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Background: Heterocyclic compounds have always been used as a core portion in the development of
anticancer drugs. However, there is a pressing need for developing inexpensive and simple alternatives
to high-cost and complex chemical agents-based catalysts for large-scale production of heterocyclic com-
pounds. Also, development of some smart platforms for cancer treatment based on nanoparticles (NPs)
which facilitate Fenton reaction have been widely explored by different scientists. Magnetic NPs not only
can serve as catalysts in the synthesis of heterocyclic compounds with potential anticancer properties,
but also are widely used as smart agents in targeting cancer cells and inducing Fenton reactions.
Aim of Review: Therefore, in this review we aim to present an updated summary of the reports related to
the main clinical or basic application and research progress of magnetic NPs in cancer as well as their
application in the synthesis of heterocyclic compounds as potential anticancer drugs. Afterwards, specific
tumor microenvironment (TME)-responsive magnetic nanocatalysts for cancer treatment through trig-
gering Fenton-like reactions were surveyed. Finally, some ignored factors in the design of magnetic
nanocatalysts- triggered Fenton-like reaction, challenges and future perspective of magnetic
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Table 1
Factors influencing the catalytic properties of nanomat

Factors Explanation

NP size In most cases, the cataly
NP shape As the spatial distributio

of the catalytic activity
NP distribution NPs with many edges an

other NPs, these nanoma
NP supports The solid substrate can b

increase their catalytic a
Reaction conditions When NPs react under m

improved.
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nanocatalysts-assisted synthesis of heterocyclic compounds and selective cancer therapy were discussed.
Key Scientific Concepts of Review: This review may pave the way for well-organized translation of mag-
netic nanocatalysts in cancer therapy from the bench to the bedside.
� 2021 The Authors. Published by Elsevier B.V. on behalf of Cairo University. This is an open access article

under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
Introduction

Catalysts are widely used in the production of chemicals [1,2]
and pharmaceutical ingredients [3,4]. A large number of products
require the application of catalysts; where, it has been estimated
that a large portion of manufactured products of industrialized
countries’ GDP is dependent on catalysts [5]. Today, researchers
have a big effort to incorporate nanomaterials into catalysts as a
successful and promising strategy in the development of nano-
based platforms. Because of their great significance of nanocata-
lysts in different areas of nanotechnology such as nanochemistry,
nanopharmaceuticals, and nanomedicine, the number of articles
and books published about their application is continuously
increasing. Nanomaterials show distinctive catalytic characteris-
tics and are widely used in the preparation of nanocatalysts [6,7].
Indeed, many of the properties of materials such as electrical, opti-
cal, and magnetic behaviors change at nanoscale dimension [8,9].
These novel characteristics are derived from the following three
properties: small size less than 10 nm, potential high surface (S)/
volume (V) ratio, and an increase in the number of surface atoms.
In fact, these three factors are the most important reasons for the
emergence of catalytic properties in nanomaterials. Basically,
when particles become small (nanoscale), because of their high
curvature, they have many atoms on their surface establishing
weak bonds with the lattice atoms [10]. Therefore, these particles
have high surface energy and are highly active, so-called surface
atoms are physically unstable and chemically active and are prone
to many chemical reactions [11,12]. Since the electronic structure
of the NPs depends on the dimension of the particle, their capabil-
ity to interact with other compounds also depends on their dimen-
sion [13,14]. For example, one group of materials that behave
differently in bulk and nanoscale forms is magnetic particles. Mag-
netic particles have a limited catalytic activity and are considered
as inactive metals in the bulk state, but at the nanoscale, they exhi-
bit profound catalytic activity and are commonly used as interme-
diate metals in the development of nanocatalysts [15,16].

The catalyst design at the NP scale is heavily based on the prin-
ciples of size [17] and mass transfer [18]. Recent advances have
shown that the amelioration of the catalytic activities of catalysts
can be achieved through nanoscale structural modification
[19,20]. Indeed, due to the high cost and scarcity of the most cat-
alytically active metal group, there has been a great interest in
the use of these materials with low concentration and optimized
catalytic activity. At the nanoscale, the properties of materials
erials.

tic activity of NPs is inversely rela
n of the NPs increases, the number

d corners, such as tetrahedral, oct
terials show more catalytic activit
e used for immobilization of NPs to
ctivity
icrowave conditions, the catalytic
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are dictated by the arrangement of atoms [21]. Table 1 summarizes
the factors affecting the catalytic properties of nanomaterials.
Different kinds of magnetic nanocatalysts

Despite the variation in the classification of magnetic nanocat-
alysts due to different physicochemical properties of NPs, the
method of fabrication, surface modification, crystal structure, and
composition of magnetic nanocatalysts derived from iron (Fe), gold
(Au), palladium (Pd), and platinum (Pt) can be organized based on
their oxidase-, peroxidase-, superoxide dismutase-, and catalase-
like activities (Table 2).

