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Functional MRI (fMRI) findings hold many potential applications for education, and yet, 
the translation of fMRI findings to education has not flowed. Here, we address the types 
of fMRI that could better support applications of neuroscience to the classroom. This 
‘educational fMRI’ comprises eight main challenges: (1) collecting artifact-free fMRI data 
in school-aged participants and in vulnerable young populations, (2) investigating 
heterogenous cohorts with wide variability in learning abilities and disabilities, (3) studying 
the brain under natural and ecological conditions, given that many practical topics of 
interest for education can be addressed only in ecological contexts, (4) depicting complex 
age-dependent associations of brain and behaviour with multi-modal imaging, (5) assessing 
changes in brain function related to developmental trajectories and instructional intervention 
with longitudinal designs, (6) providing system-level mechanistic explanations of brain 
function, so that useful individualized predictions about learning can be generated, (7) 
reporting negative findings, so that resources are not wasted on developing ineffective 
interventions, and (8) sharing data and creating large-scale longitudinal data repositories 
to ensure transparency and reproducibility of fMRI findings for education. These issues 
are of paramount importance to the development of optimal fMRI practices for 
educational applications.

Keywords: education, cognitive neuroscience, functional neuroimaging, translation, application, classroom, 
variability, reliability

INTRODUCTION

For more than a century, many teaching methods have been developed and tested, by drawing 
on the implications of social, cognitive, and developmental psychology for educational practice. 
Typically, these teaching methods have been implemented in the educational setting without 
accounting for the workings of the ‘black box’ of the mind (Byrnes and Vu, 2015). There has 
been growing interest in how neuroscience can contribute to efficient learning in the classroom 
(Goswami, 2004; Petitto and Dunbar, 2009; Sousa, 2010; Frith, 2011; Sigman et  al., 2014; 
Thomas et al., 2019a). For example, relevant neuroscience evidence can direct the implementation 
and design of efficient instruction methods, based on whether the instructions are compatible 
with how the brain processes information (Immordino-Yang and Gotlieb, 2017; Mayer, 2017; 
Thomas et  al., 2019a). This requires educators to understand the neuroscience literature, and 
to be  able to identify the most useful evidence for the educational context. A large proportion 
of the neuroscience literature comes from neuroimaging work, in particular findings obtained 
with functional MRI (fMRI). Even though fMRI is thought of as a single general tool, its 
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application varies from one context to another: a better 
understanding of these applications would be useful for educators 
to better assess the types of fMRI that are most relevant to 
questions in education.

The amount of knowledge on how the brain works is growing 
exponentially, especially for learning-related functions, such as 
attention, affect, memory, decision-making and control, or for 
learning-related skills such as reading, writing, number processing, 
and problem solving (Peelen and Kastner, 2014; Nieder, 2016; 
Pessoa and McMenamin, 2017; Wandell and Le, 2017; Ng, 
2018), and for their interactions with sleep, nutrition and 
physical activity (Khan and Hillman, 2014; Sigman et al., 2014). 
It makes sense to capitalize on this rising knowledge to optimize 
learning practice, especially when deciding on competing teaching 
models, or when seeking tailored support for individuals with 
learning difficulties (e.g. Neville et  al., 2013). However, 
neuroscience findings are technical and complex, and they have 
not been framed within the context of education, so this 
extensive research has not yet found its impact on education.

Making sense of the wide-ranging fMRI findings, sometimes 
with inconsistent results across studies, can be  challenging, 
which leads to a wider gap between neuroscience and education 
(Bowers, 2016). However, appropriate and transparent fMRI 
methods (Carp, 2012; Soares et  al., 2016) that ensure reliable 
inferences (Bennett and Miller, 2010; Dubois and Adolphs, 
2016) can be  applied to educationally-relevant contexts. The 
apparent gap between education and neuroscience is typical 
of the growth process of any emerging field: evidence from 
neuroscience has faced resistance in other areas when evaluating 
its translational potential, with the classic example from clinical 
neuroscience. Here, we  highlight the trends and best practices 
in fMRI, to maximize its potential implications for education; 
some of these practices are based on lessons learnt from clinical 
fMRI (Rosen, 2009).

The term ‘clinical fMRI’ was coined over two decades ago 
(Jezzard and Song, 1996; Thulborn et  al., 1996) to highlight 
the potential implications of fMRI findings to the clinical setting 
(Detre and Floyd, 2001). Other specialized applications such 
as pharmacological fMRI (Jokeit et  al., 2001; Harvey et  al., 
2018) and foetal- and newborn-fMRI (Hykin et  al., 1999; 
Seghier et  al., 2006) have also been developed for clinical 
applications. The potential use of clinical fMRI was initially 
met with resistance from clinicians, given the many potential 
pitfalls and limitations in making robust and reliable fMRI 
inferences for clinical practice (Desmond and Chen, 2002; 
Hennig et  al., 2003; Haller and Bartsch, 2009; Dubois and 
Adolphs, 2016; Eklund et  al., 2016; Turner, 2016; Roalf and 
Gur, 2017; Rizzolatti et  al., 2018). The most frequent still-
present critiques of fMRI by clinicians are six-fold: (1) fMRI 
is too slow, given its low temporal resolution and the inherent 
hemodynamic delays, (2) it only provides indirect measures 
(through neurovascular coupling) of neuronal activity, (3) it 
is preoccupied with the localization of brain “blobs” at arbitrary 
statistical thresholds with no insight into the biological 
mechanisms of brain function, (4) it is highly variable, with 
typically moderate intra-subject consistency and large between-
subject variability, (5) it is notoriously difficult to conduct in 

vulnerable populations when participant cooperation (e.g. staying 
still and executing a task) is difficult, and (6) fMRI data is 
too complex, and it relies on sophisticated processing methods 
that may complicate result interpretation. Despite this, fMRI 
has become a useful tool in clinics, as a non-invasive option 
in addressing certain challenges, such as determining hemispheric 
dominance in patients, mapping vital brain functions before 
surgery, visualizing brain reorganization to support recovery, 
and localizing epileptic foci.

