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Synchrony of biomarker variability indicates
a critical transition: Application to mortality
prediction in hemodialysis

Alan A. Cohen,1,2,3,12,* Diana L. Leung,1,11 Véronique Legault,1 Dominique Gravel,4 F. Guillaume Blanchet,2,4,5,6

Anne-Marie Côté,7 Tamàs Fülöp,2,8 Juhong Lee,9 Frédérik Dufour,1,4 Mingxin Liu,1 and Yuichi Nakazato10

SUMMARY

Critical transition theory suggests that complex systems should experience
increased temporal variability just before abrupt state changes. We tested this
hypothesis in 763 patients on long-term hemodialysis, using 11 biomarkers
collected every two weeks and all-cause mortality as a proxy for critical transi-
tions. We find that variability—measured by coefficients of variation (CVs)—in-
creases before death for all 11 clinical biomarkers, and is strikingly synchronized
across all biomarkers: the first axis of a principal component analysis on all CVs
explains 49% of the variance. This axis then generates powerful predictions of
mortality (HR95 = 9.7, p < 0.0001, where HR95 is a scale-invariant metric of haz-
ard ratio; AUC up to 0.82) and starts to increase markedly �3 months prior to
death. Our results provide an early warning sign of physiological collapse and,
more broadly, a quantification of joint system dynamics that opens questions
of how system modularity may break down before critical transitions.

INTRODUCTION

Apparently stable systems can sometimes undergo abrupt shifts, known as critical transitions. Critical transi-

tions can reflect either a generalized collapse of the system, such as the collapse of the cod fisheries and asso-

ciated ecosystems in the western North Atlantic in the 1990s or financial crises, such as occurred in the US in

2007–2008 (May et al., 2008). Early warning signs (EWSs) of critical transitions could allow for corrective action,

particularly to avoid system collapse (Macrae, 2014). EWSs have been studied in a number of contexts, partic-

ularly in ecology (Scheffer et al., 2015), and may include increases in variance (Carpenter and Brock, 2006;

Drake and Griffen, 2010), change in auto-correlation structure (Ghanavati et al., 2014; Gijzel et al., 2017),

and increases in cross-correlation (Scheffer et al., 2009), all of which are part of a phenomenon known as ‘‘crit-

ical slowing down’’ that precedes the transition (Dakos and Bascompte, 2014). These indicators of change in

system state are derived from structured changes in the dynamics at the onset of a critical transition.

Recently, there is a growing interest in applying critical transition theory to understanding human health

and physiology in order to predict progression toward disease states (Almeida and Nabney, 2016; Chen

et al., 2012; Gijzel et al., 2017; Trefois et al., 2015). In many medical contexts, apparently stable patients

decompensate or decline relatively rapidly. Examples include epileptic seizures (Kramer et al., 2012),

decompensation in intensive care (Ghalati et al., 2019), and clinical frailty in the elderly, which represents

a point of accelerated decline (Fried et al., 2021; Gijzel et al., 2017). Several studies have started to success-

fully apply critical transition theory in a medical context (Almeida and Nabney, 2016; Chen et al., 2012; Gij-

zel et al., 2017; Maturana et al., 2020; Trefois et al., 2015; van de Leemput et al., 2014), but few have fully

drawn on the multivariate nature of biological systems. Multivariate indices of EWSs might successfully

incorporate not just the dynamics of individual biomarkers preceding transitions but also the joint dy-

namics of the numerous interacting biomarkers (Cohen, 2016), substantially increasing predictive power.

We propose that beyond specific diseases (Li et al., 2014; Maturana et al., 2020; Rockne et al., 2020; Tara-

zona et al., 2019), the broad health status of an individual can be assessed using critical transition theory,

with general outcomes such as death often reflecting a critical transition, which we refer to as a ‘‘physiolog-

ical collapse’’ of the organism. Successful prediction of impending physiological collapse could allow

timely interventions to reduce mortality and/or start end-of-life planning. However, one challenge in a
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universitaire de santé et de
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medical context is obtaining sufficiently detailed time series data to calculate meaningful EWSs. Clinical

data are often subject to reporting biases (e.g., measures taken when patients are sick, selective reporting

of diagnostic codes), and cohort studies are rarely if ever at a fine enough temporal scale. An exception is

hemodialysis data in patients with end-stage renal disease: in most contexts, hemodialysis occurs 3x/week

with blood draws approximately bi-weekly, continuing over several years, until kidney transplant or death

(Nakazato et al., 2017). Accordingly, data on patients under hemodialysis present a time series of largely

complete biomarker data generally unavailable in other medical contexts, and permit us to assess changes

in variability in ways that are generally not possible in cohort data or other standard clinical contexts.

Recently, albumin variability was shown to increase before death in a Japanese cohort of patients under

hemodialysis (Nakazato et al., 2017), and a multivariate index of variability predicted frailty in the same

cohort (Nakazato et al., 2020).

Here, using mortality as a proxy for physiological collapse in patients under hemodialysis, we predicted

that the variability of biomarkers would provide a stronger prediction of impending mortality than the

levels of the biomarkers. We likewise predicted that the general behavior of the system, as characterized

by joint (multivariate) signals of the markers, would give stronger predictions than the levels or variability of

any individual marker. Accordingly, we expected integrative measures of variability to be powerful EWSs.