However, the most commonly used magnetic nanomaterial is
iron oxide (IO), whose most important catalytic activities in med-
ical activities are peroxidase-, superoxide dismutase-, and
catalase-like activities (Table 3). Peroxidase is the most well-
known enzymatic activity mimicked by IO nanocatalysis. For per-
oxidase activity, magnetic nanocatalysts similar to the Horseradish
peroxidase (HRP) require an optimum temperature of 37 to 40 �C
with a pH of 3 to 6.5. Moreover, in order to increase the peroxidase
activity of NPs, the presence of the optimum concentration of
hydrogen peroxide (H2O2) is important.
Function of magnetic nanocatalysts

Magnetic NPs as catalysts have different capabilities in medical
fields such as diagnosis [46], imaging [47], drug delivery [48], drug
discovery [49], and cancer therapy [50] due to the inherent enzy-
matic activity. Since catalytic activities in chemistry are highly sur-
face dependent, the use of metallic NPs is of particular importance
due to their highly active surface [51]. Although the reaction kinet-
ics of magnetic nanocatalyst-based catalysts are slightly lower
than those of native enzymes [52], resistance to environmental
changes such as heat and acidity, easy separation, excellent
reusability, and cost effective have made them potential candi-
dates in different applications [15,53]. On the other hand, the
occurrence of dual behavior of magnetic nanocatalysts or the
bridge between homogeneous and heterogeneous catalysis by
nanocatalysts [54], as well as the provision of a platform to induce
a certain reaction like photooxidation have encouraged scientietis
to use magnetic nanocatalysts [55]. Hence, a large number of mag-
netic nanocatalysts have been produced in the industry to catalysis
the synthesis of different chemicals or drugs. Magnetic nanocata-
Ref.

ted to the size of NPs [22]
of surface atoms becomes more available which result in the enhancement [22]

ahedral, and cubic, as the ratio of surface to volume increases more than
ies.

[23]

prevent the NPs from accumulating and their so-called agglomeration and [24]

activity and selectivity over normal conditions (reflux) are greatly [25]
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Table 2
Summary of magnetic nanocatalysts based on their intrinsic activity.

NPs Oxidase Peroxidase Superoxide dismutase Catalase

Fe FeNPs Fe3O4, Fe2O3 FePO4 Fe3O4, Fe2O3

Au AuNPs, Au@Pt AuNPs, Au@Pt AuNPs, AuNPs,
Mn MnO2, Mn3O4 MnO2, Mn3O4, MnFe2O4 MnO2, Mn3O4 MnO2, Mn3O4

Ni NiPd NiPd NiPd
Ag AgNPs AgNPs AgNPs AgNPs
Pt PtNP, PtCo PtNP, PtNPs/GO PtNP PtNP
Pd PdNP PdNP PdNP PdNP
Co CoFe2O4 Co3O4, CoFe2O4 Co3O4

Table 3
Metallic nanocatalysts and thier parameters in medical platforms.

Material Size (nm) Shape Activity Ref.

Fe
Fe3O4 13 Polyhedral Peroxidase [26]
Fe3O4 – Spherical Catalase [27]
GO-Fe3O4 6–8 NPs Peroxidase [28]
Fe3O4@Pt 5–10 Spherical Peroxidase [29]
Fe3O4@Cu@Cu2O 20–40 Spherical Peroxidase [30]
GO-Fe2O3 – NPs Catalase [31]
PB-Fe2O3 30 NPs Peroxidase [32]
Pd@c-Fe2O3 14–25 Polyhedral Peroxidase [33]
Au
Au2O3 50 NPs Peroxidase [34]
AuNPs 15–34 Spherical Multi [35]
Au@PVP NPs 1–3 NPs Oxidase [36]
Pt
PtNPs 3.8 NPs Oxidase [37]
PtNPs 1.2 Nanoplate Oxidase [38]
PtNPs 40 Multi-octahedra Oxidase [39]
Pd
AgPd-GO 7–10 NPs Peroxidase [40]
Pd@MIL-101 1.4–1.8 NPs Hydrolysis [41]
PdNPs 1.5 NPs Peroxidase [42]
Rhodium (Rh)
Rh-SiO2 NPs 5–15 Tetrahedral Oxidase [43]
RhNPs 1–2 NPs Peroxidase [44]
Rudium (Ru)
RuNPs 1.1 NPs Peroxidase [45]
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lysts in the form of homogeneous and heterogeneous catalysts
have been used in biomedical activities [56,57], among which
IONPs have the highest application due to their very low toxicity
[58]. Furthermore, magnetic nanocatalysts are highly considered
in therapeutic platforms, especially in cancer therapy, anti-
inflammatory activities, antibacterial, tissue engineering, and
immunotherapy. The integration of the homogeneous and hetero-
geneous catalysts in biomedical fields enabled by medical nanocat-
alysts through light and magnetic waves has provided a potential
system for development of therapeutic platforms.
Main clinical or basic application and research progress of
magnetic NPs in cancer