The relevance of clinical fMRI is expected to grow even 
more so, thanks to recent developments in cutting-edge 
techniques, and to a new paradigm shift in how fMRI can 
be  applied: from standard static brain maps obtained with 
subtractive logic on data collected with block designs, to dynamic 
connectivity maps obtained while participants are doing ‘nothing’ 
(at rest) in the scanner. These developments are occurring at 
both conceptual and methodological levels (e.g. Turner, 2016), 
and they have opened new horizons in neuroscience, including 
systems neuroscience, precision neuroscience, and population 
neuroscience. However, despite these new developments, fMRI 
is still not seen as a tool of choice by researchers interested 
in educational topics because it is (1) an expensive technique 
with high running costs, (2) not portable, (3) not easy to use 
on young school-aged participants, (4) not flexible enough for 
large-scale studies or when simultaneous parallel acquisitions 
in multiple participants are of interest, (5) limited in terms 
of paradigm designs that can be  delivered within a typical 
scanning environment, and (6) restricted to looking inside the 
brain while the participant is lying still in a tube, which is 
not ideal for the typical educational context with active students 
moving in class. Nevertheless, the unparalleled look inside the 
brain that fMRI can bring, outweighs these limitations; see 
for instance recent review about the potential of fMRI in 
extending our understanding of the neural basis of memory 
development (Ofen et  al., 2019).

To frame fMRI within the educational context, it would 
make sense to define first the scope of educational neuroscience 
(or mind, brain and education). Educational neuroscience is 
a transdisciplinary domain concerned with two complementary 
questions: how neuroscience evidence can be used to optimize 
leaning and teaching, and how education can enhance intellectual 
abilities and change the brain. In a recent systematic thematic 
analysis of the literature over the last 30 years, three foundational 
pillars were identified for the field of educational neuroscience 
that include application, interdisciplinarity, and translation 
(Feiler and Stabio, 2018). According to some recent models, 
there are two pathways linking the application and translation 
of neuroscience to education, one direct pathway that considers 
the brain as a biological organ that needs to be  in the optimal 
condition to learn, and an indirect pathway mediated by 
psychology as neuroscience shapes psychological theory and 
psychology influences education (Thomas et al., 2019a). Current 
neuroscience evidence is dominated by findings related to 
the indirect pathway. To increase impact through the direct 
pathway, neuroscience evidence needs to progress further 
towards system-level mechanistic explanations of learning, and 
to adopt a holistic view that contextualizes learning across 
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multiple dimensions, encompassing wellbeing, social cognition, 
affective processing, nutritional factors, genetic factors, sleep, 
and exercise. This holistic approach involves the blending of 
diverse disciplines, research methodologies, and paradigms, 
which integrates multiple levels of analysis to form a multi-
level yet coherent explanation for learning, and to inform 
educational practice and policy (Han et  al., 2019). Here, the 
focus is to frame fMRI within the evolving and transdisciplinary 
interface of education and neuroscience.

Accordingly, there are many examples of how fMRI research 
has actually informed educational theories and practices, by 
providing, for example, biological explanations about brain-
behaviour associations during learning and development, e.g. 
see recent work about the brain correlates of reading acquisition 
(Chyl et  al., 2018; Takashima et  al., 2019), and conceptual 
knowledge in STEM learning (Cetron et  al., 2019). A review 
of this large body of literature can be  found elsewhere (e.g. 
see Sousa, 2010; Butterworth et  al., 2011; Sigman et  al., 2014; 
Black et  al., 2015; Ozernov-Palchik et  al., 2016; Immordino-
Yang and Gotlieb, 2017; Thomas et  al., 2019a). The current 
review aims to address a different question: what type of fMRI 
is most useful for educational purposes? The answer to this 
question invites this “educational fMRI” to embrace new 
developments and emerging trends that are taking place in 
the field of functional neuroimaging and brain mapping. 
Specifically, this educational fMRI should be  concerned with: 
(1) scanning young school-aged populations, (2) investigating 
samples with wide variability in learning abilities and disabilities, 
(3) studying the brain under natural and ecological conditions, 
(4) multi-modal imaging of brain-behaviour associations, (5) 
assessing developmental or instruction-induced changes in brain 
function with longitudinal designs, (6) providing system-level 
mechanistic explanations of brain function, (7) reporting 
(unbiased) negative findings, and (8) sharing data and creating 
large-scale longitudinal databases. A comprehensive list of all 
available strategies and practices in the current literature is 
beyond the scope of this review: our goal is to highlight that 
many ingenious solutions have been proposed in the literature, 
and that the field is changing rapidly, with many strategies 
and solutions becoming available to researchers in the near 
future, despite some of the arduous challenges addressed in 
this review. Although the abovementioned points may also 
concern the application of fMRI in other fields, they are 
discussed here in terms of existing challenges, new opportunities 
and best practices for fMRI in education.

Scanning Young School-Aged Participants
Educational fMRI is mainly concerned with studying brain 
function in young populations, as opposed to the dominant 
representation of adults in the current fMRI literature. However, 
carrying-out fMRI in children is generally recognized as more 
challenging than fMRI in adults. There are many difficulties 
when scanning children in terms of (1) recruitment, (2) ensuring 
compliance and participant cooperation, (3) stringent ethical 
practices to ensure children’s safety, (4) age-appropriate designs 
in task-related fMRI experiments, (5) wide differences in task 
performance, (6) data distortion in the presence of head motion 

artifacts, (7) the availability of age-appropriate atlases and 
customized templates for group analyses, (8) age-dependent 
changes in brain structure (anatomy) and hemodynamic 
responses, and (9) interpretation of brain activations that may 
change with time and expertise. Many reviews in the fields 
of pediatric and developmental neuroimaging have proposed 
very useful recommendations on how to effectively scan young 
participants and process data (e.g. Kotsoni et al., 2006; Church 
et al., 2010; Greene et al., 2016; Fassbender et al., 2017; Cusack 
et  al., 2018; Wilke et  al., 2018). In the paragraphs below, 
we  focus on three major issues pertaining to studying learning 
and development in children, using fMRI.

The first issue concerns the selection and characterization 
of participants. As discussed below, young participants generally 
display higher group heterogeneity compared to typical adult 
populations, due to differences in age, abilities, expertise, and 
to familiarity with tasks and research environment. Other issues 
related to comorbid conditions (Margari et  al., 2013; Willcutt 
et  al., 2019), medication status, and clinical assessment need 
to be  taken into account (Greene et  al., 2016). In addition, 
individual differences in hemodynamic responses may vary 
with participant age (Kozberg and Hillman, 2016), with many 
studies reporting age-dependent changes in cerebral blood flow 
(Wu et al., 2016) that could impact on the apparent differences 
in brain activation between groups of variable age (Vasta et al., 
2018). These age-dependent differences in hemodynamic response 
complicate the interpretation of brain function differences across 
child groups of differing age (and school year). Age-appropriate 
flexible response functions or model-free approaches should 
thus be  considered (Cusack et  al., 2018). For multi-subject 
fMRI studies in young learners, high between-subject variability 
is expected, so it is useful to gather as much information as 
possible about participants (i.e. demographic and behavioral 
data), as this can be  valuable for optimally modeling data and 
interpreting results.