We assessed (1) whether there is a generalized joint signal of biomarker variability (i.e., synchrony of vari-

ability), and (2) if any such signal could predict critical transitions, in our case, death.

RESULTS

Study population and biomarker selection

We studied biomarker trajectories in all patients with chronic kidney disease (CKD) on long-term dialysis in

the Eastern Townships region of Quebec, based on data extracted from a clinical research database con-

taining electronic patient records (see STAR Methods for details). After exclusions, our study population

consisted of 763 patients (Table 1, Figure 1) followed for a total of 56,019 visits with biomarker data over

2,496 patient-years (median [interquartile range]: 45 visits/patient [15, 101] and 2.1 years/patient [0.7,

4.4]). Patients excluded from analyses were less likely to have diabetes, die, or have a kidney transplant,

and were followed for a shorter time period (see Table S1). 525 patients died during follow-up, but 91 of

these had no visit within 3 months prior to their death, likely due to transfer to palliative care. We detected

391/763 (51.2%) of patients as diabetic. We generated two lists of biomarkers based on their measurement

frequency: one that includes 11 biomarkers generally measured every two weeks (2-week list), and one

including 16 biomarkers measured every four months (4-month list, see Table 1). Main analyses were con-

ducted with the 2-week list, while we used the 4-month list to validate our results at a different time scale

and incorporate albumin, which was only measured every four months in our cohort.

Prediction of mortality by levels and variability of individual biomarkers

First, we tested the hypothesis that individual biomarker variability would better predict mortality than in-

dividual biomarker levels. Variability of individual biomarkers was calculated as within-individual coeffi-

cients of variation (CVs) per year before death or censoring. To ensure comparability (since CVs, unlike

biomarker levels, cannot be calculated at a specific timepoint), levels of biomarkers were calculated as

within-individual means per year. We thus hereafter refer to information on levels as ‘‘means,’’ just as vari-

ability is referred to as ‘‘CVs.’’ We compared indices using Cox proportional hazards models to extract

HR95, a scale-invariant hazard ratio for continuous variables that assesses variation in hazard across the

range of the variable (Milot et al., 2014). Figure 2A shows mortality predictions for each biomarker, either

using its yearly mean or CV, as well as p-values of proportional assumption tests for each coefficient. All

models control for age (using a cubic spline), sex, diabetes diagnosis, and length of follow-up, clustering

multiple observations per individual. Overall, CVs were better in predicting mortality compared to means:

in all 11 biomarkers, higher variability (CVs) was associated with increasedmortality, and nine had HR95R 4

(Figure 2A). In comparison, nine biomarkers predicted mortality significantly when using their levels, but

only one had HR95 R 4 (red cell distribution width [RDW], HR95 = 4.96, p < 0.001; see Figure 2A). For

10 of 11 biomarkers, the HR95 estimated from CVs was greater than that estimated from levels (Figure 2A).

Integration of individual biomarkers into multivariate indices

To test the hypothesis that integrative measures would outperform univariate ones, we then combined in-

formation from individual biomarkers into integrative indices using principal component analysis (PCA),
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both for biomarker means and CVs, and extracted principal components (hereinafter referred to as ‘‘PCs’’

for means and ‘‘CVPCs’’ for CVs). The first principal component for biomarker variability (CVPC1) was by far

the strongest predictor of mortality (HR95 = 9.68, p < 0.001, after controlling for age, sex, diabetes diag-

nosis, and length of follow-up; see Figure 2B), although several other indices also provided reasonably

strong predictions (e.g., PC6 for biomarker mean levels, HR95 = 4.89). Results were similar when excluding

112 patients who died but were not followed in the last 30 days before their death, with CVPC1 even slightly

more predictive (HR95 = 11.49, p < 0.001, see Figure S1), or when excluding highly correlated variables (he-

matocrit, red blood cell count, and mean corpuscular volume, see Figure S2A). Compared to other predic-

tive indices, CVPC1 was also the most stable across population subsets, with HR95 > 5 in all subgroups

tested (Figure 3 and Figure S2B). Prediction between men and women did not differ significantly, except

for PC6 (HR95 = 3.5, 95% CI [2.5, 4.9] and HR95 = 7.6, 95% CI [5.1, 11.3], respectively for men and women).

Next, we assessed whether prediction surpassed the one obtained from using solely demographic and

control variables (age, sex, diabetes diagnosis, and length of follow-up). To do so, we plotted receiving

operating characteristic (ROC) curves of a 1) ‘‘basic’’ model using only demographic and control variables,

and 2) of additional models sequentially adding PC1, CVPC1, and finally all 10 remaining CVPCs (Figure 2C).