Before magnetic NPs were considered as catalysts, they were
used in the fields of chemotherapy [59], imaging [60], gene therapy
[61], photothermal therapy (PTT) [62], magnetic hyperthermia
[63], radiation therapy [64], and photodynamic therapy (PDT)
[65]. The drug delivery by magnetic NPs has become a popular
way to transfer drugs to the tumor site due to controllable physic-
ochemical properties. For example, the loading and delivery of
paclitaxel [66], doxorubicin [62,63], 5-fluorouracil [67], and even
small molecules or proteins such as lactoferrin [68] or Bcl-2 shRNA
[69] to tumors has been successfully conducted. Furthermore, eval-
uation of vital organs around the target tissue has shown that mag-
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netic NPs have triggered a minor effect on the pathological changes
and systemic toxicity [62,63,70–72]. It has been shown that the use
of magnetic NPs enhances the therapeutic activity against tumors
by inducing more damage to DNA, while NPs activated by radio-
therapy did not show such toxicity on the cancer cells [73]. More-
over, magnetic NPs significantly sensitize the tumor cells to
radiation therapy [74] by inducing a hypoxic condition for the gen-
eration of active oxygen.

Furthermore, it was found that the use of magnetic NPs, in addi-
tion to improving cancer immunotherapy through facilitating the
antibody penetration into the tumor, increases the quality of imag-
ing of target tissue by MRI [75]. Furthermore, different types of
magnetic NPs have shown anti-cancer activities. In this regard,
Zanganeh et al. [76] showed that ferromoxytol-functionalized
IONPs can trigger potential anticancer activity against lung, liver
and breast cancers.

Thermal therapy enabled by magnetic NPs for treatment of can-
cer has received much attention due to their high efficiency and
very low toxicity in critical tissues [50]. The most important meth-
ods of tumor ablation therapies through increase in free radical
species enabled by magnetic NPs include magnetic hyperthermia,
PTT [62,63,77], and PDT [78]. Despite the methods mentioned in
the treatment of cancer with magnetic NPs, today the combination
of these methods with the catalytic activity of magnetic NPs is
done in order to make the primary treatment easier or more effec-
tive. For example, Nie et al. [79] showed that CuS-Fe@polymer
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nanocatalysts highly improved chemodynamic therapy through
PTT and peroxidase-like activity in tumor site. Similarly, Zhao
et al. [80] by developing ROS-activatable liposomes@oxali-
platin@Fe3O4 nanocatalysts designed a platform for synergistic
photo/chemodynamic therapies.
Magnetic nanocatalysts in the synthesis of anticancer drugs

NPs can be used as promising platforms to accelerate the pro-
cess of converting organic compounds to one another [81]. These
include organic compounds widely used in chemical and pharma-
ceutical industries [82]. As heterocyclic compounds with anti-
cancer properties widely used in the pharmaceutical industry, an
easy, efficient and environmentally friendly method for synthesiz-
ing these organic compounds has been introduced by using
nanocatalysts [83,84].
Nanocatalysts in fabrication of heterocyclic compounds as novel
anticancer drugs

Heterocyclic compounds are known to act as promising anti-
cancer drugs [85]; where, they have been reported as the key
structural components of several anticancer agents present on
the market, recently. Indeed, of the potential anticancer drugs
approved by the FDA between 2010 and 2019, about 40% had hete-
rocyclic compounds within their formulations. The importance of
this plan is in the feasible and inexpensive synthesis of these com-
pounds using nanocatalysts and the investigation of their struc-
tural characteristics and performance through computational
studies. Expensive homogeneous catalysts, multistage and com-
plex manufacturing processes are commonly used in drug produc-
tion processes; however, the application of nanocatalyst in the
development of anticancer drugs is highly efficient and has the
ability to be reused in the drug manufacturing process [86]. The
nanocatalysts decrease production costs, increase biocompatibility
via the use of non-toxic metals and non-volatile solvents, and limit
the production of by-products [87]. Thereby, nanocatalyst can not
only be extracted from the inexpensive sources, but they also are
resistant to air and moisture and exhibit potential catalytic perfor-
mance in chemical reactions [88]. Also, heterocyclic compounds in
the presence of nanocatalysts can be synthesized via different
routes [86,89].