The second issue is head motion, which has been widely 
discussed in previous studies. Children’s head motion has the 
potential to systematically affect individual differences in BOLD 
changes and in measures of functional connectivity within and 
across groups (Satterthwaite et al., 2012; Engelhardt et al., 2017; 
Fassbender et  al., 2017). This issue is complicated further, 
because in-scanner head motion also correlates with many 
variables of interest such as age, clinical status, cognitive ability, 
and symptom severity, and hence it has the potential to introduce 
systematic bias in brain activations and connectivity (Satterthwaite 
et  al., 2019). Some methodological solutions for minimizing 
head motion have been suggested in this active domain of 
research, including, for example, the application of prospective 
motion correction techniques (Zaitsev et  al., 2017), robust 
pre-processing tools (Esteban et  al., 2019), the use of screen-
printed flexible MRI receive coils for better comfort (Corea 
et  al., 2016; Winkler et  al., 2019), or size-optimized coils to 
increase acceleration in MRI scan acquisition in younger 
participants (Keil et al., 2011). Furthermore, alternative behavioral 
procedures used in fMRI for children have been shown to 
successfully reduce anxiety, improve compliance, and minimize 
in-scanner head motion in young children, including pre-scan 
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training with a mock scanner (de Bie et  al., 2010; Li et  al., 
2019b), watching an introductory video about what to expect 
before scanning (Szeszak et al., 2016; Waitayawinyu and Wankan, 
2016), using head restraints that can be  tolerated by children 
(Fassbender et  al., 2017), communicating with participants at 
regular intervals between runs of the paradigm and checking 
that they are comfortable (Fassbender et  al., 2017), watching 
low-demand movies during data collection of task-free fMRI 
data (Vanderwal et  al., 2015), and providing real-time visual 
feedback about head movement (Greene et  al., 2018). These 
procedures should be  included in fMRI experiments when 
scanning school-aged participants.

The third issue is task performance, which is of concern 
to behavioral testing in general, but it can be  more tenuous 
under fMRI conditions. In addition to making scanning sessions 
as comfortable as possible for children to maintain attention 
to the paradigm (Fassbender et  al., 2017; Wilke et  al., 2018), 
it is recommended to collect in-scanner performance by 
administrating active tasks rather than passive tasks to keep 
participants engaged, and to incorporate strategies that can 
deal with group performance differences (Church et  al., 2010). 
To maintain engagement, the use of shorter runs is preferable 
to longer runs. In addition, tasks should be  doable by all 
participants, who may differ in age and abilities; this would 
ensure that task demand is matched across participants. Real-
time monitoring of in-scanner performance helps in ascertaining 
that children are engaged in the task (Wilke et  al., 2018). In 
addition, positive reinforcement can also help in maintaining 
a child’s motivation to “do well” inside the scanner and improve 
amenability to the task and performance; these include social 
rewards such as frequent words of encouragement or tangible 
rewards. These procedures allow for the collection of high-
quality artifact-free fMRI data.

Investigating Heterogeneous Cohorts With 
Wide Variability in (Dis)Abilities
fMRI provides a remarkable non-invasive tool to study cognition 
across the lifespan and in vulnerable young populations. These 
populations are likely to be heterogenous due to various factors 
that can impact a student’s brain during the school years, for 
example, age- and learning-related changes (Chyl et  al., 2018; 
Caras and Sanes, 2019; Geng et  al., 2019). One important 
question in education is to characterize the brain factors that 
can explain the wide variability in learning (dis)abilities. Learning 
capacity and rate vary considerably across students even within 
the same educational setting, with some students learning 
quickly while others struggle with learning. For that reason, 
fMRI in education should pay attention to the individual effect 
and go beyond the typical aggregate group inferences in fMRI 
that assume the ‘average’ brain can fit all sizes. Although this 
makes it possible to link an average brain to an average 
behaviour, it ignores any deviation from the mean and treats 
it as noise. Many fMRI studies have indeed highlighted that 
this framework is too reductionist, and that between-subject 
variability is meaningful (e.g. see a recent review by Seghier 
and Price, 2018). Paying attention to the individual effect is 
useful when studying brain correlates of skills that are known 

to vary considerably across students, such as reading skills 
(for example Seghier et  al., 2008; Fischer-Baum et  al., 2018; 
Malins et  al., 2018). To fully appreciate variability in brain 
function, rich demographic and behavioral data are needed 
to better model and interpret fMRI findings, including accuracy, 
response times, error types, and learning rates; post-scan 
debriefing questionnaires can also provide valuable information. 
These data can be  highly useful when mapping functional 
plasticity in childhood with fMRI (Dennis et  al., 2014).

Variability in brain function may result from complex 
genetic-by-environment interactions, and thus, may contain 
signatures of individual differences in abilities. For instance, 
previous fMRI studies have shown that variability in brain 
activations can be  associated with individual differences in 
many cognitive and behavioral dimensions such as short-term 
memory capacity, motivational state, learning aptitude, attention 
shifting efficiency, cognitive flexibility, academic diligence, 
decision making, inhibitory efficiency during executive functions, 
and other higher cognitive abilities (Todd and Marois, 2005; 
Wager et  al., 2005; Chuah et  al., 2006; Locke and Braver, 
2008; Barnes et  al., 2014; Armbruster-Genç et  al., 2016; 
Asaridou et  al., 2016; Hilger et  al., 2017; Fuhrmann et  al., 
2019). To maximize the usefulness of fMRI for educators, 
inter-individual variability in brain function should be  treated 
as data rather than noise (Kosslyn et  al., 2002; Thompson-
Schill et  al., 2005; Seghier and Price, 2018). In this context, 
accurate characterization of the variability in typical populations 
allows us to derive sound characterisations of the neuronal 
correlates of learning difficulties at the individual level. In 
other words, to understand what constitutes atypical processing, 
we  must first understand what can be  considered typical, by 
accurately estimating the typical range of variability in brain 
function. This issue is crucial to both diagnostic and prognostic 
purposes (Seghier and Price, 2018).