The obtained ROC curves show model improvement when adding CVPC1, while area under the curve

(AUC) is nearly unchanged by the addition of PC1 or of the 10 remaining CVPCs. We also assessed whether

Table 1. Study population characteristics at first visit included in analyses

Characteristic (n = 763) 2-week list 4-month list

Age (years), mean G SD 64.2 G 15.8

Age range (years), min - max 16.2 - 94.6

Men, n (%) 479 (62.8)

Diabetics, n (%) 391 (51.2)

Death, n (%) 525 (68.8)

Kidney transplant (KT)

Patients who ceased HD after having a KT, n (%)a 93 (12.2)

Total number of patients with KT, n (%) 186 (24.4)

Follow-up length (years), median (Q25, Q75) 2.1 (0.7, 4.4)

Albumin (g/L), mean G SD 36.1 G 5.9 X

Calcium (mmol/L), mean G SD 2.25 G 0.19 X

Creatinine (mmol/L), mean G SD 667 G 303 X

Glucose (mmol/L), mean G SDb 8.1 G 5.0 X

Hematocrit (proportion of 1), mean G SD 0.32 G 0.05 X X

Hemoglobin (g/L), mean G SD 108 G 15 X X

MCH (pg), mean G SD 31.3 G 2.2 X X

MCHC (g/L), mean G SD 333 G 11 X X

MCV (fL), mean G SD 94.0 G 6.1 X X

Phosphate (mmol/L), mean G SD 1.67 G 0.53 X

Platelet count (109/L), mean G SDc 215 G 80 X X

Potassium (mmol/L), mean G SD 4.78 G 0.74 X X

RBC count (1012/L), mean G SD 3.5 G 0.5 X X

RDW (%), mean G SDb 15.5 G 1.9 X X

Sodium (mmol/L), mean G SD 138 G 4 X X

WBC count (109/L), mean G SDb 7.8 G 3.3 X X

Abbreviations: KT, kidney transplant; MCH, mean corpuscular hemoglobin; MCHC, mean corpuscular hemoglobin concen-

tration; MCV, mean corpuscular volume; Q25, 25th percentile; Q75, 75th percentile; RBC, red blood cells; RDW, red cell dis-

tribution width; SD, standard deviation; WBC, white blood cell.
aWithin 30 days from the kidney transplant.
bVariable was log-transformed.
cVariable was square root-transformed.
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prediction could be improved by combining information from our two types of integrative indices (means

and CVs), or by sequentially combining all PCs or CVPCs one by one (Figure 2D). The AUC increased from

0.677 to 0.741 when adding all 11 PCs to CVPC1 in the model, and reached 0.813 when including covariates

(sex, age, diabetes diagnosis, and length of follow-up). However, adding subsequent CVPCs to the model

had only a minor effect on prediction accuracy (AUC = 0.822 compared to 0.813), with CVPC3 having the

most effect (Figures 2C and S3). Broadly, the AUCs show that there are independent contributions of

Figure 1. Study population flowchart diagram

Of the 2,565 patients having hemodialysis (HD) at the CHUS between January 1997 and December 2017, we excluded

1694 patients who had HD for less than six months and 73 patients who had both an irregular HD visit frequency and an

acute or unspecified kidney failure (KF) diagnosis. Then, we selected visits with biomarker data at least three days

apart, and excluded nine patients with incomplete biomarker data (including four without any biomarker profiles) and

26 patients with less than three visits in total. The final study population thus included 763 patients, among whom 413

died within 30 days from their last HD visit and 112 who died more than 30 days after their last HD visit. Within patients

still alive at the end of the study period, 59 had a kidney transplant (KT) after which they stopped HD (within 30 days),

117 stopped HD for unknown reasons, and 62 were still on HD within 30 days from the end of the study period. See

Tables S1 and S2 for demographic characteristics of patients excluded from analyses and of observations with

incomplete data, respectively.
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information from biomarker levels (means), variability (CVs), and demographic data, with the CVs contrib-

uting more than the means and CVPC1 providing by far most of the signal among CVPCs.

CVPC1 as a joint signal of biomarker variability

Because CVPC1 provided such strong prediction of mortality, we took a closer look at what it quantifies.

CVPC1 captured an impressive proportion of overall system variability, explaining 48.8% of total CV vari-

ance, whereas the second and third principal components (CVPC2 and CVPC3) explained only �12%

and �10% of the variance, respectively (Figures 4A and S2C). Variance was also more concentrated in

the first axis for CVs relative to raw variables. Most strikingly, CVPC1 is driven jointly by all biomarkers rather

than a subset: Loadings of individual biomarker CVs were nearly equal, a result highly replicable across

Figure 2. Prediction of death by biomarker levels and variability indices

(A and B), HR95, together with 95% confidence intervals, are shown for the levels (means, red) and variability (CVs, blue) of

each biomarker considered (A) and integrative multivariate indices (i.e. each principal component calculated on all

biomarkers, (B). Levels of hemoglobin, hematocrit, MCH, MCHC, MCV, potassium, sodium, and RBC were inversed (1/x)

to obtain HR95 above 1, for ease of representation.

(C) Receiver operating characteristic curves for a basic model including only demographic and control variables (black)

and for models sequentially adding PC1 (green), CVPC1 (red), and all 10 other CVPCs (blue) are shown.

(D) Accuracy of mortality prediction for the first principal component of a PCA performed on means (PC1, blue) or CVs

(CVPC1, red), or on either one controlling for the other PCs/CVPCs in the cox model (darker hues), by sequentially

increasing the number of PCs/CVPCs added in the cox model. Cox proportional hazard models were performed with

(dashed lines) or without (solid lines) including demographic control variables (age, sex, diabetes diagnosis, and length of

follow-up).