Quinoxaline, Pyrazole, Acridine, Isoquinolinone, Triazoles, Cou-
marins, Naphthoxazinones, Pyran, Pyridine, Diazepines, Benzofu-
ran, Xanthene, and Quinoline are the most common heterocyclic
compounds used as anticancer agents (Fig. 1A) [90].

These compounds can be synthesized in a variety of mecha-
nisms by using different nanocatalysts (Fig. 1B). One of the perfor-
mances of synthesized pharmaceutical compounds can be
highlighted as following: estrogen receptors (ER) and aromatase
enzymes are two important factors in cancer therapy, more pre-
cisely in breast cancer; hormone therapy can inhibit estrogen pro-
duction by blocking aromatase or using ligands to block estrogen
receptors and stopping estrogen activity and cell growth [85].
The other mechanisms of anticancer properties of heterocyclic
compounds are tabulated in Table 4.

The molecules synthesized in the presence of nanocatalysts
show similar size, shape, polarity, and cytotoxic effects against
cancer cells as compared to classical compounds. Potentially, the
interaction of these compounds with the estrogen receptor have
been further investigated through molecular docking calculations
and density-functional theory (DFT) studies and yielded favorable
results. Therefore, in the presence of the nanocatalyst, the anti-
cancer drug can be prepared in a simple and inexpensive way
[85]. Also, the synthesis of heterocyclic compounds by using
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nanocatalysts shows several advantages such as short reaction
time, high throughput, and solvent-free medium [84]. A range of
nanocatalysts such as magnesium oxide [94], SBA-15 [86,95],
cobalt [96], palladium [97,98], copper [99], graphene oxide
[100,101], and carbon nanotubes [102] have been also used as
promising and efficient agents for synthesis of heterocyclic com-
pounds with potential anticancer effects [103–105].

Magnetic nanocatalysts: Homogeneous or heterogeneous catalysis in
drug synthesis

Also, the main strategy of catalysis science and technology is to
increase the catalytic function and selectivity as well as recovery of
the nanocatalysts. Indeed, the recovery and reutilization of
nanocatalysts seem to be crucial parameters owing to strict biolog-
ical and economical demand for sustainability [106–108]. Homo-
geneous catalysts show several positive points that they are
well-structured on a molecular basis and easily dissolvable in the
reaction milieu [54]. Therefore, these catalysts are extremely
approachable to the substrates and normally demonstrate pro-
found catalytic function, even under harsh environments. How-
ever, their separation from the reaction medium to circumvent
the interactions with product needs exorbitant and repetitive
extraction processes. Moreover, the inorganic nanocatalysts are
usually composed of an expensive noble metal. Hence, in spite of
their innate superior points, homogeneous catalysts are rarely
applied in pharmacologically or medically applicable systems. On
the other hand, there are frequently catalytically functional sets
with several activities and specificities in the material of a hetero-
geneous catalyst, which are not suitable to be addressed in the
molecular approach. Therefore, purification and reutilization of
homogeneous catalysts is a principal concern in the sustainable
and wide-ranging fabrication of organic compounds [54]. The cat-
alyst can be purified through dissolving products and nanocata-
lysts in separate non-miscible solutions, which result in the
purification of nanocatalysts by uncomplicated phase separation.
However, the solubility of reactants in the reaction milieu and
the mass transfer should be considered in the purification process
[54]. Also, the activity of the purified catalyst may be partially
inhibited by increasing their tendency to agglomeration during
purification processes [109]. Nanocatalysts can be easily solubi-
lized in a liquid solution to form a stable nanosuspension; how-
ever, during conventional purification process, they can be
aggregated into particles with diameters of more than 100 nm.
Therefore, to overcome this circumstance, ultracentrifugation is
normally applied as the only way to purify the nanocatalyst. How-
ever, this approach needs high-priced and high technology facili-
ties to achieve the potential results. Thus, magnetic
nanocatalysts, which can be readily purified from the reaction
medium by magnetic utilization, can be introduced as promising
nanocatalysts in the pharmacological industry.