Furthermore, understating between-subject functional 
variability recognizes that a given brain function can be sustained 
by different processing pathways, and the activation of these 
pathways may vary with individual strategies and preferences 
(Price and Friston, 2002; Seghier et al., 2008). Individual differences 
in the activation of these processing pathways may yield less 
consistently overlapping effects in typical aggregate fMRI group 
statistics. However, by looking at structure or patterns in the 
between-subject variability, it becomes possible to decode the 
different processing pathways that can sustain a given function 
(Seghier and Price, 2009). One useful framework is to model 
between-subject variance in activation as a mixture of different 
subgroups instead of assuming one single homogeneous group: 
the goal is to maximize similarity within subgroups at the same 
time as maximizing differences between subgroups. This rationale 
has been used previously to tease-apart different subgroups of 
healthy participants who used different strategies to execute 
the same tasks (Kherif et al., 2009; Cerliani et al., 2017). Previous 
studies in clinical fMRI have shown the usefulness of 
understanding variability in brain function to explain inter-
patient variability in deficit severity and recovery capacity after 
brain damage (Price et  al., 2017), and ultimately, to design 
tailored individualized interventions and generate accurate 
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individualized predictions (Reinkensmeyer et  al., 2016). fMRI 
for education should embrace these emerging trends to assess 
meaningful individual differences in development, learning, and 
cognition (Brown, 2017; Foulkes and Blakemore, 2018).

In the same way, when investigating atypical processing in 
children with learning difficulties such as dyslexia or dyscalculia, 
it is useful to acknowledge that typical and atypical processing 
do not always reflect a categorical distinction with clear-cut 
thresholds (Marquand et al., 2019); but rather, lie on a continuum 
of the full spectrum of learning and cognitive processing. 
Atypical processing itself varies (e.g. different types of learning 
difficulties) (Gomides et al., 2018), and characterization of these 
sub-types rests upon a better understanding of the variability 
in brain function, in particular when designing intervention 
procedures. Accordingly, defining fMRI-based brain markers 
of learning difficulties at the individual level requires optimal 
modeling (Thomas et  al., 2019b) for parsing the heterogeneity 
in school-aged young populations and for understanding the 
comorbidity between learning difficulties (Willcutt et al., 2019). 
Last but not least, for an individual struggling with learning 
in one way, neuroscience can advise on the most efficient 
alternative way, based on the available processing pathways in 
that individual. This would also be  powerful for developing 
educational applications, because educators are interested in 
knowing more about the wide variability in learning (dis)
abilities, with the ultimate aim of personalizing teaching methods 
(Immordino-Yang and Gotlieb, 2017).

Studying the Brain Under Natural and 
Ecological Conditions
fMRI findings that have the best translational potential are 
those that can be  obtained under experimental conditions 
that are as close as possible to ecological, or real-world, contexts 
(Lowe, 2012; Maguire, 2012). Observing the brain while 
executing time-locked pseudorandomised repeated stimuli might 
not be  the ideal context to fully understand how the brain 
works in daily-life. In the last decade, some studies have 
looked at conducting fMRI studies while participants’ thoughts 
wander freely (i.e. resting-state fMRI), are in natural, or in 
uncontrolled stimulation conditions, such as sleep, mental 
reasoning, continuous reading, listening to narrative stories, 
watching movies, and more, (e.g. Bartels and Zeki, 2004; 
Malinen et  al., 2007; Lahnakoski et  al., 2012; Wang et  al., 
2015; see a recent review by Vanderwal et  al., 2019). This 
opportunity to observe the brain in natural contexts is highly 
appealing to educators looking for biological explanations of 
mental states that could hinder learning quality, such as, mind 
wandering, misbehavior, poor memory retention, lack of 
concentration, demotivation, disinterest, and fatigue, inside 
the classroom. Naturalistic fMRI experiments can help to 
ensure that the thoughts or behaviors being investigated are 
not perturbed or constrained by the imaging protocol, making 
it possible to engage neural circuits under real-life conditions 
(Hasson and Honey, 2012; Maguire, 2012). For example, 
using  naturalistic protocols, it was possible to monitor brain 
activity while participants were playing video games (Mathiak 
and Weber, 2006) or interacting in natural social scenarios 

(Deuse et al., 2016) using for instance hyperscanning methods 
(scanning more than one person simultaneously) (Wang et al., 
2018). Recently, the development of reasoning skills in children 
aged between 3 and 12  years was mapped with fMRI during 
movie watching (Richardson et al., 2018). In another example, 
an fMRI session under natural conditions (watching/listening 
of natural audio-visual movie tracks) enabled researchers to 
look at language processing while recording eye gaze trajectories 
(Hanke et  al., 2016). In the context of education, these 
unconstrained stimulations (e.g. watching video clips) have 
the potential to engage a wide range of brain systems given 
the diverse streams of information that are typically contained 
in movies, which can capture dynamic real-world processing; 
this would ultimately provide a richer depiction of brain 
function at the individual level (Jang et al., 2017; Moraczewski 
et al., 2018). Last but not least, recent studies have also shown 
the potential of naturalistic approaches in studying vulnerable 
populations, including individuals with autism spectrum disorder 
(Rosenblau et  al., 2016).

Another widely studied topic in functional neuroimaging 
of the brain under natural conditions is mind wandering. This 
has potential applications for educators, since mind wandering 
has been linked to poor outcomes in a wide range of learning 
tasks (Smallwood et  al., 2007). Moments of mind wandering 
tend to disrupt memory, comprehension, participation in the 
classroom, and intellectual functioning (Smallwood and Schooler, 
2015), in particular when the external sensory stimuli become 
uninteresting, repetitive, and familiar. Previous resting-state 
fMRI studies have shown that mind wandering involves an 
intricate interplay between different networks, in particular the 
default-mode network (Raichle et al., 2001). These fMRI findings 
revealed the different neuronal correlates of mind wandering, 
which could motivate the development of strategies to minimize 
mind wandering at inopportune times. This includes the need 
to update the sensory inflow and make it less predictable in 
classrooms. Interestingly, some studies have investigated the 
possibility of controlling and modulating mind wandering using 
stimulations on core regions of the default mode network 
(Kajimura et  al., 2016).

Although fMRI textbooks still consider standard laboratory-
based fMRI paradigms as a better-controlled way of looking 
at the brain, educational neuroscientists should consider the 
possibility of studying brain function with fMRI using naturalistic 
protocols, especially, given the recent sophistication of stimuli 
and data analysis methods. Some research topics of interest 
to education can be  addressed sensibly only in real-world 
contexts, which emphasizes the importance of looking at the 
brain with naturalistic approaches.

