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Abstract

A comparative study of public gene-expression data of seven types of cancers (breast, colon, kidney, lung, pancreatic,
prostate and stomach cancers) was conducted with the aim of deriving marker genes, along with associated pathways, that
are either common to multiple types of cancers or specific to individual cancers. The analysis results indicate that (a) each of
the seven cancer types can be distinguished from its corresponding control tissue based on the expression patterns of a
small number of genes, e.g., 2, 3 or 4; (b) the expression patterns of some genes can distinguish multiple cancer types from
their corresponding control tissues, potentially serving as general markers for all or some groups of cancers; (c) the proteins
encoded by some of these genes are predicted to be blood secretory, thus providing potential cancer markers in blood; (d)
the numbers of differentially expressed genes across different cancer types in comparison with their control tissues correlate
well with the five-year survival rates associated with the individual cancers; and (e) some metabolic and signaling pathways
are abnormally activated or deactivated across all cancer types, while other pathways are more specific to certain cancers or
groups of cancers. The novel findings of this study offer considerable insight into these seven cancer types and have the
potential to provide exciting new directions for diagnostic and therapeutic development.
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Introduction

Cancer is a key threat to people’s health and life, accounting for

,13% of all disease-causing deaths in the world [1]. In 2007, 7.6

million people died of cancer world-wide. In the U.S, over 1.4

million new cancer cases were reported each year in the past few

years, and cancer becomes the second leading cause of death

following heart disease. Statistics from the SEER reports indicate

that the mortality rate across all cancer types in the U.S. went

from 195.4 per 100,000 cases in 1950, continued an upward trend

till 1978 reaching 204.4, and then steadily decreased to 184.0 in

2005 [2]. This decreasing trend has been mostly due to the

improved diagnostic techniques for detecting the early stage of

cancer. General survival statistics of cancer indicate that early

detection and treatment are the key to longer survival across all

cancer types.

Challenges in early cancer detection arise mainly from the

reality that most patients are asymptomatic in the early stages of

cancer, and only a few effective cancer-screening tests are clinically

available. While some tests have proved to be effective in detecting

cancer at its early stage, they are often too invasive, such as

colonoscopy, to be routinely used during regular physicals and are

currently limited to only a small number of cancer types. Often a

cancer is already in an advanced stage when diagnosed; clearly,

more effective techniques for early cancer detection are needed.

A number of genetic markers have been proposed for various

cancers, such as BRCA1 and BRCA2 for breast cancer and

CDH1 for gastric cancer. In addition, a number of promising

serum markers for cancer have been used clinically. Among them,

PSA (prostate-specific antigen) is the most well known and has

been widely used for diagnosing prostate cancer through blood

tests [3]. However, its effectiveness of detection is far from

adequate, widely considered as having a false positive rate that is

too high to be a reliable cancer-indicator [4]. Similar observations

have been made about other serum markers such as CA125 for

ovarian cancer [5].

Herein we present a computational study on prediction of both

genetic and serum markers for seven cancer types, based on public

microarray gene-expression data and a computer program for

prediction of blood-secretory proteins [6]. Compared to earlier

studies on cancer marker identification, including meta-analyses

on multi-types of cancers [7], the present study has the following

unique features: (i) a focus on identification of multi-gene markers

through exhaustive analysis of all possible combinations of genes,

taking full advantage of the available high-level computing power,

rather than using heuristic approaches that may not necessarily

find the optimal markers; (ii) an attempt to find markers for groups

of cancers in addition to those for individual cancers; (iii) an

attempt to link the information derived from transcriptomic data

of tissues to marker prediction in serum using the novel prediction
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program [6]; and (iv) identification of pathways that are

abnormally regulated, either common across multiple cancer

types or specific to individual cancer types. We believe that these

novel data will prove highly valuable in elucidating the genetic

alterations in various cancers, as well as offering potential

directions for new approaches in diagnostics and therapeutics.

Materials and Methods

1. Microarray gene expression data for human cancers
Microarray gene expression data were downloaded for seven

cancer types, namely, breast, colon, kidney, lung, pancreatic,

prostate and stomach cancer from the GEO database of NCBI [8].

To ensure that our prediction results can be generalized to

different datasets, two independent test sets were used to evaluate

the robustness of the predicted gene markers obtained from the

training set. Detailed information of the data is listed in Table S1.

In this study, we have chosen the largest available microarray

datasets from each of the seven cancer types, where each dataset

includes the (normalized) gene expression levels of each gene in

both cancer and control tissues of each patient, along with the

stage information for the majority of the cancer samples (some

data does not have this information). Note that all the microarray

datasets used are normalized using RMA, which has been

reported to be more accurately reflective of biological changes

compared to other methods like MAS5 (Affymetrix). The

distributions of the fold-changes (FC) of individual genes across

all genes between cancer and the corresponding control tissues for

the seven types of cancers were checked and found to be highly

similar. Figure S1 shows one such comparison of FC distributions

between breast cancer and lung cancer; hence we believe that

comparisons of fold-changes across different cancer datasets in our

study are meaningful.

