps. The image resolution was

0.889 × 0.889 × 0.89 mm3. A double SENSE Flex Large coil was used for signal enhancement.

Wave images represent the complex displacement fields generated by the shear waves (Fig

3). They were acquired using a GRE sequence [51] (TR/TE: 187.5 ms/9.21 ms) with motion

encoding gradients (MEGs) along the phase (p), frequency (m) and slice (s) encoding direc-

tions. MEG and transducer frequency were both set at 210 Hz. 13 sagittal slices with a 2 mm

isotropic resolution and no gap were acquired. Each slice covered an in-plane FOV of

128 × 128 mm2 centred on the inclusion. An imaging plane orthogonal to the direction of the

catheter was chosen at the equatorial portion of the balloon where the geometry remained

Fig 3. MR image acquisition. Schematic representation of the inflated balloon inside the phantom and of the vibrating

rod used to generate the shear waves (left). A high-resolution MR image of the inclusion (coronal, blue dotted lines)

and a wave image (sagittal, red dotted lines) are also shown (right).

https://doi.org/10.1371/journal.pone.0253804.g003
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closest to a sphere in all inflation states. This allowed sampling of the mechanical states from

where the confounding effects were minimal, and eliminated the catheter line in the image, as

well as avoided the polar regions where the resolution limit would increasingly limit the data

analysis. 8 time points were sampled along the wave cycle. 4 signal averages were used, leading

to a scan time of *25 min for each inflation state.

3D maps of the component of the elasticity tensor probed by the shear waves, i.e. G0, were

reconstructed using a state-of-the-art curl-based approach [52] with a 5 voxel isotropic recon-

struction window. Pre-filtering was carried out using a 3D Gaussian kernel (σ = 1.5 voxel, sup-

port = 5 voxel isotropic).

The voxel-wise ratio between the shear modulus reconstructed at each inflation state and

that of the deflated case returned the relative shift induced by the deformation. Given the dif-

ferent spatial domains where the data were acquired, the G0 map obtained from the deflated

balloon domain had to be mapped into each deformed configuration using the macro-defor-

mation fields estimated from high-resolution MR image registration (see next section).

Given the non-uniform location of the wave source throughout different replicates of the

inflation experiment, a Cartesian representation of the variation in shear modulus around the

inclusion did not offer an easy comparison among experiments or with the corresponding ana-

lytical results. A representation based on radial coordinates makes the understanding of the

deformation probed by the shear waves simpler, as shown in Fig 4. With this visualisation, 0˚

and ±180˚ lie along the axis parallel to the mean k-vector calculated in the vicinity of the

balloon.

Local deformation probed by shear waves. The local macro-deformation induced at

each inflation state was estimated through the non-rigid registration of the high-resolution

MR images using the open-source software SimpleElastix [53]. The registration strategy, based

on B-Splines, was previously optimised and validated using a synthetic deformation image

series. Among the parameters, the spacing between the nodes of the B-Splines grid, as well as

the cost function representing the similarity between the fixed and moving image, were found

to be crucial for a successful registration. For the inflation experiment, a 4.45 mm spacing and

mutual information were chosen. Improved results were obtained using a multi-resolution

approach.

Experimentally, it is difficult to achieve perfect plane waves. The calculation of the gradient

of the wave images allowed the voxel-wise estimation of the direction of the wave vector K. A

non-uniform wave propagation direction could in fact result in the local sampling of a

Fig 4. A non-Cartesian way to visualise the impact of the mimicked tumour-generated strain around the inflated

balloon. Left: example of Cartesian representation of the inclusion where circular regions at different radial distances

from the centre of the inclusion are showed with different colours. Right: a better visualisation, independent on the

mean direction of propagation of the waves, is obtained through the unravelling of the image following the perimeter

of each circular region.

https://doi.org/10.1371/journal.pone.0253804.g004
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component of the deformation vector that is different from the one expected from the mean k-

vector. To account for that, we propose a new index, the “probed stretch” CKK, defined as

CKK ¼
CK � K
j K2 j

(
> 1; extension

< 1; compression
ð29Þ

This scalar quantity represents the projection of the right Cauchy-Green strain tensor on the

direction of the k-vector, independent of wave attenuation. It provides an identifier of the

local deformation probed by the shear waves, an intuitive representation of which is shown in

Fig 5. The probed stretch will be used as a reference metric to determine the ability of the

model to correctly identify the regions of compression and tension in the investigated setting,

as well as to associate the reconstructed variation in G0 to the probed deformation.