Combining fMRI With Other Modalities for 
Multimodal Brain Mapping
When studying brain function, we  do not have a ‘golden 
technique’ that addresses all the questions. There are many 
methods, including fMRI, each has limitations, but they can 
often provide complimentary information (Ugurbil, 2018). Given 
the multifaceted developmental changes that occur in the 
learner’s brain at different levels (microscopic to macroscopic) 
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and along multiple dimensions (physiology, structure and 
function), combining different mapping methods can provide 
an accurate depiction of such changes and their relationship 
to cognitive and behavioral growth in the preschool years and 
beyond (Brown and Jernigan, 2012). Many multimodal protocols 
have been proposed in the literature, including the widely 
used combination of fMRI with EEG (Pleisch et  al., 2019). 
Here we  focus on MR-based modalities that can be  acquired 
in the same scanning environment while the participant is 
lying in the scanner. Concurrently acquiring information from 
fMRI and additional modalities can help to quantify longitudinal 
changes and between-subject differences in brain function, 
hemodynamics, and structure (Turner and Geyer, 2014; Reid 
et  al., 2016; Larivière et  al., 2019). For example, changes in 
white matter tract microstructure are not directly seen by 
fMRI (Giorgio et  al., 2010; Slater et  al., 2019), so adding a 
diffusion MRI protocol during the same scanning session would 
provide an opportunity to assess white matter microstructure 
and use this information to explain changes in brain function 
(e.g. Richards et  al., 2017).

Indeed, combining fMRI data with anatomy information is 
tremendously helpful for optimal modeling of brain function 
(Turner and Geyer, 2014; Higgins et  al., 2018). One classic 
example is the development of (functional) language lateralization 
in school-aged children (Szaflarski et  al., 2006; Groen et  al., 
2012; Nora et al., 2017), a question better understood if combined 
with information about the maturation or development of major 
white mater tracts such as the arcuate fasciculus (Sreedharan 
et  al., 2015; Silva and Citterio, 2017). Recent studies have 
shown that atypical brain functions combined with information 
about alterations in brain structure explained better symptom 
severity in children with ADHD (Zhan et  al., 2017; Wu et  al., 
2019). Another example concerns the evaluation of the brain 
correlates of math or language learning after instruction or 
intervention where a combination of anatomy and function 
information provided more accurate explanations than functional 
information alone (Supekar et  al., 2013; Evans et  al., 2015; 
Thieba et  al., 2019), and proven to be  useful in explaining 
the co-occurrence of reading and mathematical difficulties in 
children (Skeide et  al., 2018).

Recent development of non-invasive MR-based protocols 
has opened many opportunities to provide accurate multiscale 
and multimodal explanations of brain-behaviour associations, 
including the assessment of brain perfusion with arterial spin 
labelling (Leung et  al., 2016; Armitage et  al., 2017), brain 
morphology (i.e. brain volume, sulci shape and depth, gray 
matter density, cortical thickness, myelin and ion density) with 
multiparametric quantitative MRI (Kim et  al., 2017; Carey 
et  al., 2018), and white matter microstructure with diffusion 
MRI (Lundell et  al., 2019). When designing experiments with 
task-based fMRI paradigms in children, it is recommended if 
scanning time permits, to add a task-free fMRI run for resting-
state network segregation, a diffusion MRI acquisition and a 
high-resolution anatomical scan. To manage experiment length, 
some of these acquisition protocols may be  completed on a 
different visit, though acquisition time might no longer be  an 
issue in the future with the emergence of new fast MRI 

acquisition schemes (LeVan et  al., 2018; Polak et  al., 2019). 
Many analysis software packages have made the processing of 
multimodal MRI data accessible even for non-experts.

Multisession Scanning to Assess 
Developmental or Post-intervention 
Changes
For studying brain-behaviour associations, multisession fMRI 
acquisitions provide a better framework to address questions 
that are relevant to education, in particular for questions where 
age and post-instruction time have a strong impact on brain 
function (Evans et  al., 2016; Brod et  al., 2017). Thanks to 
plasticity, the brain changes dramatically across development 
and in response to experience: for example, during learning, 
skill acquisition, or following intervention through behavioral 
protocols or brain stimulation techniques. Many fMRI studies 
have demonstrated the possibility to detect changes in brain 
function and connectivity during the development of reading 
skills or following intervention in children with reading difficulties 
(Horowitz-Kraus et  al., 2015; Murdaugh et  al., 2015; Wise 
Younger et  al., 2017; Smith et  al., 2018; Yu et  al., 2018; Nugiel 
et al., 2019), with the opportunity to accurately predict individual 
behaviour (Scheinost et al., 2019). Typically, intervention-induced 
time-dependent changes can be characterized in cross-sectional 
or longitudinal fMRI studies. The latter offer better control of 
potential confounds or nuisance variables, but sometimes lack 
statistical power and can be  constrained by time and funding. 
In contrast, cross-sectional studies can help to increase power 
within a reasonable time window. Researchers and educators 
should be  aware of the limitations of each type of design 
when assessing intervention-induced changes in brain function 
(King et  al., 2018).

One particular example of multi-session fMRI is the 
investigation of changes in brain function after intervention 
with neuromodulation techniques, with the possibility to assess 
effects at the individual level (Abutalebi et  al., 2009; Sebastian 
et  al., 2017). One class of intervention protocols, used mainly 
in clinical neuroscience, is brain stimulation by transcranial 
direct current stimulation (tDCS) to modulate cortical excitability 
and hence to enhance cognition. Many studies have used tDCS 
to improve cognition in patients with Parkinson’s disease, 
Alzheimer’s disease, hemi-neglect, epilepsy, and aphasia (Flöel, 
2014; Cappon et al., 2016). The application of electrical stimulations 
in combination with behavioral intervention can enhance recovery 
capacity, though studies vary considerably in patient selection, 
treatment-delivery protocols and outcome-measures (Cappon 
et  al., 2016; Al Harbi et  al., 2017). For educational purposes, 
tDCS has also the potential to facilitate learning, including 
improving verb learning (Fiori et  al., 2018), word reading (Xue 
et  al., 2017), working memory (Berryhill and Jones, 2012), 
arithmetic problem-solving (Hauser et al., 2016), and in treating 
children with dyslexia (Costanzo et  al., 2019), and autism  
(Osorio and Brunoni, 2019).