See Figures S1, S2 and S6 for results of sensitivity analyses and Figure S3 for effects of combining means and CVs on

mortality prediction. See also Figures S7 and S10 for results with the 4-month variable list and Figure S13 for the effect of

the number of observations included in CV calculation. Abbreviations: AUC, area under the curve; MCH, mean corpus-

cular hemoglobin; MCHC, mean corpuscular hemoglobin concentration; MCV, mean corpuscular volume; RBC, red

blood cells; RDW, red cell distribution width; WBC, white blood cells.
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Figure 3. Mortality prediction by PC1, PC2, PC6, CVPC1, and CVPC3 in different population subsets

(A–E) HR95, i.e. the hazard ratio of being in the 97.5th percentile relative to the 2.5th percentile of the index, together with

95% confidence intervals are shown for PC1 (A), PC2 (B), PC6 (C), CVPC1 (D), and CVPC3 (E) in different subsets of the

study population. All models control for age using a cubic spline (with 3 degrees of freedomwhen performed on a specific

age group and five otherwise) and length of follow-up, clustering multiple observations per individual. Models also

control for sex and diabetes diagnosis, except when population is stratified using this variable. P-values of proportional

assumption tests for the given coefficients are indicated.

See Figures S2 and S13 for results of sensitivity analyses using non-redundant biomarkers and at least five observations in

CV calculation, respectively. See Figure S9 for results with the 4-month list.
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men, women, diabetics, non-diabetics, and groups at various time intervals before death (Figure 4B). Sup-

porting this, all pairwise correlations among biomarker CVs were positive, statistically significant at a = 0.05

(Figures 4C and S2D), and generally of similar magnitude (mean r = 0.35, SD = 0.18, min = 0.12, max = 0.96;

see Figure 4D). These results show that variability is highly synchronized across the individual biomarkers:

as one biomarker became more variable, all the others tend to be as well. In contrast, biomarker means

were much less synchronized than CVs: PC1, which by definition explains the most variance of any axis in

the analysis, explained only �25% of total variance in biomarker levels, and contributions of individual

biomarkers were much less equally distributed (see Figures 4A–4C and S4).

Timing of change in CVPC1 before death

Finally, we assessed how long before death the joint variability increase could be detected by applying

change point analysis to our integrative measure of biomarker variability (CVPC1) calculated with different

time windows (i.e., every 2, 3, or 4 months). A stable change point was detected at�3months before death,

precisely at 3.3, 3.8, and 3.1 months, respectively, for CVPC1 calculated bimonthly, trimonthly, and four-

monthly (Figure 5A). In comparison, change point analyses on other CVPCs yieldedmuch larger confidence

intervals, suggesting no clear change in their distribution before death (Figure 5B). This rise in CVPC1

Figure 4. Physiological variability shows a strong coordinated signal distributed evenly across all measured biomarkers

(A) Variance explained by PCA on raw biomarkers (triangles) or coefficients of variation (circles), for different population subsets relative to time of death or

by demography.

(B) Relative biomarker contributions to CVPC1, ordered from largest contribution (hemoglobin) to smallest (MCHC) in the full dataset (see STAR Methods).

Subsequent columns are based on loadings of the PCA run exclusively on the indicated subsets. Contribution for a given biomarker is the absolute value of

the loading divided by the sum of the absolute values of all loadings.

(C) Pearson correlations (Corr) among raw biomarkers, coefficients of variation, and composite indices (CVPC1-3: First through third axes of the PC on

coefficients of variation). Blue indicates positive correlations, and red represents negative correlations. Xs represent correlations not significant at a = 0.05.

Above the diagonal are the CVs, and below are the biomarker levels.

(D) Histogram of pairwise Pearson correlation coefficients between CVs of individual biomarkers.

See Figure S2 for results of sensitivity analyses using non-redundant biomarkers and Figure S4 for variable contributions to PC1, PC2, PC6, and CVPC3. See

Figures S8 and S11 for results with the 4-month variable list. Abbreviations: MCH, mean corpuscular hemoglobin; MCHC, mean corpuscular hemoglobin

concentration; MCV, mean corpuscular volume; RBC, red blood cells; RDW, red cell distribution width; WBC, white blood cells.
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Figure 5. CVPC1 trend before death

(A) CVPC1, the first principal component of a PCA performed on CVs calculated every 2 (red), 3 (blue), or 4 (green) months,

is plotted against time before death. Change point analyses were applied to regressionmodels between CVPC1 and time

before death, allowing slopes to vary across individuals, and are represented by the vertical dashed lines with the

respective colors.

(B) Results from change point analyses applied to regression models between each CVPC (calculated every 3 months) and

time before death are indicated with 95% confidence intervals.

(C and D) Integrativemultivariate indices for biomarker levels (PCs, C) and variability (CVPCs, D) calculated every 3 months

are averaged and plotted against time before death, centering at 5 years before death for ease of comparison. Results

from change point analyses performed on CVPCs are indicated as vertical dashed lines.

(E and F) Biomarker levels (mean z-scores, E) and variability (CVs, F) were calculated every 3 months and averages are

plotted against time before death, centering at 5 years before death.