Results

Analytically derived shear modulus distribution

A plane-wave travelling through the thick-shelled sphere will appear as a θ-polarised r-propa-

gating wave or as a r-polarised θ-propagating wave in region Ⓐ or Ⓑ around the inclusion

presented in Fig 6a. The generated displacements are characterised by

Ⓐ rur;y
C ¼

0 0 0

du 0 0

0 0 0

2

6
6
6
4

3

7
7
7
5

and Ⓑ ruy;rC ¼

0 du 0

0 0 0

0 0 0

2

6
6
6
4

3

7
7
7
5

ð30Þ

respectively. In both these two simple cases, the double contraction between the stiffness ten-

sor G0 andruC, found in the purely elastic version of Eq 3 (following the assumptions of low

viscosity made in the modelling of the hyperelastic behaviour of the material and validated in

the following section), returns a second-order tensor with only one non-zero component. This

result reveals how an ideal plane wave probes only the apparent variation of one single

Fig 5. A new metric to account for the local deformation probed by the shear waves. Left: shear waves probe the

material shear modulus along their direction of propagation, identified by the k-vector. Intuitively, this is comparable

to the projection of the deformation field generated by the macro-deformation onto the k-vector. Right: for a spherical

deformation, the angle between the deformation vector and the k-vector determines the magnitude of the probed

material displacement and allows to differentiate between compression and tension.

https://doi.org/10.1371/journal.pone.0253804.g005
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component of G0, namely G0. Following the reasoning laid out for the definition of the “probed

stretch” CKK, the angle between the k-vector and the local direction of the deformation field

modulates the intensity and type of change. Fig 6b shows how the apparent modulus softens

when a compression is aligned with the wave propagation direction, case Ⓐ of Fig 6a, while it

stiffens when tension is sensed, case Ⓑ. The anisotropic patterns generated around an

expanded thick-shelled sphere, as a function of the relative radial position at different radial

stretches, are instead plotted in Fig 6c. These analytic predictions will be compared with the

patterns measured through MRE in a phantom setting in the last section of the Results.

Viscoelastic characterisation of phantom material

The proposed model predicts the viscoelastic behaviour of the material. The fitting of

the rheological data from all tested samples at different plastisol concentrations returned a

minimum error below 4% for fractional derivative orders around 0.1, which suggest a mild vis-

cosity. An example of the quality of the best fit is displayed in Fig 7a. Here, the modified

Mooney-Rivlin model proves capable of capturing the nonlinear response to the initial load-

ing, as well as the amplitude of both the macro- and micro-oscillations. This was verified

against the entire frequency range employed here (0.1 -10 Hz).

Fig 6. Modelling the mimicked tumour-generated pressure. (a) Wave propagation through the thick-shelled sphere.

Due to the local spherical coordinate orientation, at Ⓐ, the wave will appear as θ-polarised, travelling in the radial

direction. At Ⓑ, the opposite is found. (b) When the waves approach the inner sphere head-on, inflation leads to an

apparent softening of the material (blue curves in the blue region). In contrast, along the peripheral interface of the

inner sphere, a stiffening is detected (red curves in the red region). Given a constant μ1 = 1, the parameter μ2 shapes the

curves differently in the two regions, especially in the case of larger deformations (larger a/A). The relative G0 variation

is given in logarithmic scale. (c) 2D representation of the shear modulus variation patterns generated by an inflated

inner sphere as probed by plane waves propagating from left to right.

https://doi.org/10.1371/journal.pone.0253804.g006
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A similar small error was obtained for α values spanning from 0.04 to 0.2 (Fig 7b). Over

this range, the material parameters characterising the elastic and the viscous part of the model

appeared linearly coupled, such that the sums μ1 + δ1 and μ2 + δ2 remained constant. Conse-

quently, rather than the best estimate of the single parameters, it was preferred to consider the

means (μ1 + δ1)/2 and (μ2 + δ2)/2 and to average their values over the selected α range. The

same approach was used for the fitting error. These combined parameters are presented in Fig

7c and are reported in Table 3.