2. Identification of differentially expressed genes
For datasets with unpaired cancer and control samples from the

same patients, Mann-Whitney test was applied to identify genes

that are differentially expressed in cancer versus control samples.

For those datasets with paired information the test is as follows:

Given the hypothesis H0 that a particular gene is not differentially

expressed in cancer versus the control group, the rejection of this

hypothesis means that the gene is differentially expressed in

cancer. Let N½i� and C½i�, be the gene’s expression levels in control

and cancer tissues of i-th patient, i = 1… m, and m be the number

of patients. It is obvious that if the hypothesis H0 is true, then the

probability P(N½i�wC½i�) = P(N½i�vC½i�) = 0.5, assuming the

gene’s expression is a continuous random variable. Let K be the

number of patients with N½i�=C½i�w0:5, then the random variable

K/m approximately follows a normal distribution (according to the

Central Limit Theorem or de Moivre-Laplace Theorem) with its

mean = 0.5 and a standard variation = :5=
ffiffiffiffi

m
p

, or X~2K=
ffiffiffiffi

m
p

follows a normal distribution N(0,1). Thus the p-value can be

estimated as P(X.2Kexp=
ffiffiffiffi

m
p

), where Kexp is the number of

patients satisfying P(N½i�vC½i�). Overall, we consider a gene

being differentially expressed if the statistic significance, p-value, is

less than 0.05 and its fold-change is at least 2.

3. Prediction of blood secreted proteins
All genes predicted to be differentially expressed between cancer

and the corresponding control samples were analyzed to predict if

their proteins are blood-secretory, using a program that our group

recently developed [6]. The basic idea of the algorithm is to train a

support vector machine (SVM)-based classifier to distinguish

between the blood-secretory proteins and proteins that are not

secreted, using various sequence-based features such as signal

peptides, transmembrane domains, glycosylation sites and polarity

measures. On a large independent test set containing 105 secretory

proteins and 7,258 non-secretory proteins of humans, the classifier

achieved ,94% prediction sensitivity and ,98% prediction

specificity.

4. Prediction of marker genes for each cancer type
For each k-gene combination out of the differentially expressed

genes defined in the above section, an SVM-based classifier was

trained to achieve the highest possible classification accuracy

defined as

Overall accuracy~ TPzTNð Þ=N,

where TP and NP are the numbers of true positives and negatives,

respectively, and N is the total number of samples. A linear kernel

function was used for training through LIBSVM [9]. For each

cancer type, all markers were ranked according to the 5-fold cross-

validation performance on the training dataset. In order to find

markers that are generalized well to other datasets, we tested the

predicted gene markers on two independent test datasets.

5. Prediction of markers for multiple cancer types
To identify k-gene discriminators for multiple cancer types, all

genes that consistently exhibit differential expressions in at least

two cancer types were considered. For each k-gene combination

among these genes, its classification accuracy between each cancer

type and the corresponding control tissues was calculated. Then,

the k-gene combinations exhibiting discerning power across

multiple cancer types were determined. The top discriminators

for multi-cancer types were selected by using a fixed cut-off on

classification accuracies. Throughout the remainder of this paper,

k-gene groups refer to combinations of k-genes for k = 1, 2, 3, 4

unless stated otherwise.

6. Pathway enrichment analysis of differentially
expressed genes

Functional analysis and pathway enrichment analysis were

conducted using DAVID [10], where the pathway information is

based on the annotation from KEGG, BBID and BIOCARTA. A

p-value,0.05 was used to guarantee the significance level of an

enriched pathway.

Results

This study is focused on seven of the most prevalent cancer

types in the world, which also have large sets of microarray gene-

expression data available in the public domain, collected at a

genome scale from tissues of each cancer type as well as from their

corresponding noncancerous control tissues. By working on

multiple cancer types simultaneously, we can derive potential

markers either specific to individual cancer types or general to all

or groups of cancers, as well as to identify abnormally activated or

deactivated pathways.

1. Predicted marker genes for individual cancer types
We have searched for individual genes and gene combinations

whose expression patterns can best distinguish between cancer and

associated control tissues for each cancer types. Specifically, all 1-,

2-, 3- and 4-gene combinations encoded in the human genome

were ranked in terms of their discerning power in distinguishing

the cancer samples from the corresponding control samples for

Compar Analysis of MultiCancer
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each cancer type. In addition, we have also ranked k-gene

combinations, based on their discerning power between early

cancer samples and control samples if the relevant data are

available and sufficiently large.

A. Breast cancer. The analysis was done on a gene-

expression dataset consisting of 43 paired breast cancer and

cancer-adjacent control tissues from the same patients [11]. Of the

43 samples, 32 were early-stage cancers (stages I and II). 294 genes

were found to be consistently and abnormally expressed with at

least a 2-fold change in their expression across the cancer and the

control tissues, 81 of which were up-regulated and 213 were down-

regulated in the cancer tissues. Among the differentially expressed

genes, 69 of their encoded proteins are predicted to be blood

secretory by our prediction program [6], and could thus serve as

potential serum biomarkers (Supplementary Information File S1).