Another intervention protocol comes from neurofeedback 
procedures (Sitaram et  al., 2017) where participant-specific 
brain-related signal is used as feedback to train the participant 
in self-regulating brain function (Thibault et  al., 2018). This 
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protocol can induce brain plasticity by means of self-modulation 
of brain activity in real time. Specifically, fMRI-based 
neurofeedback protocols use real-time measures of brain 
activation as a feedback signal, and this signal can summarize 
regional brain activations, a multivariate pattern (i.e. decoded 
neurofeedback), or a connectivity pattern in a targeted network 
(i.e. connectivity-based neurofeedback); for review see (Watanabe 
et  al., 2017). Neurofeedback protocols have been used for 
diverse conditions, including ADHD (Zilverstand et  al., 2017; 
Rubia et  al., 2019), motor disorders (Liew et  al., 2016), and 
cognitive rehabilitation in stroke populations (Kober et  al., 
2015; Renton et  al., 2017). Another interesting application of 
fMRI-based neurofeedback is in emotion regulation (Linhartová 
et  al., 2019), where self-regulation of amygdala activity helped 
participants to improve emotion control and reduce anxiety 
(Herwig et al., 2019), which is highly beneficial in the educational 
context given the high burden of many anxiety disorders on 
children functioning (Schwartz et  al., 2019). Before looking 
at the translational potential of such intervention protocols to 
education, their effectiveness should be assessed with randomized 
controlled trials and randomized controlled cross-over trials, 
as has been conducted for tDCS in stroke survivors (Elsner 
et  al., 2015), tDCS for enhancing working memory capacity 
in healthy individuals (Ikeda et  al., 2019), and neurofeedback 
in adults with ADHD (Schönenberg et  al., 2017).

When using fMRI to assess longitudinal changes to brain 
function, either during learning or during the course of an 
intervention, it is important to appreciate the degree of 
reliability one can get from fMRI studies with children and 
the different limitations and challenges afforded by longitudinal 
designs (Vetter et  al., 2017; Herting et  al., 2018; King et  al., 
2018; Madhyastha et al., 2018; Telzer et al., 2018). In addition, 
when assessing statistical significance of longitudinal changes, 
it is recommended to go beyond reporting values of p (Halsey 
et  al., 2015), because values of p provide poor information 
about replication (Cumming, 2008). A p indicates only whether 
a given intervention is working or making a difference, but 
the effect-size provides an estimate of the size of the change 
or difference. Estimates of effect sizes and confidence intervals 
(Cumming, 2014) should be  used to provide better estimates 
of the magnitude and precision of an intervention effect or 
of a developmental change within or between participants. 
It is true however that many fMRI studies do not include 
effect-size estimates, and interventions are frequently selected 
according to significant effects only, but if the magnitude 
(effect-size) happens to be  small, then this would explain 
why these interventions have shown little success in clinical 
or educational settings.

Other alternative methods for generating useful inferences 
in fMRI rely on Bayesian statistics. Bayesian analyses can 
be more informative and more flexible than traditional methods 
when it comes to hypothesis testing, model comparison and 
parameter estimation (Wagenmakers et  al., 2016, 2018). For 
instance, Bayesian hypothesis testing allows researchers to 
estimate evidence and monitor its progression as real data are 
added, with the attractive possibility to take into account prior 
knowledge and to identify the most useful explanations (i.e. 

models) given the observed data (Konig and van de Schoot, 
2018). Many practical tools have been introduced in the 
neuroimaging literature to make Bayesian approaches accessible 
to fMRI users interested in testing the presence of an effect 
and in model selection (see for example, Rosa et  al., 2010; 
Han and Park, 2018, 2019; Soch and Allefeld, 2018). Bayesian 
approaches can also help in optimal modeling of imaging 
biomarkers that may change longitudinally (Aksman et  al., 
2019), which can open new opportunities to examine effects 
that vary with age and instruction.

Providing System-Level Mechanistic 
Explanations of Brain Function
Many researchers in the field of educational neuroscience 
have begun to recognize that there is no single brain region 
or connection that is indicative of individual learning capacity 
(Frith, 2011). Explanations of learning must therefore 
be expressed at the system level and be derived from mechanistic 
accounts, with the ultimate aim to identify the exact brain 
circuitry that can sustain a given mental process (Kopell 
et  al., 2014; Churchland and Sejnowski, 2017). Brain regions 
do not operate in isolation: identifying the set of interacting 
regions (i.e. a brain network) or networks that sustain a 
given task, provides a biologically-plausible way of explaining 
brain function and behaviour (Mišić and Sporns, 2016; Mill 
et al., 2017). This network approach offers a more meaningful 
explanation of brain function in vulnerable populations: many 
disorders and learning disabilities are better framed as 
atypicalities in brain connectivity (Du et  al., 2018), including 
for example, autism (Yahata et  al., 2016) and schizophrenia 
(Friston, 2002). Making inferences at the system level opens 
new possibilities for understanding and treating brain disorders 
(Thiel and Zumbansen, 2016), and in understanding brain-
behaviour associations. For example, it is possible to derive 
useful measures or scores with task-based networks to generate 
individual predictions about concept knowledge in STEM 
learning (Cetron et  al., 2019).

Within the network approach, a recent trend has been to 
look at brain networks during rest (Lowe, 2012). Resting-state 
networks are remarkably similar to the networks involved in 
task execution (Mennes et  al., 2010; Tobyne et  al., 2018), and 
examining resting-state networks is very useful, because this 
at-rest connectivity can (1) shape task-dependent connectivity, 
(2) reflect, albeit not equivalently, how regions are anatomically 
connected, and (3) provide markers or signatures related to 
abilities and skills (Koyama et  al., 2011; Laird et  al., 2011; 
Mennes et  al., 2011; Sala-Llonch et  al., 2012; McFarland, 2017; 
Dubois et  al., 2018; Tobyne et  al., 2018; Zhang et  al., 2019). 
This intrinsic connectivity of the brain can predict task 
performance (Baldassarre et  al., 2012), recovery pathways after 
brain injury (Carter et  al., 2012), longitudinal changes (Farah 
and Horowitz-Kraus, 2019; Zhao et al., 2019), and future learning 
(Mattar et  al., 2018). One alternative suggested in recent work 
is to combine both task-free and task-related connectivity to 
derive reliable biomarkers of learning difficulties (Elliott et  al., 
2019). Recent work has also shown the possibility to derive 
functional connectome fingerprints (i.e. ‘connectotype’) to 
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discriminate between individuals, to accurately generate 
individualized predictions (Miranda-Dominguez et  al., 2014; 
Finn et  al., 2015; Li et  al., 2017), and to better understand the 
neurobiology of learning disorders (Bailey et  al., 2018). With 
segregated brain networks, there is also the possibility to perform 
statistics on connections (termed edges), using graph theory 
analyses (Reijneveld et  al., 2007), to quantify some useful 
connectivity metrics (Rubinov and Sporns, 2010) that can serve 
to discriminate between participants, tasks, and populations (e.g. 
Yourganov et  al., 2010; Li et  al., 2014; Khazaee et  al., 2015; 
Caeyenberghs et  al., 2017; Edwards et  al., 2018).