Plastisol concentration increases material stiffness and nonlinearity. The loading curve

of each sample used for the rheological experiment demonstrated a correlation between plasti-

sol concentration and material nonlinearity (Fig 8a). The coefficient scaling the quadratic term

Fig 7. Modelling the rheological behaviour of the plastisol phantoms. (a) Example of the best fit of the rheological

data acquired from the 70% plastisol sample. Overall the modified Mooney-Rivlin model proved able to reproduce the

induced oscillations even at the highest employed frequency. The nonlinear increase in traction was also captured, as

well as the relaxation process visible over the explored time-frame. (b) Data from different plastisol concentration are

modelled by equally small fractional derivative orders. A fitting error smaller than 4% was obtained for α values

between 0.05 to 0.2. The actual minimum, αmin, is indicated by a filled symbol. (c) Best estimated parameters over

fractional derivative orders going from 0.05 to 0.2. Given the parameter coupling, the means of the parameters scaling

the linear terms and of those scaling the quadratic ones were considered. The error bars represent the range of values

assumed over the selected α range, centred on the average value. The same approach was used for the fitting error.

https://doi.org/10.1371/journal.pone.0253804.g007

Table 3. Best estimate of material parameters characterising the rheological properties of samples made with dif-

ferent plastisol concentrations.

Model Plastisol μ1þδ1
2

μ2þδ2
2

Error%

Mooney-Rivlin 70% 1953 kPa 872 kPa 3.22%

80% 2320 kPa 1648 kPa 3.66%

90% 3381 kPa 2358 kPa 3.31%

https://doi.org/10.1371/journal.pone.0253804.t003
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of the polynomial fit, in fact, showed a direct dependence on the plastisol percentage in the

mixture.

In a similar way, the material stiffness was found to grow with the plastisol content. Fig 8b

showed that the intrinsic shear modulus of the samples, calculated from the modelling param-

eters according to Eq 23, followed a quadratic trend.

Fitting analytical model to pressure data

The family of pressure curves obtained from Eq 8 exploring the use of different material

parameters μ1 and μ2 is shown in Fig 9a. In the absence of μ2, the model was reduced to the

Neo-Hookean case, with the parameter μ1 working as a scalar and without modifying the

trend of the inflating pressure. The quadratic term, instead, controlled the magnitude of the

generated pressure at higher levels of inflation. The presence of both parameters gave rise to a

qualitative change in pressure-radius relation, namely producing S-shape curves.

The experimentally measured pressure applied by the inflated balloon onto the surrounding

phantom is listed in Table 4, together with the corresponding radial stretch (a/A). The mathe-

matical formulation proposed in Eq 8 was fitted to the data points obtained from three repli-

cates of the inflation experiment (Fig 9b), showing a correlation between the analytical

predictions and the experimental data (r2 = 0.87). Using Eq 14, the best fitting parameters

returned an estimate for the intrinsic shear modulus of the material of 11.1 kPa, a good

approximation of the mean value of 12.0 ± 0.4 kPa measured through MRE when the balloon

was deflated.

Fig 8. Material stress-strain nonlinearity. (a) The stress-strain response of samples made with different plastisol

concentrations was fitted with a second-order polynomial function. The increasing value of the parameter scaling the

quadratic term associates a higher plastisol content to an increased material nonlinearity. (b) The intrinsic shear

modulus of the material was also found to increase with the amount of plastisol in the mixture, following a quadratic

trend.

https://doi.org/10.1371/journal.pone.0253804.g008
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Experimental G0 patterns agree with analytical predictions

Fig 10 provides the comparison between the probed stretch (first column) and the measured

(second column) and analytically predicted variation in G0 associated to different inflation lev-

els with respect to the deflated case.

The relative G0 variation patterns generated from the thick-shelled sphere approximation

matched the alternation between regions of tension and compression estimated through the

probed stretch (CKK) using the measured displacement. Despite the simplifying assumptions,

this qualitative agreement confirms the reliability of the proposed model to associate the cor-

rect change in G0 to the probed deformation in the investigated setting. However, given the

different information portrayed by the probed stretch and the analytical predictions, a quanti-

tative comparison is not possible. Nevertheless, the increase in absolute pixel intensity with

higher inflation, visible in both cases, supports the direct relationship between the two results.