Classification analysis was then conducted (see Materials and

Methods), with the goal of identifying k-gene combinations whose

expression patterns can accurately distinguish between the cancer

and the control samples. Figure 1 (A) and (D) show the

classification accuracies of the best 100 k-gene combinations on

the whole training set and on the training set containing only early

stage samples, respectively. Two independent evaluation sets are

used to assess the generality of the identified gene markers, which

consist of 31 and 68 breast cancer, and 27 and 61 control samples

[12], respectively. Figure 1 (B) and (C) show the classification

performance by the trained classifiers on the two evaluation sets.

The detailed list of these 100 k-gene combinations is given in

Suppplementary Information S1.

As shown in Figure 1, the majority of the top k-gene

combinations, particularly for k.1, perform well on both training

Figure 1. Classification accuracies by the top 100 k-gene markers, k = 1, 2, 3, 4, on the training and the test sets of breast cancer. For
each panel, the x-axis is the list of 100 k-gene markers ordered by their classification performance on the training datasets, and the y-axis represents
the classification accuracy. (A) classification accuracies by the top 100 k-gene combinations between breast cancer and reference samples in the
training set, and (B) and (C) on the two test sets; (D) classification accuracies by top 100 k-gene combinations between early breast cancer and
corresponding reference samples in the training set and (E) on the test set.
doi:10.1371/journal.pone.0013696.g001
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and the independent test sets with overall accuracy better than

85% although their ranking orders on the two datasets may not be

well preserved. The fluctuations in their classification accuracies

are believed to be due to the small size of the training data. Similar

observations were made on all the predicted top markers across

the seven cancer types.

The best three single gene discriminators are PCOLCE2,

ANGPTL4 and LEP, having 88.4%, 88.4% and 87.2% classifi-

cation accuracy on the training set and 94.8% and 84.1%, 84.5%

and 79. 5% and 96.6% and 96.1% on the two test sets,

respectively. The top three 2-, 3- and 4-gene combinations are

{TACSTD2+CHRDL1, TACSTD2+CAV1, PPARG+TMEM97},

{RRM2+COL1A1+PPARG, RRM2+COL1A1+PCOLCE2, RRM2

+GPR109B+SPINT2}, and {RRM2+COL1A1+GPR109B+SPINT2,

RRM2+GPR109B+INHBA+SPINT2, TACSTD2+IGFBP6+IGF1

+TF}, respectively. Similarly, for early breast cancer, the best three k-

gene discriminators are {GPR109B, PCOLCE2, PCSK5}, {PCSK5+
COL10A1, FERMT2+SPINT2, MAOA+IGJ}, {COL1A1+
PCSK5+TF, GPX3+COL1A1+SPINT2, GPX3+FAP+TMEM97},

and {RRM2+COL1A1+GPR109B+IGJ, RRM2+COL1A1+GPR

109B+IGJ, RRM2+COL1A1+GPR109B+SPINT2}, respectively.

Although the best three discriminators represent novel discov-

eries, we noticed some lower-ranked genes have been considered

as possible breast cancer markers by previous studies. For

example, ADIPOQ (adiponectin) is found to be closely associated

with a breast-cancer risk [13]. The SPINT2, an inhibitor of HGF

activator, was reported to have higher expression levels in early

stage breast cancer and associated with a poor prognosis [14],

consistent with our findings. Some others are involved in the

activities of cancer cells in general. For example, CAV1, down-

regulated in the cancer samples, was found to inhibit breast cancer

growth and metastasis [15]; the down-regulation of PPARG is

associated with local recurrence and metastasis in breast cancer

[16]; and ANGPTL4 may act as a regulator of angiogenesis [17].

To the best our knowledge, all the 2-, 3- and 4-gene discriminators

represent novel discoveries.

Similar analyses have been carried out on six other cancer types.

The key findings on each of these six cancer types are highlighted

below, with the summary being given in Table S2 and gene names

listed in Supplementary Information File S1. In addition,

Supplementary Information File S2 show the classification

accuracies by the best 100 k-gene discriminators on both the

training and the testing sets for each cancer type, respectively.

B. Colon cancer. Our analysis was done on a microarray

dataset consisting of 53 colon cancer and 28 cancer-adjacent

control tissues from the same patients (some of the cancer samples

have no reference samples) [18]. 247 genes were found to be

consistently and abnormally expressed with at least a 2-fold change

in their expression across the cancer and the control tissues in our

training data, 56 of which are up-regulated and 191 are down-

regulated in colon cancer tissues. Two independent test sets,

consisting of 24 and 22 colon cancer and 24 and 20 cancer-

adjacent control samples from the same patients [19], respectively,

were used to assess the generality of the predicted markers.

We found the best three single-gene discriminators for colon

cancer are MMP7, DPT and MMP1 having 97.5%, 96.3% and

95.1% classification accuracy on the training set, and 97.9% and

90.9%, 97.9% and 74.6%, and 91.7% and 84.1% on the two test

sets, respectively. The top three 2-gene discriminators are

SLIT3+MMP7, MATN2+MMP7, and MMP7+PTGS1. Some

of our top discriminators have been previously studied in the

context of colorectal cancer. For example, MMP1 is an invasion-

promoting factor, and its up-regulation, as observed in our data, is

associated with the invasiveness of the cancer [20]. MMP7 is

known to play an important role in cancer growth, and its up-

regulation could be a key mechanism for cancer cells’ escape from

the immune surveillance [21].