Perhaps most interestingly, mapping brain networks can help 
explain how the brain learns: by looking at network reshaping 
with age (Song et  al., 2014) and learning (Bassett et  al., 2011; 
Fatima et  al., 2016; Dresler et  al., 2017; Mattar et  al., 2018), 
we are able to understand how network changes and maturation 
enable learning (Chan et  al., 2016; Bogdanov et  al., 2017). 
Armed with these system-level inferences, individual abilities 
can be  predicted, as shown recently in ADHD (Rosenberg 
et al., 2017), and in predicting memory performance improvement 
after training (Dresler et  al., 2017). Recent applications of this 
emerging network neuroscience of learning can provide unique 
insights into adaptive neural processes, the attainment of 
knowledge, and the acquisition of new skills (Bassett and Mattar, 
2017; Bogdanov et  al., 2017; Cetron et  al., 2019; Zhang et  al., 
2019). Many studies have highlighted the usefulness of network 
analyses and the possibility to derive solid biomarkers of brain 
disorders (Bassett and Bullmore, 2009; Braun et  al., 2018; Du 
et  al., 2018); for example for reading difficulties (Bailey et  al., 
2018; Edwards et  al., 2018) and autism (Hong et  al., 2019). 
When generating explanations about both brain structure and 
function, it is important to keep in mind that the mapping 
between anatomical networks  - anatomical connections, and 
functional networks – statistical associations between functional 
responses, is not necessarily a linear one-to-one mapping (Meier 
et  al., 2016; Liang and Wang, 2017). Although both types of 
connectivity show some similarity, they provide complementary 
information about the correlates of brain disorders (He et  al., 
2017; McColgan et  al., 2017; Vega-Pons et  al., 2017), which 
is an important conceptual issue to keep in mind when analyzing 
multimodal MRI data in children.

Ideally, inferences at the network or system level should 
encompass mechanistic models of brain function, or how 
connections work together, for which models of effective 
connectivity are needed (Friston, 2009). There is a conceptual 
distinction between functional connectivity and effective 
connectivity. Functional connectivity represents the statistical 
associations between regional timeseries, but there is no 
information about the direction of the interactions; it establishes 
that connections, either mono- or poly-synaptic, are present 
but not their direction of action or causality. This type of 
connectivity is widely used to derive inferences at the network 
level as detailed above. In contrast, effective connectivity 
represents the causal, directed, influences between neurons or 
neuronal populations and thus, provides estimates for the 
direction of the effects between regions. Effective connectivity 
models are key to understanding how brain regions work 

together and interact to process information (Friston, 2011). 
Recent approaches at high magnetic fields allow layer-specific 
activations to be  detected, which can ultimately estimate the 
directions of causation between brain areas (Turner, 2016; 
Huber et  al., 2017). One tool that has been widely used in 
fMRI in adults is dynamic causal modeling (DCM) (Friston 
et  al., 2003; Seghier et  al., 2010; Razi et  al., 2017), which 
allows us to make inferences at the neuronal level through 
finer modeling of neurovascular coupling (Havlicek et al., 2015) 
and to compare between different explanations of the same 
data. The output from DCM can be related to many behavioral 
outcomes, including classification between typical and atypical 
participants on an individual (Brodersen et  al., 2011) or group 
basis (Friston et al., 2016; Zeidman et al., 2019), and explaining 
and predicting behaviour through modeling (Rigoux and 
Daunizeau, 2015). Providing mechanistic explanations can 
provide unprecedented understating of how the brain implement 
a given cognitive process, as shown recently in young children 
across literacy development (Morken et  al., 2017).

Armed with these biologically-based mechanistic accounts, 
it is possible to understand how typical processing is implemented 
in the brain and how atypical behaviour can emerge, with the 
potential to define efficient intervention protocols. Mechanistic 
explanations of brain function are needed for future development 
of individualized tools and interventions in education. To 
illustrate this rationale, we  can consider the example of an 
acquired skill like word reading: if we  have a mechanistic 
model that includes the brain areas that sustain reading skills, 
how these areas communicate together, how behavioral 
manipulations (e.g. word frequency, familiarity, imageability, 
sensory modality) modulate the interactions between different 
subsystems (language, executive, attentional, memory and 
control), how the reading system changes with expertise, and 
the size of typical between-subject variability in normal function, 
then we should be able to make predictions about how normal 
reading should proceed, the optimal conditions to activate the 
reading system, and the alternative reading pathways and the 
potential interventions that can be  administrated to learners 
who struggle with reading.

Reporting Negative fMRI Findings
The selective publication of positive effects is a well-known 
bias in the neuroimaging literature that is damaging not only 
to the integrity of science but also to its ingenuity in solving 
problems (Ioannidis, 2005). This problem may lead to the 
perpetuation of (false) positive effects until they become 
erroneously accepted as fact (Nissen et  al., 2016), which leads 
to misrepresentation or misunderstanding by the media or the 
general public (Gonon et al., 2011), in particular, when it involves 
topics of great interest to the general public, such as education 
and when providing a neuroscience explanation of such effects 
(Weisberg et  al., 2008). Thus, a shift is needed to encourage 
the publication of null or negative results. Any translational 
effort to the classroom must consider the balance between what 
can or cannot be  done and what works or does not work in 
brain research. Negative findings are becoming the missing 
piece  in the neuroscience literature (Pfeffer and Olsen, 2002;  
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Schooler, 2011; Parsey, 2018) but they are needed to derive the 
most unbiased of scientific practices that can help to bridge 
the gap between neuroscience and education. Without publication 
of sound and relevant negative findings, the educational 
neuroscience literature will be  skewed, and the correction of 
false positives difficult; this may lead to time and resources 
wasted on developing ineffective teaching methods that happen 
to be  based on skewed or false brain research findings.

It is in this context that educational fMRI should emphasize 
the importance of replication studies. This would help to test 
findings in different environments (site, scanner, sequence) and 
samples. Replication studies can help to explain findings that 
are reliable and robust, along with findings that can be explained 
by other confounds. Another practice that can help minimize 
this bias in publication of positive findings and improve 
transparency is preregistration (Gorgolewski and Poldrack, 
2016). This entails plans and predictions being registered prior 
to data collection, which helps to avoid the practice of selective 
reporting of desirable findings based on exploratory analyses. 
Having a proper research data management plan will also help 
to improve rigor and reproducibility (Borghi and Van Gulick, 
2018) when using fMRI on children. Last but not least, data 
sharing and data repositories can also provide another solution 
to this issue by making data available for validating previous 
reports, testing new hypotheses, or aggregating with other 
datasets to increase statistical power.