Fig 9. Fitting the experimental pressure data. (a) Example family of curves representing the inflating pressure

obtained from the linear (left) and quadratic (centre) term of the modified Mooney-Rivlin law employed. The

combined contributions generate a characteristic family of S-shaped curves (right). (b) The modified Mooney-Rivlin

model provides a good approximation of the pressure data obtained from the three replicates of the inflation

experiment (r2 = 0.86).

https://doi.org/10.1371/journal.pone.0253804.g009

Table 4. Inflating pressure (kPa) / radial stretch (-) measured from the three replicas of the inflation experiment.

Inflation Experiment 1 Experiment 2 Experiment 3

0.1 mL 5.2 ± 1.0 kPa / 1.06 ± 0.19 9.3 kPa / 1.38 ± 0.23 4.5 ± 0.7 kPa / 1.14 ± 0.40

0.2 mL 17.8 ± 0.2 kPa / 1.43 ± 0.20 18.8 kPa / 1.98 ± 0.26 10.4 ± 0.6 kPa / 1.67 ± 0.62

0.3 mL 20.7 ± 0.3 kPa / 2.33 ± 0.51 20.0 kPa / 2.45 ± 0.28 18.7 ± 4.6 kPa / 2.28 ± 0.78

0.4 mL 21.5 ± 0.0 kPa / 2.80 ± 0.43 22.2 kPa / 2.81 ± 0.35 24.1 kPa / 2.95 ± 1.01

https://doi.org/10.1371/journal.pone.0253804.t004
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Fig 10. Measured G0 variation supports mathematical model. Polar representation of the probed deformation (left), calculated using the local k-vector

estimated from the wave images, compared with experimental (middle) and analytical (right) relative shear modulus variation at the four inflation levels

investigated through three replicas of the inflation experiment. The common elements in the generated patterns are highlighted with arrows. The

balloon region is blacked out.

https://doi.org/10.1371/journal.pone.0253804.g010
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The variation in G0 reconstructed from the MRE data also exhibits several elements in com-

mon with the G0 variation obtained with analytic idealisation (see arrows), especially in the

-135˚ to 135˚ region, corresponding to the leading edge of the inclusion. Over these areas, the

patterns show a quantitative agreement with the analytical predictions, too. Nevertheless,

unexpected patterns are also present, principally at lower strains, where the less prominent

nonlinear tissue response results in lower SNR. Furthermore, a better agreement was generally

found starting from one or two voxels away from the interface between the inclusion and the

surrounding phantom material.

Discussion

In this paper, the apparent shift in shear modulus of a soft tissue phantom around a pressur-

ised inclusion was investigated using MRE. An analytical framework incorporating the impact

of a large-strain deformation on the wave equation for a viscoelastic body was presented,

highlighting the dependence of the stiffness tensor G� on the underlying strain and on the

stress-strain relationship. For the derivation of a mathematical model, the idealised case of an

expanding nonlinearly-elastic thick-shelled sphere was used to simulate the pressure exerted

by an expanding tumour onto its surroundings. Actual tumours can although present rather

irregular shapes, with pronounced eccentricity and/or invasive protrusions that can favour

invasion and migration [54]. Some studies have attempted to model a solid tumour using

more complicated shapes [55–58], however an axisymmetric geometry is a common starting

point in most studies, due to the simpler analytical formulation [4, 8, 59–63]. Here we chose to

employ the simplifying assumption, in order for the coupled tumour mechanics and MRE to

remain analytically tractable, as well as to establish baseline results against which secondary

geometric effects can be benchmarked.

Despite having based the model on an axisymmetric inflation, the employed balloon-cathe-

ter did not present a spherical shape until 0.4 mL of water were injected. Nonetheless, the two

principal axes orthogonal to the direction of the shaft of the catheter showed comparable val-

ues at all inflation states, confirming a symmetric expansion in the plane transverse to the cath-

eter. Consequently, the position of the transducer and the imaging plane were chosen such

that we could observe the impact of this circular stretch on G0 probed by shear wave propagat-

ing in the same plane. The mechanical effects were also sampled from selected regions where

the confounding factors were minimal, e.g.: where the signal-to-noise (or effect-to-noise) was

expected to be maximum, at the same time avoiding the resolution limit at the polar region

that increasingly hamper the analysis. In spite of the experimental set up not perfectly repro-

ducing the conditions used for the definition of model, analogous patterns were obtained

between the modelled and reconstructed G0 distribution, suggesting that different geometrical

conditions might produce comparable results. Another analytical work produced similar pres-

sure-strain curves using different simulated tumour shapes, supporting our simplifying

assumptions and mitigating the practical limitations encountered in the design of suitable

experimental conditions [40].