C. Kidney cancer. The analysis was carried on a microarray

gene-expression dataset consisting of 49 kidney cancer and 23

cancer-adjacent control tissue samples from the same patients

[22]. 231 genes were found to be consistently and abnormally

expressed with at least a 2-fold change in their expression across

the cancer and control tissues in our training data, 129 of which

are up-regulated and 102 are down-regulated in cancer. Two

independent evaluation sets, consisting of 35 and 36 kidney cancer

samples and 12 and 9 cancer-adjacent control samples from the

same patients, respectively, were used to assess the generality of the

predicted markers [23,24]. The best three single gene

discriminators are found to be UMOD, ACPP and CCL18 for

kidney cancer, having the same classification accuracy, 98.6% on

the training set and 100% and 94.4%, 95.7% and 86.11% and

89.4% and 68.1% on the two test sets, respectively. The top three

2-gene combinations are EGF+ALB, ACPP+UMOD, and

UMOD+ALB. Among the top discriminators, UMOD has been

reported to be related to kidney disease [25]. SERPINA5, down-

regulated in the cancer, regulates the invasive potential of renal

cancer growth and invasion. Other top discriminators represent

new discoveries. For example, AFM has not been reported to be

related to cancer, and C6orf155 does not have a characterized

function.

D. Lung cancer. The analysis was done on a microarray

dataset consisting of 58 lung cancer tissue and 49 cancer-adjacent

control tissue samples from the same patients [26]. 683 genes were

found to be consistently and abnormally expressed with at least a

2-fold change in their expression across the cancer and control

tissues in our training data, 255 of which are up-regulated and 428

are down-regulated in lung cancer tissues. Two independent sets,

consisting of 27 and 20 lung cancer and 27 and 19 cancer-adjacent

control samples from the same patients [27], was used to assess the

generality of the predicted markers.

The best three single gene discriminators are CAV1, SFTPC

and VWF for lung cancer, having the same classification accuracy,

99.1% on the training set and 98.2% and 100%, 96.3% and

82.5%, and 88.9% and 100% on the two test sets, respectively.

The top three 2-gene combinations are FERMT2+GREM1,

TEK+NFASC, CAV1+MMP1. Among the top discriminators,

CAV1 has been found to be down-regulated in breast cancer [28],

and has been reported to be associated with metastasis in lung

cancer [29]. SFTPC has been reported to be associated with

interstitial lung disease [30]. FAM107A, which suppresses cell

growth, may play a role in cancer development [31]. Other top

discriminators represent new observations. For examples, TNXB,

SPP1 and EMCN have not previously been reported as cancer-

related.

E. Pancreatic cancer. The analysis was done on a

microarray dataset consisting of 39 paired pancreatic cancer and

cancer-adjacent control tissue samples from the same patients

[32]. 885 genes were found to be consistently and abnormally

expressed with at least a 2-fold change in their expression across

the cancer and control tissues in the training data, 616 of which

are up-regulated and 269 are down-regulated in pancreatic

cancer. Two independent sets, consisting of 36 and 29

pancreatic cancer samples and 16 and 5 cancer-adjacent control

samples from the same patients [33], was used to assess the

generality of the predicted markers.

The best three single-gene discriminators are KRT17, CO-

L10A1 and CTHRC1 for pancreatic cancer, having the same

classification accuracy, 93.6% on the training set and 88.5% and

Compar Analysis of MultiCancer
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80.4%, 84.6% and 73.2%, and 84.6% and 85.7% on the two test

sets, respectively. The top three 2- and 3-gene discriminators are

{MMP7+AZGP1; MMP7+FGL1; MMP7+PLA2G1B} and

{CTHRC1+SGPP2+CCL18; TNFRSF21+EGFL6+CTHRC1;

COL10A1+S100A6+RSAD2}, respectively. Among the top

discriminators, KRT17 is known to be involved in tissue repair

[34]. AZGP1 has been reported to cause extensive loss of fat, often

associated with advanced cancers [35]. Other top discriminators

represent new findings. For examples, RSAD2, involved in

antiviral defense, has not been reported as being related to cancer,

as well as SGPP2, known to be involved in pro-inflammatory

signaling [36], and CST4.

F. Prostate cancer. The analysis was done on a microarray

dataset consisting of 65 prostate cancer and 63 cancer-adjacent

control tissue samples from the same patients [37]. 118 genes were

found to be consistently and abnormally expressed with at least a

2-fold change in their expression across the cancer and control

tissues in our training data, of which 23 are up-regulated and 95

are down-regulated in lung cancer tissues. Two independent sets,

consisting of 62 and 53 prostate cancer samples and 47 and 14

cancer-adjacent control samples from the same patients [38], was

used to assess the generality of the predicted markers.