Therefore, catalytic capabilities of magnetic NPs consisting of
Fe2O3 and an organic component are further investigated to accel-
erate the introduced production process. Also, the magnetic
nanocatalysts provide a higher activity than their bulk counter-
parts due to its high S/V ratio, which greatly increases the effi-
ciency of chemical synthesis process. In addition, having
magnetic properties enables them to be separated from the manu-
factured product upon completion of the reaction. Therefore, the
final product purification process will be performed with greater
ease and speed [110]. For example, magnetic nickel-Fe2O4 nanocat-
alysts were employed as effective and reusable nanocatalyst for
fabrication of acetylferrocene chalcones as potential anticancer
candidates against colon cancer (HCT116), breast cancer (MCF7),
and liver cancer (HEPG2) [111]. Therefore, it may be concluded
that different species of magnetic NPs can be utilized as recover-



Fig. 1. (A (Schematic illustration of using nanocatalysts in the synthesis of different heterocyclic compounds. (B(The reactions of synthesis of heterocyclic compounds.
Adapted with permission from Ref. [90].
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Table 4
Mechanism of different heterocyclic compounds in cancer therapy.

Heterocyclic compounds Drugs approved by FDA Type of cancer Mechanism of anticancer Ref.

Nitrogen-based heterocycles Vincristine and vinblastine Acute lymphoblastic leukemia,
Hodgkin’s and non-Hodgkin’s
lymphoma, and testicular cancer

Inhibition of cell signaling, cell cycle arrest,
inhibition of tumor vascularization and DNA repair,
induction of oxidative stress, tubulin
depolymerization

[91]

Oxygen-based heterocycles Cabazitaxel and eribulin Prostate and metastatic breast
cancer

Depolymerisation of microtubule, inhibition of
mitosis

[92]

Sulfur-based heterocycles Dabrafenib Melanoma, lung cancer Inhibition of tyrosine kinase [93]
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able nanocatalysts in the synthesis of heterocyclic drugs both in
solvent-free and aqueous media [112–115].

Magnetic nanocatalysts-facilitated Fenton reaction for cancer
therapy

As current cancer therapeutic strategies may stimulate some
adverse effects against surrounding normal tissues and/or trigger
unwanted tumor metastasis, to improve the anti-tumor therapeu-
tic efficacy, targeting tumor microenvironment (TME) has been
used for cancer therapy. Indeed, in TME, the metabolism, interme-
diates and pH are considerably different from those in non-cancer
cells. Therefore, TME-responsive nanocatalysts for cancer therapy
have been recently evaluated in vitro and in vivo.

In fact, it may be suggested that if the intrinsic properties of the
TME in the presence of nanocatalysts could activate the Fenton
reaction, the potential cancer therapy can be achieved with mini-
mized side effects against off-targets.

Metal NPs like IONPs have been shown to provide multiple
enzyme-like functions in a pH-dependent fashion. For example,
these NPs could mimic a catalase-like activity to convert H2O2 into
safe H2O and O2 at pH 7.5. More fascinating, they could mimic a
peroxidase-like activity to transform H2O2 into highly hydroxyl
radicals (OH�) at acidic pH. Therefore, IONPs are believed to serve
as promising nanozymes in augmentation of the anti-tumor thera-
peutic efficacy of OH�, because such a site-selective production of
the highly toxic radicals could trigger the induction of apoptosis
in acidic cancer cells and leave the normal cells undamaged.
Indeed, magnetic nanocatalysts could potentially stimulate the
cancer cells-specified Fenton reaction to produce plentiful toxic
OH� in the acidic TME.

According to Fenton reaction that was first introduced in 1894
by H. J. H. Fenton, H2O2 can be converted to toxic OH� in the pres-
ence of ferrous (Fe2+/ Fe2+) ions [116]. This catalytic reaction has
been widely investigated in the various areas for instance elimina-
tion of organic pollutants from water through decomposition of
contaminants into harmless materials like water, inorganic salts
and so on [116,117].

Fenton reaction in the cancer cells termed ferroptosis, which
depends on Fe and reactive oxygen species (ROS) [118]. Indeed,
in cancer cells the H2O2 molecule acts as a reactant to trigger the
ferroptosis and the Fe2+ is the catalytic agent. It is well-
documented that acidic condition is desirable for Fenton reaction;
therefore, the acidic pH of TME can be considered as an effective
characteristic to trigger the Fenton reaction [119]. Fig. 2(A),
schematically illustrates the Fenton reactions in cancer cells.