See Figure S5 for index trends after hemodialysis initiation and Figure S12 for results with the 4-month list. Abbreviations:

MCH, mean corpuscular hemoglobin; MCHC, mean corpuscular hemoglobin concentration; MCV, mean corpuscular

volume; RBC, red blood cells; RDW, red cell distribution width; WBC, white blood cells.
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before death, which is more abrupt than for any of the other PCs or CVPCs (Figures 5C and 5D), is also

weakly discernible in randomly chosen individual profiles, and even prior to hospitalization events (Fig-

ure 6). Biomarker levels increase or decrease at different rates preceding death (Figure 5E), whereas in-

creases in CVs show striking synchrony in the few months preceding death (Figure 5F). Among individual

biomarkers, RDW levels show the greatest increase before death (Figure 5E). We had decided to exclude

the first six months on hemodialysis based on the assumption that this period represents itself a critical

transition (Broers et al., 2015). To validate this assumption, we looked at trends of indices after hemodialysis

initiation by including all patients and observations, except patients with both irregular hemodialysis visits

and an acute renal failure diagnosis (n = 1815 patients; see Figure S5). After excluding observations with

missing data, we were left with 1765 patients with at least two observations. The general CVPC1 trend,

calculated every three months, clearly shows an elevated overall variation in biomarkers in the year after

hemodialysis initiation (Figure S5B), which is supported by trends of individual CVs (Figure S5D). Conse-

quently, CVPC1 predictions of mortality are substantially lowered when considering this critical adaptation

phase and including patients who died within it (Figure S6). Nevertheless, excluding only the first three

months, instead of six, affects CVPC1 mortality prediction only moderately (HR95 = 8.2 compared to 9.7).

Validation using the 4-month biomarker list

Albumin, whose variability was previously found to predict mortality in patients who were hemodialyzed

(Nakazato et al., 2017), was only measured every four months in our study population. Therefore, we repli-

cated key analyses using the 4-month list of 16 biomarkers (Table 1), for which a total of 11,475 visits were

available, with a median [interquartile range] of 8 [3, 18] visits per patient. Results were broadly similar

(Figures S7–S12), showing the stability of patterns regardless of the precise biomarker choice or temporal

scale of the measurement. Results using the 4-month variable list showed smaller effect sizes for mortality

prediction (HR95 = 4.99, p < 0.001 for CVPC1, Figure S7 and S9), but increase in variability among individual

biomarkers still appears to be synchronized: CVPC1 explains �35% of the total variance in biomarker

Figure 6. Individual CVPC1 trajectories before death or censoring

The color represents the status at the end of follow-up (red for patients who died and blue for patients who were alive) and line type represents the diabetes

diagnosis (a solid line for non-diabetics and a dashed line for diabetic subjects). Vertical green lines represent hospitalizations. Individuals were randomly

chosen from among those with R6 years of follow-up.
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variability and is driven by all biomarkers rather than a specific subset (Figures S8A and S8B), and 117 out of

120 correlations among CVs are statistically significant at a = 0.05 and of roughly similar magnitude

(Figures S8C and S8D). Albumin appears to show the greatest increase in variability in the year preceding

death (Figure S12B).

DISCUSSION

In this study, we have shown that biomarker variability predicts mortality during hemodialysis more strongly

than biomarker levels, and that integrative indices are more predictive than individual biomarker variation.

We also found a sudden, coordinated rise in the variability of all biomarkers, whose integration into a multi-

variate index is also a strong predictor of impending mortality: this index can detect 11-fold differences in

mortality risk. Interestingly, the single biomarker showing the highest predictive performance and pre-mor-

tem increase is RDW, a finding consistent with previous studies (Mucsi et al., 2014; Oh et al., 2012; Solak

et al., 2014). RDW is itself a kind of CV—quantified through a simple equation (i.e. [standard deviation of

red blood cell volumes] / [mean corpuscular volume] 3 100)—and can thus be regarded as an indicator

of momentary variability.

The coordinated rise in variability is striking in that even uncorrelated biomarkers from apparently unre-

lated systems show synchronized increases in variability (Figures 4 and 5F). Indirectly regulated (e.g. hemo-

globin) and directly regulated (e.g. sodium) variables also appear to dysregulate in synchrony, and their

increases in variation translate into mortality predictions of similar magnitudes (Figure 2A), contradicting

other recent findings (Rector et al., 2021). In other words, the signal of the impending critical transition

propagates quickly and diffusely across the whole system. While the biological underpinnings of this

synchronization are not yet known, propagation of the signal across biomarkers is consistent with complex

systems theory, and with recent findings suggesting that loss in resilience (frailty) emerges from parallel

dysregulation in different physiological systems (Fried et al., 2021; Ghachem et al., 2021). Recent work

has highlighted the need to understand whether critical transitions touch entire systems or only subsets

of the systems (Weinans et al., 2021); our results appear to answer this question, at least in the case of he-

modialysis, and for the measured biomarkers. More broadly, it will be important going forward to evaluate

whether the synchronization of variability equates to a breakdown in modularity, and how general this is in

critical transitions. The PCA approach used here is a promising method.

Our findings confirm that critical transition theory can apply to health, not only for highly specific physio-

logical events such as epileptic seizure (Maturana et al., 2020) but also to overall health/homeostasis

and its converse, physiological collapse. Here, we have shown applications of biomarker dynamics to pa-

tients with CKD under hemodialysis, but many other medical applications could readily be developed,

including vital rates in intensive care (Ghalati et al., 2019), brain waves to predict sleep cycles (Bashan

et al., 2012), and advent of clinical frailty (Gijzel et al., 2017). Also, with more regular data collection, there

could be applications in congestive heart failure, predicting myocardial infarction, chronic obstructive

pulmonary disease, and many others, as well as to fields such as ecology, economics, and climate science.