The best three single gene discriminators are MYLK, PALLD

and CAV1 for prostate cancer, having 73.4%, 71.9% and

71.1% classification accuracy on the training set and 83.5% and

62.3%, 69.6% and 72.6%, and 94.2% and 75.5% on the two test

sets, respectively. The top three 2- and 3-gene discriminators

are {LTF+IGF1; LTF+SPARCL1; SMTN+CCK}, {SMTN+
CCK+CCL2; SMTN+CCK+COMP; SMTN+CCK+PLA2G7},

respectively. Among the top discriminators, LTF is known to

inhibit the growth of tumors [39]. IGF1, a growth factor, plays a

role in the development of prostate cancer [40] and has been

reported as an indicator of advanced prostate cancer [41]. Other

top discriminators represent new discoveries. For example,

CHRDL1 may play a role in regulating angiogenesis [42] but

has not been reported to be related to cancer. The same is with

SMTN.

G. Stomach cancer. The analysis was done on a microarray

dataset consisting of 89 stomach cancer and 23 cancer-adjacent

control tissues from the same patients [43]. Out of the 89 cancer

tissue samples, 31 are early-stage cancers. 311 genes were found to

be consistently and abnormally expressed with at least a 2-fold

change in their expression across the cancer and control tissues in

our training data, 166 of which are up-regulated and 145 are

down-regulated in lung cancer tissues. Two independent sets,

consisting of 38 and 16 stomach cancer samples and 31 and 13

cancer-adjacent control samples from the same patients [44,45]

was used to assess the generality of the predicted markers, of which

12 are early stage samples partially paired with 10 control samples.

The best three single-gene discriminators are SERPINH1, BGN

and COL12A1 for stomach cancer, having 99.1%, 98.2% and

98.2% classification accuracy on the training set and 94.2% and

96.7%, 88.4% and 93.3%, and 84.1% and 75.8% on the two test

sets, respectively. The top three 2-gene combinations are

CHGA+SERPINH1, TGFBI+CHGA and PGC+SERPINH1,

respectively. For early stomach cancer, the best three 1-gene

discriminators are also SERPINH1, BGN and COL12A1,

respectively. Among the top discriminators, BGN is known to

have a role in controlling cell growth in cancer [46]. The

abnormal expression of CTHRC1, a regulator of matrix

deposition, has been widely found across different solid cancers

and is considered to be associated with cancer invasion and

metastasis [34]. Of particular interest is that PGC has been

proposed as an indicator of gastric cancer [47], and the serum

level of PGC was used as a biomarker for precancerous lesions of

the stomach [48]. Other top discriminators represent new

discoveries. For example, ABCA5, ADAMTS12 and CLEC3B

have not been reported to be cancer related.

Interestingly, the number of differentially expressed genes across

different cancer types has a wide spread, ranging from 118

(prostate), 231 (kidney), 247 (colon), 294 (breast), 311 (stomach) to

683 (lung) and 885 (pancreatic). One possible explanation is that

these numbers may reflect the aggressiveness of the corresponding

cancers. We did notice that there is strong correlation between the

number of differentially expressed genes in a given cancer type and

the five-year survival rate of patients with that cancer [49] (Figure 2).

The detailed statistics is given in Table S3. Another interesting

observation is that, while the majority of the differentially expressed

genes with at least a 2-fold change in five cancer types (breast, colon,

lung, prostate, stomach) are down-regulated, in kidney and

pancreatic cancers, the majority of such genes are up-regulated,

possibly suggesting unique characteristics of these two cancer types.

2. Markers for multiple cancer types
We have also sought to identify genes that could be used as

indicators for cancer in general or for a group of cancers. It is

possible to find common gene ‘‘markers’’ across different cancer

types because of the observation that the majority of the cancers, if

not all, undergo a common set of alterations [50] during

oncogenesis, such as self-sufficiency in growth signals, insensitivity

to antigrowth signals, evasion of apoptosis, and tissue invasion and

metastasis. Some of these biological processes may be executed by

the same groups of proteins during the formation and progression

of different cancers, hence possibly giving rise to common markers

for different cancer types.

A. Identification of genes differentially expressed across

multiple cancer types. We have examined differentially

expressed genes with at least 2-fold changes between cancer and

corresponding control tissues across all seven cancer types and

attempted to find those genes common to multiple cancer types.

The key findings are summarized in Table 1.

85 genes are found to be differentially expressed across at least

three cancer types (Table S4), among which 19 genes are across at

least four cancer types, and five genes (ABCA8, DPT, FHL,CDC2

and TOP2A) across five cancer types. The differences in the gene

expression across different cancer types may indicate either a

general or specific relevance of the gene to the corresponding

Figure 2. Correlation between 5-year survival rate and the
number of differentially genes in each cancer type.
doi:10.1371/journal.pone.0013696.g002
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cancers, which has been partially confirmed by the functional

analysis and an extensive literature search. The detailed molecular

function of these genes is summarized in Table S4. 63 out of the 85

genes have been reported to be cancer associated by previous

studies. For example, CDC2, up-regulated in five of the seven

cancers studied, has been reported to be related to colon, prostate

and stomach cancer, which is not surprising in view of its role in

regulating the cell cycle, e.g. entry from G1 to S; TOP2A, again

up-regulated in five of the seven cancers, has been reported to be

associated with gastric [51], breast [52] and ovarian cancer [53],

consistent with its function in DNA strand regulation; Both of

these two genes have been considered as multi-type cancer

markers by a previous meta-analysis of cancer microarray data [7].