A lot of researchers have focused on the design and develop-
ment of nanostructures, which are able to induce ferroptosis reac-
tions in different cancers [80,120]. Based on the literature review,
Fe-based nanostructures are appropriate candidates in specific
accumulation at tumor region through passive as well as active tar-
geting mechanisms. Indeed, these nano-based platforms are
degraded in endocytic organelles of cancer cells in the form of
Fe2+ or Fe3+ to initiate the ferroptosis process [121,122]. In general,
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this catalytic process leads to imbalance between production and
destruction of ROS that in turn can stimulate the severe oxidative
stress-induced apoptosis. In fact, induction of intratumoral Fenton
reaction can result in the disproportionation of H2O2. Therefore,
development of the efficient ferroptosis-based nanocatalysts that
possess transformation capacity of endogenous H2O2 to OH� is an
outstanding strategy for cancer therapy [123].

Besides, regarding to the stronger oxidation capacity of OH�

compared to singlet oxygen, the generation of these species are
highly demanded for Fenton reaction. On the other hand, shelf life
of OH� is very short (9–10 s), which can trigger only a few oxidative
reactions such as DNA damage, lipid oxidation, and protein oxida-
tion, whereas their diffusion into remote sites is difficult [125].
Considering the aforementioned explanations, Fenton-based
nanocatalysts which serve as tumor-selective nano-based plat-
forms would be preferred for cancer therapy.

In general, it has been reported that free radicals could trigger
apoptosis induction in malignant cancer cells and subsequent mag-
nificent tumor suppression (Fig. 2A-C) [124].

Nevertheless, the intracellular level of H2O2 in cancer cells is not
high enough for nanocatalysts to produce a large amount of OH� to
ameliorate Fenton chemical reaction for nanocatalytic tumor ther-
apy. Therefore, a satisfactory approach to increase the intratumoral
level of H2O2 was developed by Huo et al. [126]. Indeed, they
reported that glucose oxidase (GOD) should be combined with
nanocatalyst to increase the level of H2O2. Afterwards, IONPs inte-
grated into the dendritic mesoporous silica NPs (DMSNs) to
increase their dispersion and the ability to convert H2O2 to OH�

with high efficacy, which could further stimulate the anticancer
activity (Fig. 3A, B).

The strategy was proposed by Huo et al. [126] can be hampered
by unwanted distribution of nanocatalyst in normal tissues and
inactivation of GOD or leaking before reaching the carrier to the
targeted site in vivo. Therefore, a gatekeeper cover can be designed
as a shield on the surface of the carrier in a pH-sensitive manner to
release GOD at the tumor site. Also, GOD needs oxygen to catalyze
the conversion of glucose to H2O2 and carrier should provide a
large amount of oxygen. The study done by Feng et al. [127], which
reported the fabrication of a potential nanocatalyst equipped with
a gate keeper and a source of oxygen, was performed to overcome
these limitations. They constructed smart, magnetic targeted, and
TME-responsive nanocatalysts that can cause oxidative stress-
mediated apoptosis in tumor cells. Indeed, application of magnetic
field (MF) can result in the targeted accumulation of magnetic
nanocatalyst [127]. The magnetic core of IO carbide (Fe5C2)-GOD
and the manganese dioxide (MnO2) nanoshell as a smart ‘‘gate-
keeper” mask GOD from unwanted leakage until entering cancer
cells. The Fe5C2-GOD@MnO2 nanocatalysts did not show any activ-
ity in off-targets, whereas in cancer cells, TME triggered conversion
of MnO2 shell into Mn2+ and O2 along with leaking GOD (Fig. 4A).
Mn2+ could be used as a magnetic resonance imaging (MRI) con-
trast material and O2 in the presence of GOD could be converted
into H2O2 which may speed up the following Fenton reaction cat-
alyzed by the Fe5C2 core (Fig. 4B, C).



Fig. 2. (A(Schematic representation of PEGylated single-atom Fe (PSAF) NCs in TTE. (B(Cell viability assays. Viability assays of tumor cell (4 T1) in the presence of PSAF NCs as
well as H2O2 at 2 different pHs (a), Calcein-AM/PI cell staining and (b) and DCFH-DA cell- staining (c), viability percentage of the cells pre-incubated with antioxidants (d). (C)
In vivo biodistribution and anti-tumor activity of PSAF NCs. In vivo biodistribution of NCs (a, b, c), in vivo treatment timescale of PSAF NCs (d, e), body weight (f) and tumor
volume (g). tumor inhibition rates (h), Digital photos (i-j), and histological and staining microscopic images (k, l) [124]. Reprinted with permission from Ref. [124].
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Another approach to increase the amount of OH� is to use 2D
nanocatalyst. In this case, 2D hydroxide nanosheets can be inte-
grated with magnetic nanocomposite to yield abundant OH� in
the acidic state of TME. For example, Cao et al. [128] developed a
conjugated Fe2+-containing double layers of hydroxide (LDH)
nanosheet through a simple and useful strategy with profound cat-
alytic function to disproportionate H2O2 in cancer cells, and subse-
quently produce a high amount of OH� at mildly acidic milieu
(Fig. 4D). Also, nanocomposites can be functionalized with PEG to
achieve more biocompatibility and increase the level of internal-
ization into the cells (Fig. 4E) [128].
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Ignored factors in design of Fenton-based nanocatalysts

