
Profiling a Community-Specific
Function Landscape for Bacterial
Peptides Through Protein-Level
Meta-Assembly andMachine Learning
Mitra Vajjala1†, Brady Johnson1†, Lauren Kasparek1, Michael Leuze2 and Qiuming Yao1*

1School of Computing, University of Nebraska-Lincoln, Lincoln, NE, United States, 2Nashville Biosciences, Nashville, TN,
United States

Small proteins, encoded by small open reading frames, are only beginning to emerge with
the current advancement of omics technology and bioinformatics. There is increasing
evidence that small proteins play roles in diverse critical biological functions, such as
adjusting cellular metabolism, regulating other protein activities, controlling cell cycles, and
affecting disease physiology. In prokaryotes such as bacteria, the small proteins are largely
unexplored for their sequence space and functional groups. For most bacterial species
from a natural community, the sample cannot be easily isolated or cultured, and the
bacterial peptides must be better characterized in a metagenomic manner. The bacterial
peptides identified from metagenomic samples can not only enrich the pool of small
proteins but can also reveal the community-specific microbe ecology information from a
small protein perspective. In this study, metaBP (Bacterial Peptides for metagenomic
sample) has been developed as a comprehensive toolkit to explore the small protein
universe from metagenomic samples. It takes raw sequencing reads as input, performs
protein-level meta-assembly, and computes bacterial peptide homolog groups with
sample-specific mutations. The metaBP also integrates general protein annotation
tools as well as our small protein-specific machine learning module metaBP-ML to
construct a full landscape for bacterial peptides. The metaBP-ML shows advantages
for discovering functions of bacterial peptides in a microbial community and increases the
yields of annotations by up to five folds. The metaBP toolkit demonstrates its novelty in
adopting the protein-level assembly to discover small proteins, integrating protein-
clustering tool in a new and flexible environment of RBiotools, and presenting the first-
time small protein landscape by metaBP-ML. Taken together, metaBP (and metaBP-ML)
can profile functional bacterial peptides from metagenomic samples with potential diverse
mutations, in order to depict a unique landscape of small proteins from a microbial
community.
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1 INTRODUCTION

Small proteins or peptides, translated from short open reading frames,
largely exist in biological systems in both eukaryotes (Chen et al.,
2020) and prokaryotes (Hemm et al., 2020; Orr et al., 2021).
Historically, these small proteins were ignored or identified as
non-coding elements (Storz et al., 2014) and were considered as
“dark matter” due to the lack of genomic annotation (Garai and
Blanc-Potard, 2020). Bacteria-derived small proteins can play diverse
roles in microbial functions and host-microbe interactions, such as
innate immunity (Huan et al., 2020), cell division, signal transduction,
transporter regulation, enzymatic activity, and protein folding (Storz
et al., 2014). Some of the bacterial peptides have the potential of being
novel therapeutic candidates (Duval and Cossart, 2017).

Bacterial peptides are much harder to decompose and they
annotate in a natural community. While detecting and testing a
small gene can be difficult in a single organism, microbiome at
community level brings additional challenges in the data complexity
and sparsity for small protein detection, classification, and function
annotation. Metagenomics from short gun sequencing provides
information from the community-specific population to gene
functions, but there haven’t been many previous efforts
specifically focusing on the role of bacterial peptides from a
natural community. The lack of detection power and poor
analytical resolution indicate the limitation from both the
computation and experiment. First, the peptides detection from
mass spectrometry needs abundant input materials and suffers from
large search spaces in an unbiased and untargeted scenario. It usually
requires a confident database from reference genomes or from
metagenomes. Poor annotation of small genes in reference
genomes is also an obstacle of the direct detection from mass
spectrometry. Even by combining multiple types of omics data,
the false positives can still be high in small bacterial peptides
detection (Miravet-Verde et al., 2019). Second, the protein calling
tools for metagenomics may require high quality of the assembly
results. Especially some of them are optimized for long contigs and
scaffolds (Hyatt et al., 2012). Recently, a large-scale study for
bacterial peptides from metagenomic samples reported more than
4,000 novel small-protein families were found from human
microbiome and less than 5% of the proteins could be mapped
to known domains. However, they still used contigs as input data
from the nucleotide-level metagenomic assembly, which can lose a
large amount of original sequencing data due to the sample
complexity and sparsity. Third, for homologous searching and
function annotation (Cantalapiedra et al., 2021), there is not a
specific tool designed for exploring and mapping to the space of
small bacterial peptides.