RRM2, up-regulated in four of the seven cancers, has been

suggested to be related to esophageal and gastric cancers and

prostate cancer, consistent with its critical role in DNA synthesis

which must be maintained in rapidly dividing cells. In addition, 49

genes have been reported to be relevant to immune diseases, such

as CXCL12, COL1A1, MMP9, and CD36 [54,55,56,57], likely

reflecting an inflammatory–type response often associated with

cancer. Among them, MMP9, important in extracellular matrix

degradation, is up-regulated in three of the seven cancers, and

CD36, which may function in cell adhesion, is down-regulated in

three of the seven cancers; both of these changes are consistent

with a role of the gene products in metastasis.

B. Pathway enrichment analysis of differentially

expressed genes. We have carried out a pathway enrichment

analysis on genes that are differentially expressed in any of the

seven cancer types. Overall, a number of signaling pathways are

consistently and highly enriched across all seven types of cancers,

such as Wnt, p53 and integrin signaling pathways, as well as a few

other processes like phospho-APC/C-mediated degradation of

cyclin A and inflammation determined by chemokine and cytokine

signaling pathways (in addition to the general cellular processes

such as cell cycle, DNA replication and repair, apoptosis and

various metabolic pathways). Notably, these pathways are mostly

enriched with up-regulated genes in cancer, suggesting a possible

activation of these processes. In addition, a few metabolic

pathways such as tyrosine, histidine, phenylalanine, butanoate

and 5-hydroxytryptamine pathways are enriched only with down-

regulated genes across all cancers. This may indicate a possible

deficiency of the relevant metabolic enzymes in cancer, which

could, for example, arise from loss-of-function mutations in their

genes. These observations may suggest the essential roles played by

these processes in cancer formation and progression.

Other than the above processes common to all cancers, a few

pathways are enriched only in specific cancers. For example,

arginine, proline, glutamate and riboflavin (vitamin B2) metabo-

lisms are enriched with up-regulated genes only in lung cancer;

folate biosynthesis and nitrogen metabolism pathways are

Table 1. A list of 19 genes that are differentially expressed in more than 4 cancer types and their relevance to different cancer
types.

Gene ID Direction of regulation Reported to be related to cancers

Breast Colon Kidney Lung Pancreas Prostate Stomach B. C. K. L. Pa. Pr. S. Other cancer types

CDC2 q q q q q * * * * * liver cancer; squamous cell
carcinoma;nasopharyngeal carcinoma

AURKA q q q q q * * * * * * ovarian cancer;esophageal squamous
cancer;uterine cancer;bladder cancer

ABCA8 Q Q Q Q Q

DPT Q Q Q Q Q

TOP2A q q q q q * * * bladder cancer;ovarian cancer;
squamous cell carcinoma

MMP7 q q q q * * * * * ovarian cancer; oral cancer; rectal
cancers; bladder cancer; liver cancer

MAD2L1 q q q q * * thyroid carcinomas; oesophageal
squamous cancer

KLF4 Q Q Q Q * * * esophageal cancer;bladder cancer

MELK q q q q * brain cancer;endometrial cancer

C7 Q Q Q Q * * uterine cervical cancers

ECT2 q q q q *

PRC1 q q q q *

RRM2 q q q q * * *

ALDH1A1 Q Q Q Q * non-small cell bronchopulmonary
cancer; liver cancer; T-cell leukemia

PMAIP1 q q q q * * *

FABP4 Q Q Q Q * Bladder cancer;

COL11A1 q q q q adenomas;

TTK q q q q

CENPF q q q q *

‘‘q’’ indicates up-regulated gene expression in the corresponding cancer type while ‘‘Q’’is down-regulation. ‘‘*’’ indicates that a gene has been reported as relevant to
the corresponding cancer type. ‘‘B.’’ for breast cancer; ‘‘C.’’ for colon cancer; ‘‘K.’’ for kidney cancer’’; ‘‘L.’’ for lung cancer’’; ‘‘Pa.’’ for pancreatic cancer’’; ‘‘Pr.’’ for prostate
cancer’’ and ‘‘S.’’ for stomach cancer’’.
doi:10.1371/journal.pone.0013696.t001
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enriched in breast cancer; formyltetrahydroformate biosynthesis

in stomach cancer; and NF-kB activation and Csk activation by

cAMP-dependent protein kinase inhibits signaling through T-cell

receptor in kidney cancer. Of particular interest is the finding

that pancreatic cancer has the greatest number of differentially

expressed genes, compared to other cancer types, that are

involved in a complex network consisting of the EGF signaling

pathway, purine and aminosugar metabolism, PKC-catalyzed

phosphorylation of inhibitory phosphoprotein of myosin phos-

phatase, metabotropic glutamate receptor group II pathway, Fc

epsilon receptor I signaling and the BCR and IL 4 signaling

pathways. This suggests a highly active state of the underlying

cells in terms of cell growth, differentiation, invasion and

metastasis, consistent with the known aggressiveness of the

cancer. Seeking the genes and their products that are responsible

for the more aggressive behaviors of pancreatic cancer may

provide new targets for treating the cancer or preventing the

cancer from progression.