In agreement with reported studies, Fenton nanocatalysts could
effectively trigger the production of highly toxic OH� to suppress
the tumor growth in acidic TME. This phenomenon does not occur
in normal tissue under neutral conditions, representing the low
adverse effect of these nanoplatforms against off-targets. Never-
theless, it should be considered that cancer therapy based on Fen-
ton nanocatalysts is a newborn approach and still remains some
crucial issues to introduce this strategy to the clinical translations
[129]. In the following, we will represent several important



Fig. 3. (A) Schematic representation. Fabrication (a) and catalytic-therapeutic activities of GFD NCs (b). (B) anticancer activity of fabricated GFD NCs. Schematic presentation
of tumor xenograft induction and NCs administration routes, and therapeutic results (a). The body weights after treating with NCs intravenously (i.v.) and intratumorally (i.t.)
(b), The relative tumor volumes mice treated with NCs via i.v. (c) and i.p. modes (d). The tumor volumes and weights of tumors (e), image of tumors after i.v. (f) and i.p.
treatments (g) [126]. Reprinted with permission from Ref. [126].
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ignored factors in relationship with design of Fenton nanocatalysts
for cancer therapy.

Intrinsic instability over a long period of time is one of the
major problems, which can be correlated with the high tendency
of nanocatalysts to form aggregated species with aim of their
reduced surface energy. Another critical issue for these nanocata-
lysts is ease of their oxidation in air, which limits their storage
for a long period of time. Reduction in interfacial area is conse-
quence of aggregation of these magnetic nanostructures that sub-
sequently lead to the loss of their magnetism as well as
dispersibility properties [130].

To date, various strategies are applied to synthesize the mag-
netic nanocatalysts with high catalytic activity to provide more
catalytic-active sites through the reduction of particle size or the
fabrication of amorphous nanostructures [123,131]. In spite of
the presence of various routes for fabrication of nanocatalysts,
their upscale production is extremely controversial.
178
Since, the catalytic properties of different nanocatalysts do not
follow a similar mechanism and investigation of these mechanisms
is not fully understood in the reported studies, the optimization of
their catalytic efficacy is another critical issue that is overlooked in
the most of performed studies. Therefore, catalytic mechanisms of
nanocatalysts for cancer therapy should be carefully assessed in
the future research.

The next issue to consider in the following research is feasibility
of characterization of catalytic reaction in vivo. Due to the compli-
cations of and complex intracellular circumstances as well as lack
of acceptable procedures at current time to characterize the cat-
alytic mechanism in vivo, constructing a standard protocol for care-
fully characterization of catalytic reactions at in vivo
microenvironment is more essential to conduct the future investi-
gations in this field.

The surface engineering of nanocatalysts is a key prerequisite
for their potential tumor accumulation and subsequently for



Fig. 4. (A) Design and preparation of Fe5C2-GOD@MnO2 nanocatalysts. (B) In vivo T1/T2 MR images. Tumor bearing mice with i.v. injected Fe5C2-GOD@MnO2 either alone (a)
or presence (b) of MF. (C) Digital images of the dissected tumors after 14 days treatment [127]. (D) Schematic illustration of TME of 2D PEG/Fe-LDH nanosheets. (E) In vitro
assays. Cell viability assays at different pH of 6.5 (a) and 7.4 (b), relative fluorescence intensity (c), and percentage of fluorescence intensity (d) based on cellular
internalization, images of DCFH-DA and DAPI staining incubated with PEG/Fe-LDH, (e), H2O2 (f), PEG/Fe-LDHs and H2O2 at pH 7.4 (g) and pH 6.5 (h) [76]. Reprinted with
permission from Refs.[76,127].
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achievement to excellent therapeutic efficacy. It is well docu-
mented that nanocatalysts could circumvent the reticuloendothe-
lial system uptake via a suitable surface modification, leading the
long-term blood circulation of designed structure [122]. Based on
the performed literature review, the surface-engineering method-
ologies for design of targeted Fenton nanocatalysts are much less
have been investigated [122,132]. Therefore, efficient strategies
should be established for surface modifications of Fenton nanocat-
alysts to improve the nanocatalytic-therapeutic efficacy in the fol-
lowing studies.