Existing approaches to predict critical transitions/tipping points in health often rely on machine learning-

based algorithms (Horne et al., 2009; Manz et al., 2020; Wang et al., 2019), including to predict mortality in

patients with CKD (Forzley et al., 2018; Noh et al., 2020; Siga et al., 2020); it is not yet clear how such algo-

rithms will compare to models such as ours that are based on clear theoretical constructs, or whether a

hybrid approach may be most effective. Alternatively, EWSs based on clear theoretical constructs, both

in medical practice and across disciplines, is largely based on level or dynamics of one or two variables

that attempt to summarize the state of a complex system (Weinans et al., 2021). In the recent years, how-

ever, integrating larger numbers of variables into EWSs has started to gain attention (Dakos, 2018; Held

and Kleinen, 2004; Lade and Gross, 2012; Lever et al., 2020; Suweis and D’Odorico, 2014; van de Leemput

et al., 2014; Weinans et al., 2019). Our results demonstrate the potential of such multivariate integration,

including with preexisting data in electronic clinical databases.

Here, our best models achieved an AUC of 0.82, a reasonable prediction given that all-cause mortality is a

very broad and imperfect proxy for physiological collapse, and is notoriously challenging for clinicians to

predict more than a few days in advance. In comparison, gait speed, a common test to screen for frailty and

predict adverse outcomes in elders (Abellan Van Kan et al., 2009), generates AUC of 0.64 to 0.80 for pre-

dicting 5-year mortality in individuals aged 65 years or older, when combined to age and sex (Studenski

et al., 2011). The increase in 3 months prior to death suggests a nearly ideal window for either clinical
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interventions to prevent decline, or for end-of-life discussions. However, it is not yet clear whether clinical

interventions could successfully rescue patients from physiological collapse, though apparent spikes in

CVPC1 before non-fatal hospitalizations (Figure 6) suggest hope in at least some cases. Alternatively,

the best clinical application of EWSs may be in triggering discussions on end-of-life care preferences

with patients. Access to quality palliative care and medical assistance in dying is becoming a priority (Gov-

ernment of Canada, 2020, 2018), and identifying the right time and way to initiate such a discussion still ap-

pears to be challenging for many nephrologists (Borreani and Miccinesi, 2008; Mandel et al., 2017). Once a

sufficient algorithm and its application are validated, it should be possible to integrate into electronic

health data systems (Major and Aphinyanaphongs, 2020).

Limitations of the study

While this study shows the clinical potential of biomarker variability as an EWS, more work is required

before clinical implementation. Other multivariate indices of variability exist beyond CVPC1 (Liu et al.,

2021; Weinans et al., 2021), and variability is only one signal among many that can be extracted from

time series (e.g. lag-1 autocorrelations, flickering, skewness, etc., Scheffer et al., 2012). Future work

will need to compare and likely integrate multiple approaches. Also, we could only include albumin in

the 4-month list due to its measurement frequency in our study population, but our results suggest

that if it were measured every two weeks it might improve the performance of integrative measures.

Another important limitation of this study is the temporal resolution of 2 weeks; however, multivariate

indicators based on variance perform better than those based on autocorrelation to predict critical tran-

sition with poor data resolution (Weinans et al., 2021). We included all-cause mortality since we did not

have specific death causes and acknowledge that this is a limitation; nevertheless, our signal would likely

have been stronger had we been able to specifically select mortality cases related to dialysis complica-

tions, given that unrelated mortality should be random and weaken the signal. Finally, our index appears

to perform significantly less well when including the first six months on dialysis and patients who died

within this period (HR95 of 3.2 compared to 9.7). These findings indicate that CVPC1 may not be the

best indicator for short-term mortality after hemodialysis initiation, and might thus be preferred for

long-term follow. Further studies should address this specific question, among others, before clinical im-

plementation can be considered.

CONCLUSIONS

In conclusion, our findings have important implications at three levels. At a theoretical level, we showed

surprising synchronicity in the variability of all measured biomarkers, implying that compartmentalization

of physiology breaks down drastically preceding adverse critical transitions. At a methodological level,

this suggests that the principles we illustrated can be leveraged to develop similarly powerful predictive

indices in many other medical contexts—intensive care, diabetes, heart failure, and cancer, to name a

few. At a practical clinical level, our findings imply that powerful predictors of mortality risk in patients

with CKD under hemodialysis can be extracted from electronic medical record systems easily and within

an appropriate time frame to help clinicians consider interventions or initiate a timely discussion with pa-

tients on end-of-life care.
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STAR+METHODS

KEY RESOURCES TABLE

RESOURCE AVAILABILITY

Lead contact

Further information should be directed to and will be fulfilled by the lead contact, Alan A. Cohen (alan.

cohen@USherbrooke.ca).

Materials availability

The study did not generate new unique reagents.