A number of pathways specific to a group of cancers have also

been identified, which may suggest common characteristics of the

underlying neoplasms. For example, the glutathione metabolic

pathway is enriched across five cancer types, excluding breast and

prostate cancer; E. coli infection-related pathways are activated in

kidney, lung, pancreatic and stomach cancers but not in other

cancers; the thyrotropin-releasing hormone receptor signaling

pathway is activated in pancreatic and kidney cancer, but not in

the other five cancers; and steroid biosynthesis is activated in

breast, lung and pancreatic cancer but not in the other four

cancers. Cancer-specific pathway activations have been previ-

ously reported. For example, the thyrotropin-releasing hormone

receptor signaling pathway was reported to promote pro-

grammed cell death in pancreatic cancer [58]; steroid biosyn-

thesis in pancreatic cancer was found based on analyses of several

steroidogenic enzymes, such as the cytochrome P-450scc

enzymatic complex (P450scc) that is responsible for the

conversion of cholesterol into pregnenolone.

These diverse findings indicate that comparative analyses of

cancer microarray data can reveal interesting and undetected

relationships across different cancer types/subtypes, thus provid-

ing useful guiding information for further investigation. The

detailed pathway-enrichment information across different cancer

types is summarized in Table S5.

C. Top k-gene markers for multiple cancer types. We

have examined the k-gene combinations among genes that are

differentially expressed in each cancer type to find gene

combinations that are common to multiple cancer types. The

idea is to identify commonalities of gene combinations with

differential expression patterns between cancer and corresponding

control tissue across multiple cancer types, which could provide

useful information about common underlying mechanisms of

carcinogenesis of different cancers.

Table 2 gives the top two 2-gene combinations across at least

three cancer types. CDC2+DPT and CDC2+TOP2A are found to

be good discriminators for five cancer types, namely breast, colon,

lung, prostate and stomach cancers. Similarly, ABCA8+ALD-

H1A1+DPT and ABCA8+AURKA+DPT are good 3-gene

discriminators for four cancer types with higher classification

accuracies than the top 2-gene discriminators, as shown in

Table S6.

As noted, CDC has been reported to play a key role in cell

proliferation and apoptosis [59], and DPT is suggested to have a

possible role in carcinogenesis through its interaction with a known

oncogene, TGFB1. Moreover, some of the top discriminator genes

have been reported to be cancer relevant. For example, ECT2 is

reported to be involved in cancer development, influencing

processes such as the cell cycle, apoptosis and cell division [60];

FABP4 is involved in the activation of the immune response and is

reported to be related to breast cancer [61] and bladder cancer

[62]; and TOP2A is involved in stomach cancer [51]. These

independent observations confirm that the findings herein are

meaningful.

D. Top k-gene markers that are blood secretory. By

combining our blood-secretion prediction capability [6] with the

above top gene discriminators, we have predicted proteins that

may be secreted into circulation, thus providing candidate serum

marker proteins for cancer detection. Table 3 summarizes the top

k-gene discriminators that are predicted to have their proteins

secreted into blood. Some genes involved in these top candidate

discriminators have been previously reported to be cancer related,

e.g. MMP7 [63]. Other predicted blood-secretory marker proteins

such as PAICS, CHRDL1, KLF2, COL10A1 and MYL9 have not

heretofore been reported to be cancer related.

While Table 3 gives a detailed list of all the gene combinations

whose proteins are predicted to be blood secretory, with

Table 2. The top 2-gene markers for multiple cancer types with each numerical value showing the classification accuracy between
a cancer and its corresponding control tissue.

Count Markers Breast Colon Kidney Lung Pancreas Prostate Stomach

tr
a

in

te
st

te
st

2

tr
a

in

te
st

te
st

2

tr
a

in

te
st

te
st

2

tr
a

in

te
st

te
st

2

tr
a

in

te
st

te
st

2

tr
a

in

te
st

te
st

2

tr
a

in

te
st

te
st

2

5 CDC2+TOP2A 72.4 94.8 95.3 75.0 100 64.3 _ _ _ 85.2 85.2 79.5 71.2 71.2 87.5 _ _ _ 78.3 85.5 85.2

4 CDC2+DPT 70.7 94.8 96.1 91.7 97.9 64.3 _ _ _ 88.9 92.6 82.1 _ _ _ _ _ _ 66.7 85.5 85.2

CDC2+ECT2 _ _ _ 85.4 97.9 69.0 _ _ _ 83.3 77.8 miss 78.8 86.5 87.5 _ _ _ 75.4 78.3 65.6