Another important assumption which underlies the proposed model concerns the chosen

hyperelastic law. While the initially presented wave equations (Eq 3) assumed a full viscoelastic

framework, a nonlinear elastic constitutive equation was instead used when describing the

apparent shear modulus probed by plane waves when propagating through an inflated thick-

shelled sphere. As introduced earlier, the choice to neglect the viscous terms in the latter for-

mulation was dictated by the assumption that MRE was performed at steady state, after any

time-dependent deformation had occurred. This allowed to make the analytical modelling

more manageable and to better represent the experimental conditions.
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With this premise, we could identify a signature anisotropic G0 pattern around the expand-

ing inner sphere, using a modified Mooney-Rivlin constitutive equation. This variation in G0

displayed a close agreement with the newly introduced “probed stretch”, confirming the ability

of the developed model to predict the regions of probed tension and compression. This was

true despite the experimental challenges to satisfy the plane wave assumption and in spite of

the simplified geometric idealisation. The probed stretch, hence, presents itself as an alterna-

tive trend indicator, potentially simpler than G0 ratio and independent of MRE reconstruction.

In a similar way, the strain-generated shift in G0 estimated experimentally from the MRE data

showed several elements in common with the corresponding analytical predictions. Neverthe-

less, in this case, a full qualitative correspondence was not observed, especially at lower levels

of inflation, where reduced SNR played a significant role in stiffness reconstruction. In light of

the agreement between the model and the probed deformation, the dissimilarities can be

ascribed to issues in the MRE reconstruction process. The assumption of local homogeneity

required in the curl-based approach was not respected at the interface between the balloon and

the surrounding phantom, condition that has been shown in silico to lead to the underestima-

tion of the reconstructed G0 [64]. A recent reconstruction method based on localised diver-

gence-free FEM has shown to better handle material discontinuities and could produce

improved results [64]. The assumption of near-incompressibility of tissue made for the

employed reconstruction and generally accepted for many MRE reconstructions can also

impact G0 estimation. While the discussion of the best reconstruction method for the pre-

sented investigation falls outside the scope of this paper, a complete review of the limitations

of the most common reconstructions used in MR elastography, including the one used here,

can be found in [40]. The liquid content of the balloon provides another challenge for the

MRE reconstruction, as it does not support the propagation of shear waves. In the absence of

shear displacement, noise in the MR images would be interpreted as high-frequency small-

amplitude displacement and associated to a very soft material. Given the size of the reconstruc-

tion window, this underestimation can affect the estimation of G0 for the voxels close to the

discontinuity. Despite being limiting factors in the developed experimental settings, such

issues are not expected to be as relevant in the case of a real tumour, as the material transition

would be less abrupt and the tumour would be capable of supporting shear wave propagation.

On the other hand, more complex strain and wave propagation patterns can be anticipated.

Their investigation and incorporation into the analytical simulation could provide a better

understanding of the additional challenges encountered in vivo.

The predicted association of extension/compression to material stiffening/softening was

comparable with a previous analysis where the uni-axial load of a Neo-Hookean incompress-

ible material was investigated [33]. Consistently, the magnitude of variation in apparent

modulus seen using the modified Mooney-Rivlin model was found to be less evident in the

compression case, especially when the quadratic term becomes more prominent (Fig 6b). The

simpler Neo-Hookean model (μ2 = 0) produced similar patterns (Fig 6c). Nevertheless, this

model is incapable of capturing the nonlinear rheology of the material under large strains typi-

cal of soft tissue [65]. Exponential constitutive equations have been shown to well represent

the stress-strain response of breast tissue [66]. Nevertheless, to keep the mathematical formula-

tion of the inflating pressure in Eq 8 tractable, only the use of the proposed polynomial model

was pursued.

The choice of a hyperelastic material was fundamental to generate a strain-associated varia-

tion in shear modulus capable of producing a nonlinear stress-strain response The rheological

characterisation revealed a direct dependence of the material nonlinearity on plastisol concen-

tration, which reflects the findings of [45]. The intrinsic shear modulus of the material was

found to be directly dependent on the plastisol concentration also (Fig 8b). For the three
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investigated plastisol concentration, μ was estimated to grow from 7.8 kPa to 13.8 kPa, signifi-

cantly above the 0.5 to 3 kPa measured in healthy liver [67], breast [68] or brain tissue [69]in
vivo using MRE. In order to keep the sample stiffness comparable with that of soft tissue and,

at the same time, to achieve a sufficient nonlinear response in the inflation experiment, a

trade-off was chosen using a plastisol concentration of 80%.