In order to address the limitations from the nucleotide-level
metagenomic assembly and the current shortages of small protein
annotation from microbe communities, metaBP (Bacterial Peptides
for metagenomic sample) has been developed as a comprehensive
and user-friendly toolkit to explore the small protein universe in a
more thorough and detailed way. The metaBP applies protein-level
assembly from the metagenomic sequencing data to maximize the
protein recovery and search from the open reading frames
(Steinegger et al., 2019). The metaBP identifies confident small
protein sequences and mutations in diverse homologous clusters

using the most current protein sequence clustering technique
(Steinegger and Söding, 2018). The metaBP also contains a
machine learning part, metaBP-ML, to address the sequence-based
annotation integrating a natural language-based protein embedding
model (Rives et al., 2021) with amillion-sized database. Diverse small
protein sequences and functions are demonstrated in various sets of
samples, which cover mice, human, and environmental microbiome
communities. The metaBP provides the capability to explore the
small protein landscape both at themicrobial community scale and at
the base pair resolution.

2 MATERIALS AND METHODS

2.1 Toolkit Implementation Overview
The metaBP is an integrated and automated toolkit for
identifying and annotating small proteins from the
metagenomic sequencing data. MetaBP’s implementation
consists of three major modules (metaBP, metaBP-ML, and
RBiotools), and five main procedures (Figure 1): protein
meta-assembly, protein clustering, mutation calling, protein
embedding, and protein annotation. The first three procedures
to identify small proteins along with mutations are from our
major module, i.e., metaBP; the last two procedures to do protein
embedding and annotation are integrated in our machine
learning-based module metaBP-ML. The entire toolkit is
implemented by both Python and R, and the machine learning
module requires pyTorch. Themost convenient way to install and
use the metaBP, metaBP-ML and RBiotools is to configure their
individual Conda environment, which are described in our
GitHub repository (see the data availability for our GitHub link).

2.2 Input and Output
The input data for metaBP is the raw sequencing reads (paired-
end short gun sequencing) in a FASTQ format. The output data
consists of mainly three parts of the information, protein clusters
with mutations, small protein annotations, and a protein copy
number table from annotations, which will be demonstrated in
this study. For the purpose of this study, only the small protein
analysis is mentioned and emphasized. In fact, the metaBP toolkit
can also identify the entire proteome wide space of open reading
frames, other than just small proteins.

The raw FASTQ files used in this study are downloaded from
NCBI SRA by the sra-toolkit. The sample IDs and general
sequencing information are summarized in the supplementary
table (Supplementary Table S1), with different read lengths and
data volumes. This indicates our metaBP can be generalized to all
types of metagenomics from natural environments.

2.3 Small Protein Identification and
Clustering by MetaBP
2.3.1 Protein-Level Meta-Assembly
Raw sequencing reads in FASTQ files are pre-processed by
BBTools (Bushnell et al., 2017). The pre-processing includes
quality checking, read length trimming, and adaptor removal.
The cleaned reads are used in the protein level assembly by PLASS
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(Steinegger et al., 2019), which is reported to increase the protein
yields by many-folds compared to the nucleotide-level
metagenomic assembly. When an example data set from
PLASS GitHub (see the data availability) is used to do protein
level assembly, 99% identity in the sequence only yields
780 proteins, while 90% and 80% identity yield 1,217 and
1,267 proteins, respectively (Supplementary Table S2).
Specifically, 80% of the sequence identity triples the number of
non-single clusters. In order to maximize the initial protein
throughput and capture the diversity inside average protein
clusters, 80% identity in the sequence is recommended using
in the metaBP toolkit. This setting can be changed by user’s
specific needs in terms of the protein recovery volume.

2.3.2 Protein Clustering and Mutation Calling
The assembled protein sequences are used in the clustering
process. Linclust is one of the most recent protein clustering
techniques that can approach both the good accuracy and linear
time complexity (Steinegger and Söding, 2018). The metaBP has
two ways to call Linclust procedure: one is from
MMSeqs2 command line, and the other is from our
independent implementation in RBiotools. These two different
ways to call Linclust provide different flexibility to the user side.
The R version of Linclust inside the RBiotools does require
additional installation of the R environment, but it is more
flexible for user to develop new applications and change
parameters from the source code.