ABCA8+AURKA 81.0 96.6 99.2 91.7 100 N.A. _ _ _ 94.4 94.4 92.3 _ _ _ _ _ _ 75.4 92.8 74.1

ABCA8+FABP4 79.3 96.6 91.5 89.6 97.9 85.7 _ _ _ 96.3 98.1 94.9 _ _ _ _ _ _ 79.7 84.1 66.7

DPT+FABP4 79.3 87.9 85.2 95.8 89.6 65.2 _ _ _ 94.4 96.3 94.9 _ _ _ _ _ _ 82.6 75.4 81.5

FABP4+TOP2A 77.6 94.8 93.0 85.4 100 67.6 _ _ _ 96.3 94.4 92.3 _ _ _ _ _ _ 78.3 85.5 88.9

3 CDC2+SULF1 _ _ _ _ _ _ _ _ _ 90.7 88.9 76.9 96.2 90.4 87.5 _ _ _ 95.7 88.4 77.8

Each entry represents the classification accuracy (by percentage) between a cancer set and its corresponding reference set on the training (train) and the testing (test)
datasets, respectively. (N.A. : the platform of the extra test data doesn’t cover the corresponding gene).
doi:10.1371/journal.pone.0013696.t002
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discerning power between cancer and corresponding reference

tissues higher than 70%, a few top candidates for these seven

cancer types are highlighted. Three types of cancers are covered

by 22 2-gene combinations, with MMP11+RRM2 and

MMP7+MMP9 representing the top 2-gene markers with at

least 75% classification accuracy. The best 4-gene combination,

MMP7+MMP9+MMP11+RRM2, gives at least 86% classifica-

tion accuracy for lung, pancreatic and stomach cancers, and all of

these four genes are up-regulated by at least 2-fold in the cancer

tissues, suggesting the potential of this combination as a good

blood marker for these cancer types. CCL18+TGFBI represents a

good discriminator for kidney, pancreatic and stomach cancer,

which are up-regulated by at least 2-fold in cancer tissues.

Similarly, CN2+THBS2 are both up-regulated by 2-fold in

kidney, lung and pancreatic cancer. MMP11+RRM2 are up-

regulated in lung cancer, pancreatic cancer and stomach cancer

tissues, and hence may also make a good marker for these three

cancer types.

Concluding Remarks
A computational protocol for predicting gene markers in cancer

tissues and protein markers in sera was developed for simultaneous

analyses of multiple cancer types. In addition to individual gene

markers, we have focused on gene combinations that can be used

to distinguish multiple cancer types from their corresponding

control tissues. The pathway enrichment analysis among the

differentially expressed genes across multiple cancer types, as well

as those specific to individual cancer types, has identified a number

of abnormally activated or deactivated pathways across multiple

cancers and for specific cancers. The information provided on

individual genes and pathways, along with potential serum

biomarkers, should provide highly useful information for elucidat-

ing pathways in cancer, as well as expediting the search for

potential serum biomarkers of specific cancers.
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Table 3. Top k-gene discriminators with their proteins being blood secretory.

Markers Breast Colon Kidney Lung Pancreas Prostate Stomach
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3 GREM1+MMP7 _ _ _ _ _ _ _ _ _ 88.9 79.6 64.1 92.3 73.1 87.5 _ _ _ 89.9 75.4 63.0

3 MMP7+MMP9 _ _ _ _ _ _ _ _ _ 75.9 79.6 87.2 96.2 78.9 87.5 _ _ _ 77.9 76.8 70.4

3 MMP11+MMP7+MMP9+RRM2 _ _ _ _ _ _ _ _ _ 85.2 96.3 87.2 96.2 88.5 87.5 _ _ _ 88.1 88.4 84.4

3 CCL18+TGFBI _ _ _ _ _ _ 74.5 80.9 80.0 _ _ _ 82.7 82.7 87.5 _ _ _ 71.0 75.4 77.8

3 DPT+MMP7 _ _ _ 97.9 89.6 76.2 _ _ _ 85.2 88.9 87.2 _ _ _ _ _ _ 84.2 81.2 74.1

3 FAM107A+KLF4 _ _ _ 87.5 100 miss _ _ _ 94.4 92.6 94.9 _ _ _ _ _ _ 91.3 92.8 70.4

3 FAM107A+KLF4+MMP7+PAICS _ _ _ 100 100 _ _ _ 94.4 94.4 94.9 _ _ _ _ _ _ 91.3 91.3 84.4

3 INHBA+RRM2 74.1 100 98.4 _ _ _ _ _ _ _ _ _ 94.2 88.5 87.5 _ _ _ 78.3 81.2 74.1

3 GPX3+RRM2 81.0 96.6 96.1 _ _ _ _ _ _ 88.9 94.4 94.9 _ _ _ _ _ _ 85.5 81.2 77.8

3 COL11A1+DPT 72.4 96.6 96.9 97.9 89.6 57.1 _ _ _ 92.6 94.4 87.2 _ _ _ _ _ _ _ _ _

3 MMP11+RRM2 _ _ _ _ _ _ _ _ _ 88.9 90.7 69.2 86.5 88.5 87.5 _ _ _ 75.0 82.6 63.0

Each numerical value represents the classification accuracy (by percentage) between cancer tissues and their corresponding reference tissues.
doi:10.1371/journal.pone.0013696.t003
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