The material was also found to be characterised by a mild viscosity. This was suggested by

the low fractional derivative orders that produced the best fit of the rheological data at the

investigated frequencies. The low measured viscosity justifies the purely elastic assumption

used for the thick-shelled sphere approximation. At the same time, the small α values can

explain the parameter coupling encountered while fitting the rheological data. Since the same

model was used to describe both the elastic and viscous part of the deviatoric PK2 stress tensor,

with the latter being subjected to fractional derivative (see Eq 18), S0v approaches the same

form as its elastic counterpart when the fractional derivative order approaches zero, as shown

in Eq 20. This makes the parameters μ and δ redundant. The same reasoning supports the ana-

lytical estimate of the intrinsic shear modulus of the material proposed in the last section of the

Analytical Model.

Here we showed that knowledge of the deformation gradient, under the choice of a specific

constitutive equation, can be used to predict the associated shift in shear modulus as probed

by the shear waves in the case of an axisymmetric inflation. Conversely, a known deformation

field can be incorporated in the inverse solution of the wave equation, hence allowing to effec-

tively “undo” the apparent anisotropy effect and to reconstruct the intrinsic shear modulus of

the material in the undeformed case. This was recently demonstrated in PVA samples under a

simpler setting of uni-axial compression [33]. Fovargue et al. have then applied the idea by

“undoing” the G0 anisotropy measured through MRE using a phenomenological formulation

in the case of radial expansion, both in phantoms and in vivo [40, 70]. The present work there-

fore sets the theoretical ground necessary to bridge these studies, providing a first general

model that describes the signature shear modulus pattern generated by a spherical growth

which can be detected by MRE. Furthermore, our model provides the means to be able to

retrieve the pressure acting on the tissue once the level of inflation is known, thereby enabling

the investigation of tumour forces from imaging data. While the results presented herein serve

as a starting point to elucidating the utility of tumour-generated forces in MRE quantification,

further work will be required when extending the experimental validation to real tissue.

Employment of the proposed mathematical framework within an in vivo setting will likely

require involving the different types of solid and fluid tumour-related stresses outlined in the

introduction. At the same time, some of the experimental limitations encountered here (such

as the presence of the catheter access hole and the use of a water-filled balloon impenetrable to

shear wave propagation) will be alleviated. As a glimpse into the future, a first clinical applica-

tion covering 15 malignant breast lesions and 1 breast fibroadenoma correlated an elevated

tumour pressure to lymphovascular invasion, using the measured anisotropy of G0 around the

imaged tumour [70]. Progresses in the model development will enable enhanced MRE recon-

struction strategy, facilitating the search of a non-invasive biomarker to gauge metastatic

propensity.

Conclusion

Modelling investigations of tumour-generated strain are sparsely found in the literature, and

understanding the impact of the underlying stress on elastographic reconstruction remains an

emerging field at present. In this article we have developed an analytical framework to describe

the apparent variation in shear modulus generated by an axisymmetric deformation of a
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nonlinear viscoelastic material, as probed by shear waves. In this signature pattern of modulus,

the magnitude of the deviation from a homogeneous distribution is directly linked to the

underlying stress-strain state and its quantification was shown to depend on the chosen mate-

rial law. The analytic model was tested under a phantom setting and produced G0 distributions

around the inclusion that was comparable to those observed experimentally. An alternative

indicator of the probed stretch, independent of the MRE reconstruction and based on the local

direction of shear waves with respect to the tissue deformation, was proposed. Given the diffi-

culty in generating plane waves experimentally, this metric aimed at estimating the tension/

compression experienced locally by the shear waves, which showed a better agreement with

the analytical predictions. Our findings underline the need to account for the apparent anisot-

ropy in G0 caused by the underlying macro-deformation in MRE reconstruction. To this end

the presented model takes a first step towards the ultimate application for tumour-generated

forces in MRE. To achieve this, further validation in real tissue and developments in both

tumour-tissue modelling as well as nonlinear MRE reconstruction will be required.

Supporting information

S1 Appendix. Linearised elastic wave equations in the presence of a macroscopic deforma-

tion.
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