There are many reasons why some positive findings have 
not always been replicated, including differences in experimental 
protocols (Carp, 2012), different processing tools (Bowring 
et  al., 2019), different statistical manipulations (Nieuwenhuis 
et  al., 2011; Woo et  al., 2014; Eklund et  al., 2016), limited 
statistical power with small sample sizes (Button et  al., 2013; 
Lorca-Puls et al., 2018), and high variability in fMRI responses 
(Bennett and Miller, 2010; Dubois and Adolphs, 2016). Another 
overlooked issue concerns how researchers interpret their 
findings, especially when it comes to attributing a given function 
or role to an activated brain region, using ‘reverse’ inference 
(Poldrack, 2006). Inconsistencies are not always about the 
localization of effects, but in the interpretation of their function, 
which is usually carried out by manipulating different comparisons 
between conditions (contrasts, masking, conjunctions…etc.). 
Before considering positive or negative results across studies, 
it is necessary to appraise how researchers have assigned 
functions or cognitive processes to specific brain regions. In 
sum, educators should not overlook replication studies and 
the many fMRI studies with negative results.

Data Sharing and fMRI Data Repositories
The typical sample size in multi-subject task-based fMRI studies 
is around 16–30 participants, usually predefined arbitrarily or 
based on power analyses. This allows for inferences at the 
group level, but it might not be enough for optimal replicability 
(Turner et al., 2018) when dealing with small population effect 
sizes, heterogenous groups, individual analyses, or in testing 
the influence of numerous demographic and behavioral variables 
on brain function. In that context, data repositories and 
databases offer an exciting opportunity for data sharing and 

mining, and for testing specific hypothesis with hundreds of 
brain scans. This would help to ensure high statistical power 
(Button et  al., 2013) and to generate robust neuroscience 
findings while taking into account the impact of many confounds 
(Nichols et al., 2017). There has been a call in the neuroimaging 
community to support data sharing, and in response, databases 
have been established with the ultimate aim of depicting 
comprehensive models of typical and atypical brain function. 
The gains are not only in improving reproducibility and 
reliability (Zuo et al., 2014), but also in devising useful models 
that can predict behaviour in heterogeneous populations (Mueller 
et  al., 2005; Ofori et  al., 2016; Satterthwaite et  al., 2016; 
Thompson et  al., 2017). Access to big data provides the 
opportunity to conquer the problem of a lack of normative 
data in assessing the range of brain function and anatomy, 
and this would open new avenues for neuroimaging research 
for educational applications.

Shared data can also be  utilized in meta-analyses to inform 
future fMRI studies and motivate the development of new 
intervention protocols. Previous meta-analysis studies provided 
very useful insights about many cognitive processes (see Houde 
et al., 2010; Pollack et al., 2015; Han, 2017; Yaple and Arsalidou, 
2018; Bottenhorn et  al., 2019), with the possibility to generate 
summary maps with high statistical validity using for instance 
activation likelihood estimation (ALE). This ALE meta-analysis 
takes into account the spatial uncertainty due to the inter-
subject and between-template variability of fMRI foci reported 
from different experiments. Meta-analysis in neuroimaging can 
take the form of image-based or coordinate-based analysis 
(Muller et  al., 2018). For image-based meta-analysis, users can 
take advantage of the online OpenNeuro database that contains 
real task-based fMRI data (Poldrack et  al., 2013) and the 
Neurovault database that contains unthresholded whole-brain 
statistical images (Gorgolewski et  al., 2015). Another useful 
open tool is NeuroSynth (Yarkoni et  al., 2011), a platform for 
large-scale automated synthesis of fMRI data. Armed with this 
tool, educators for instance can explore summary maps over 
thousands of studies about a concept or function of interest, 
which can help in generating prior knowledge or testable 
hypotheses for further investigations.

These neuroimaging databases have been supported by the 
neuroimaging community for diverse clinical applications, 
including research in Alzheimer disease (Mueller et  al., 2005), 
schizophrenia (Wang et al., 2016), and Parkinson’s disease (Ofori 
et  al., 2016). On the other hand, analogous databases on the 
many known learning disabilities with applications for learning 
and education are scarce, though some interesting initiatives 
exist for autism spectrum disorder (Di Martino et  al., 2014; 
Payakachat et  al., 2016), ADHD (Hoogman et  al., 2019), and 
dyslexia (Lyytinen et al., 2015). It is also interesting for researchers 
in educational neuroscience to be  involved in initiatives that 
investigate educationally-relevant neurodevelopmental questions 
(Gao et  al., 2019; Li et  al., 2019a) in order to understand 
healthy brain development (Satterthwaite et al., 2016), including 
The Baby Connectome Project (Howell et  al., 2019), and the 
Lifespan Human Connectome Project in Aging (Bookheimer 
et  al., 2019). Sharing data should be  encouraged in educational 
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fMRI to respond to the increasingly recognized need for 
transparent and reproducible neuroscience (Eickhoff et al., 2016).

CONCLUSION

Functional neuroimaging protocols are evolving continuously 
in their sophistication and flexibility to expand the range of 
research questions and inference levels. Best practice in this 
ever-expanding field is improving, which will ultimately help 
to ensure transparent and reliable neuroscience evidence and 
to maximize the translational potential of neuroimaging findings 
to education. Although some of the issues discussed here are 
not specific to educational fMRI, any progress in them will 
directly impact on the translational potential of fMRI findings 
to education. Educators, whether interested in conducting 
neuroscience experiments or searching for the best and most 
useful neuroscience evidence, need to pay attention to those 
developments. This is critical when educators are looking for 
novel alternative intervention methods for students struggling 
to learn, as the field moves from standardized intervention 
protocols to targeted individualized intervention strategies, 
comprising both behavioral therapies and non-invasive brain 
stimulation. Educators and neuroscientists interested in 
educational questions should move beyond simplistic correlational 

approaches, and embrace these new trends of multimodal 
longitudinal designs, along with the use of advanced methods 
that can estimate causality in brain change to derive system-
level mechanistic explanations of brain-behaviour associations. 
This will ultimately help to better understand individual 
differences, heterogeneity in learner profiles, and the 
co-occurrence of deficits and comorbidities. The issues highlighted 
in this succinct review are paramount to the development of 
optimal fMRI practices for school-aged young individuals, and 
to ensure that what gets pedagogically evaluated, is top-quality 
fMRI evidence.
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