The next critical parameter should be noted for design of effec-
tive Fenton nanocatalysts is their biocompatibility and biosafety,
guaranteeing their clinical translations in future. Although, several
reports have demonstrated good biocompatibility of some Fenton
nanocatalysts like Fe-based nanostructures and also their compos-
ites [133,134]. their cytotoxicity and adverse biological effects in
long periods have not been well-explored. Moreover, most Fenton
nanocatalysts with high stability possess low biodegradation rates.
Hence, it is expecting to optimize the biodegradation rate of these
nanocatalysts and also their elimination from blood circulation for
their clinical translations.

Generally, further investigations must be conducted to resolve
the aforementioned challenges of Fenton nanocatalysts for cancer
therapy in clinical trials.
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Challenges and future prospects

Regarding the challenges of nanocatalyst in cancer therapy it
should be noted that the intracellular level of H2O2 in cancer cells
should be increased to produce a large amount of OH� to stimulate
promising catalytic performance of nanocatalysts. Therefore, some
strategies like combination of magnetic nanocatalysts with differ-
ent sources of H2O2 production should be developed. In the mean-
time, the approving biodegradability and biocompatibility of
magnetic nanocatalysts should be considered to guarantee their
potential safety in vivo.

Magnetic NPs with different physicochemical properties syn-
thesized in a number of routes can be used as effective catalysts
for organic reactions to develop heterocyclic compounds as poten-
tial anticancer drugs. Furthermore, their magnetic characteristics
enable the simple and effective separation of the nanocatalyst
using a magnetic MF to be reutilized up to several times without
any remarkable changes in the initial catalytic function. These
advantages can be carried out both in aqueous and non– aqueous
environments. Additionally, the activity of fabricated compounds
can be tested against a wide range of cancers. Furthermore, mag-
netic NPs can be integrated in the form of nanocomposite to
develop the superparamagnetic properties and magnetization even
at ambient temperature. The fabricated magnetic nanocomposite



Fig. 5. PTT in combination with magnetic nanocatalyst could be used as a potential platform in augmentation of Fenton chemical reaction for tumor therapy.
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could demonstrate potential catalytic activity as a novel heteroge-
neous magnetic agent for the development of some heterocyclic
compounds with profound anticancer activities.

Additionally, there are a number of approaches to selectively
activate anticancer agents in the tumor site by means of nanocat-
alyst to reduce the relevant adverse effects. For instance, in the
case of magnetic nanocatalysts, external MFs are utilized to target
the magnetic nanocatalyst in the selected tissue, which can then
catalytically result in activation of Fenton reactions.

Also based on the specific properties of TME, a new inception of
PTT in combination with magnetic nanocatalyst could be a promis-
ing approach in augmentation of Fenton chemical reaction for
nanocatalytic tumor therapy (Fig. 5). These systems change the
performance of nanocatalytic Fenton reaction for production of
OH� and enhancing the tumor mortality at a subsequent time.
Indeed, GOD for generation of large amounts of H2O2 and Fe3O4 -
modified with photothermal inducer-based nanocatalyst can be
fabricated to attain diagnostic imaging-guided and photothermal-
improved nanocatalytic tumor therapy. Interestingly, the high
photothermal-turning efficacy of the inducer increases the defined
tumor temperature to dramatically speed up and ameliorate the
nanocatalytic activity, which potentially results in outstanding
synergistic anticancer activities with minimal adverse impacts.
Conclusion

The wide application of magnetic nanocatalysts derives from
the fact that these agents have provided very encouraging out-
comes in the synthesis of heterocyclic compounds as potential
anticancer drugs as well as selective cancer treatments in several
preclinical studies. In fact, magnetic nanocatalysts either alone or
in conjugation with other NPs/molecules can be used as multiple
promising nanocatalysts in synthesis of heterocyclic compounds
based on magnetic NPs-catalyzed reactions, targeted drug delivery
and facilitated Fenton reaction for cancer therapy. Nevertheless,
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only limited attempts have been done to translate the preclinical
achievements of these smart agents to the clinics. Indeed, several
challenges such as rapid metabolism, limited bioavailability and
biodegradability should be taken into account in advance in order
to bring magnetic nanocatalysts from the bench to the bedside.
Pharmaceutical companies should try to overcome these draw-
backs by reformulating nanocatalysts such as conjugation with
other NPs or natural compounds.
Key Scientific Concepts of review

This review may pave the way for well-organized translation of
magnetic nanocatalysts in cancer therapy from the bench to the
bedside.
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