Data and code availability

The datasets generated and/or analyzed during the current study are not publicly available due to confi-

dentiality concerns, transfer, and sharing of individual-level data. Data used in this study require prior

approval from the CIRESSS and the Director of Professional Services of the CHUS, as well as by the Comité

d’Éthique de la Recherche du CIUSSS de l’Estrie – CHUS. Requests to access the datasets should be

directed to https://www.crchus.ca/en/services-outils/autresservices-et-outils/infocentre/.

All analyses were performed using the R statistical language (R Core Team, 2021) and main findings were

replicated independently by one co-author (F.D.) to assure replicability. Code is available at github.com/

cohenaginglab/HD_variability.

Any additional information required to reanalyze the data reported in this paper is available from the lead

contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Our study population consistedof all patients treated at the hemodialysis external clinic of theCHUShospital in

Sherbrooke, Quebec, Canada between 1997 and 2017. CHUS protocol is hemodialysis 3x/week with a fixed

blood work panel every two weeks to ensure follow-up and adjust treatment (Nakazato et al., 2017). Patient re-

cords were extracted from the CIRESSS (Centre informatisé de recherche évaluative en services et soins de

santé) database, which aggregates all electronic hospital data for clinical and administrative purposes since

1991, a nearly exhaustive sample for the Eastern Townships region of Québec, population�326,000. This proj-

ect received ethical approval by the Comité d’éthique de la recherche du CIUSSS de l’Estrie – CHUS (#2015-

788, 14–059). Written informed consent for participation was not required for this study in accordance with the

National Legislation and the Institutional Requirements, due to the retrospective nature of the study.

METHOD DETAILS

Cohort selection

To capture patients on whom sufficient data were gathered and with CKD rather than acute kidney failure,

from 2,565 initial patients, we excluded 1694 patients whowere no longer treated by in-center hemodialysis

after six months (indicating death, recovery within six months from acute kidney failure or transition to

another renal replacement modality or to conservative care), and 73 patients with irregular hemodialysis

REAGENT or RESOURCE SOURCE IDENTIFIER

Software and algorithms

R statistical language, version 3.6.0 The Comprehensive

R Archive Network

https://www.r-project.org/

MCMCglmm package version 2.29 Hadfield, 2010 https://cran.r-project.org/web/packages/MCMCglmm/index.html

survival package version 3.1-12 Therneau, 2020 https://cran.r-project.org/web/packages/survival/index.html

pROC package (version 1.16.2) Robin et al., 2011 https://cran.r-project.org/web/packages/pROC/index.html

mcp package (version 0.3.0) Lindeløv, 2020 https://cran.r-project.org/web/packages/mcp/index.html
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visits and an acute or unspecified kidney failure diagnosis. This left 798 patients with CKD on long-term he-

modialysis. We excluded 28,681 visits (30%) with missing data (Figure 1 and Table S2). Because the start of

hemodialysis itself may represent a critical transition (Broers et al., 2015; see also Figure S11), we also

excluded data for the first six months on hemodialysis for each patient; however, for 26 patients, we

were left with less than three visits and thus excluded these patients. Our final study cohort was comprised

of 763 patients, for whom we included all visits for which biomarker data were gathered between earliest

available hemodialysis visit (after the initial six-month exclusion) and death or last hemodialysis visit

(Table 1). Our final study cohort included 479 (62.8%) men and 284 women. To validate our decision of

excluding the first six months on hemodialysis, we also ran sensitivity analyses without excluding any ob-

servations, except the ones with missing data (n = 1765, Figures S5 and S6C), or by excluding only the first

threemonths (n = 933, Figure S6B). Analyses were replicated in subpopulations to assess generalisability of

findings: not diabetics (n = 372), diabetics (n = 391), men (n = 479), women (n = 284), <60 years old (n = 241),

60 to 75 years old (n = 368), and 75 + years old (n = 280). Age was defined based on age at visit, so some

individuals were found in different categories over time. To assess if lost in follow-up impacted our findings,

we ran sensitivity analyses excluding 112 patients who died but had no hemodialysis visit in the 30 days pre-

ceding their death (n = 651).

Missing data

To assess if data in our study cohort were missing completely at random, we performed Kruskal-Wallis test

for age and Pearson’s Chi-squared test for discrete covariates (sex, diabetes, andmortality), comparing ob-

servations with complete vs incomplete biomarker data. The significant differences in covariates suggest

that our data are not missing completely at random (Table S2). Nevertheless, imputation was considered,

but not used, for the following reasons:

1) Imputation methods have not been validated in this context, in contrast to more standard applica-

tions such as linear regression.

2) A successful imputation would have to preserve not only expected mean value, but expected vari-

ance of the ensemble, across relevant time periods. While it might be possible to develop methods

that could achieve this, it would be a major undertaking in itself.

3) The creation of a potentially valid imputation method would require us to make numerous assump-

tions that might or might not be respected; as such, the risk of inducing a bias in the imputation is

substantially larger than the risk of a bias due to the missing data.

4) If the result with imputed data conflicted with the current result, we would have no way of knowing for

certain which method was preferable, but for reason 3) we would revert to the original analysis anyway.

5) The validation of the method and the stability of the results across numerous, distinct population

subsets gives a strong indication that the result is not a function of population composition, which

is the primary concern that would motivate imputation in this case.

Biomarkers and other key variables

We included all biomarkers measured regularly in the context of hemodialysis (Table 1), and excluded

those measured only irregularly or having an important proportion of missingness in our cohort (uric

acid, urea, iron binding capacity, iron, ferritin, iron saturation, transferrin, carbon dioxide, partial carbon

dioxide pressure, partial oxygen pressure, pH, ionized calcium, intact parathyroid hormone, glycated he-

moglobin and thyroid-stimulating hormone). For truncated laboratory variables (i.e. fields containing ‘‘<’’

or ‘‘>’’ signs), we generated the remaining part of the distribution (the tails of the distribution) using the

rtnorm function from the MCMCglmm package (version 2.29, Hadfield, 2010). Mortality was identified

via hospital and provincial (Régie d’assurances maladie du Québec) death records. Hospitalisation dates

were recorded. Diabetes status was identified based on diagnostic codes 250 for ICD nine before April

2006, and E10, E11, E13, E14 for ICD-10 after April 2006.

QUANTIFICATION AND STATISTICAL ANALYSIS

Calculation of early warning signs

Biomarkers were log-transformed for normality as appropriate (Table 1). To test differences between

biomarker levels and variability, and between univariate versus multivariate indices, we constructed four
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types of EWSs: two types of univariate indices and two types of multivariate (integrative) indices. Univariate

indices were calculated either as within-individual means or CVs per time period, respectively measuring

biomarker levels and variability (see Figure S13). Unless otherwise specified, CVs or means were calculated

by year working backwards from time of death or censoring. We then combined information from individual

biomarkers into multivariate indices using PCA applied on biomarker means or CVs. To calculate PCs

based on biomarker means, we ran a PCA on all centered and scaled biomarker raw values using prcomp

function in R, extracted the loadings, and applied them to the within-individual biomarker means calcu-

lated by year, thereby generating scores for each PC for every patient across years. CVs were calculated

for each biomarker in each individual at each time period (by year, except for change point analyses)

and were log-transformed. In a few cases, especially for tightly regulated biomarkers such as sodium

and potassium, the CV per year was equal to zero because of laboratory rounding; for ease of analysis,

we replaced these zeros by 90% of the next smallest CV value. We ran a PCA on the adjusted CVs (see

below) using prcomp function in R, centering and scaling them. We noticed that CVs were biased by

the number of values included in their calculation (Figure S13A). To confirm that this is a property of CV

calculation, rather than of our data, we explored this association in simulated data. Simulated data were

generated for each biomarker (transformed if needed to meet the assumption of normality) with the rnorm

function, using the mean and standard deviation from our study population. Here, we only present results

from one biomarker, but they all behave the same way: the fewer simulated values included in CV calcula-

tion, the lower CVs tended to be (Figure S13B). To control for this bias in CV calculation, we used the re-

siduals from nonlinear regression models (CV=((1)⁄(O(n))3a+b), performed separately for each variable

with the nls function in R). These residuals were used in the PCA to calculate CVPCs. We also ran sensitivity

analyses using only CVs calculated with at least five observations, and using them directly in the PCA,

instead of correcting with the non-linear regression (Figures S13C and S13D). These sensitivity analyses

show that our results are strongly robust to these specific analytic details. Note that the square root of

observation number included as weights in Cox proportional hazards models corrects for the loss of pre-

cision, whereas the non-linear regression described above corrects for the bias in CV calculation leading to

smaller CV values when fewer observations are available, not for the precision.

Mortality prediction

Power of various EWSs to predict death was assessed using counting process Cox proportional hazards

models (Andersen and Gill, 1982; Therneau and Grambsch, 2000). We used the hazard ratios to calculate

‘‘HR95’’ as a way to compare effect sizes across variables of varying scales: it represents the hazard ratio for

an individual in the 97.fifth percentile of the variable relative to one in the 2.fifth, and permits apples-to-ap-

ples comparison across alternative biomarker indices on different scales (Milot et al., 2014). We assessed

mortality risk with the coxph function (survival package version 3.1-12, Therneau, 2020), clustering multiple

observations per individual using the ‘‘cluster’’ argument. Demographic covariates include age (modeled

as a cubic spline with 5 degrees of freedom (df) using the bs function from the splines package to better

account for non-linear relationships with age), sex, diabetes diagnosis, and years of follow-up. All models

included the square root of observation number included in CVPC calculation as weights to account for the

lower precision in CV estimation with fewer observations included in its calculation (note that the non-linear

regression aforementioned does not correct for the loss of precision; it corrects for the bias in CV calcula-

tion leading to smaller CV values when fewer observations are available, not for the precision). We calcu-

lated the AUC with the pROC package (version 1.16.2) using a non-parametric method (Robin et al., 2011),

while the Cox proportional hazards assumption was verified using the cox.zph function.

Change point analysis

We assessed the timing of changes in our integrative measures of biomarker variability (CVPCs) prior to

death using change point regression with the mcp package (version 0.3.0, Lindeløv, 2020). Regression

models were performed on all available CVPC values, and slopes were allowed to vary across individuals,

with results presented after averaging values by time point (Figure 5).

ADDITIONAL RESOURCES

Requests to access data: https://www.crchus.ca/en/services-outils/autresservices-et-outils/infocentre/.

Code: github.com/cohenaginglab/HD_variability.
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