FIGURE 1 | Flowchart of metaBP pipeline. MetaBP’s implementation consists of three major modules (metaBP, metaBP-ML, and RBiotools), and five main
procedures (protein meta-assembly, protein clustering, mutation calling, protein embedding, and protein annotation).
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The protein clustering by Linclust has two purposes: one is to
remove the redundancy from proteins and protein fragments,
and the other is to group protein families by homology for
mutations. The protein sequences generated from the PLASS
example dataset are duplicated to test the effects of truncated
sequences. Each protein is truncated up to 50% of the total length
from either beginning or end of the sequence, mixed with their
intact versions, and then they are clustered by Linclust at different
settings. When the default parameter for Linclust is applied, the
sequences truncated to 90% of the original length can still be
clustered with its full-length version, but sequences truncated to
80% of the length cannot be clustered well. When using the
customized setting in Linclust and setting the coverage rate to
50%, most of the truncated protein can still be clustered with the
original full-length protein (Supplementary Table S3). For small
protein clustering, the default parameters in Linclust are
recommended to use the metaBP in order to make the small
protein families more specific and sensitive. The user can always
change the parameters to accommodate various protein lengths
in a cluster. After the protein clusters are generated, the protein
sequences are aligned by Clustal Omega (Sievers and Higgins,
2018), and the positions with conservative amino acids or the
positions with potential mutations can be observed and reported.
By randomly mutating the protein sequences, it is confirmed that
Linclust can capture up to 5% of the sequence mutation in the
same cluster (Supplementary Table S4). This implies that the
final small-protein clusters obtained from the samples can
represent a protein family with diverse sequences of at most
five amino acid mutations.

The strategy to isolate small proteins from metagenomics data
is as follows. First, sequences with longer than 100 amino acids
are separated. Second, short sequences clustered with long
sequences are removed so that the protein fragments can be
minimized in the final output. Third, in this study, only protein
clusters with four or more protein members are considered as
confident protein families. This means that the same small
protein should occur at least four times in a single sample. In
addition, only protein clusters with a large size can display a
meaningful sequence diversity. On average, after these criteria are
applied to the datasets, less than 5% from the metagenomics data
are small bacteria peptides, which is consistent with the study
from MAGs (metagenome-assembled genomes) or contigs
(Sberro et al., 2019).

2.4 Machine Learning-Based Annotation by
metaBP-ML
2.4.1 Database Construction
The database for small protein sequences (not more than
100 amino acids) is constructed from the sequence files in the
FASTA format downloaded from the Uniprot (Swiss-Prot and
TrEMBL, November, 2021) (Bateman et al., 2021). In total,
16,565,616 sequences are downloaded for bacteria, 785,496 for
archaea, 1,201,161 for virus, and 596,067 for metagenomics.
Among these short sequences, 8,486,746 have species or
function annotations. The rest of the 10,661,593 proteins
without any annotation (“uncharacterized” or “unannotated”)

is removed first. Among annotated small proteins, Linclust is
used to remove 80% of redundant sequences by clustering, and
3,682,960 proteins are eventually survived to form our final small
protein sequence database.

As a transformer-basedmachine learningmodel inspired from
natural language processing, ESM (Rives et al., 2021) is used to
convert the sequences in the database to numerical vectors. In
order to process 3 million of small proteins in the database,
parallel computing with multiple threads is used to speed up the
procedure. The resulted vectors for each small protein are
1,280 numerical values in length, and the principal
components are computed in order to visualize the entire
small protein database or landscape in a two-dimensional
space. To our knowledge, before our study, this small protein
landscape hasn’t ever shown nor used in the small protein
annotation.

2.4.2 Protein Embedding and Annotation
After the database is constructed with vectorized small protein
sequences, small proteins from metagenomic samples must be
processed in the same ESMmodel (Rives et al., 2021). Each of the
small protein cluster is vectorized by its representative sequence
and then it can be embedded to the entire small protein universe
spanned by the database. For downstream protein annotation,
user can select one of the two ways in metaBP-ML. The first one is
to use an HMM based tool, i.e., eggNOG (Cantalapiedra et al.,
2021), which is for general protein annotations as well as for small
proteins. The second method is to search for k nearest neighbors
(KNN) from our constructed database for each cluster
representative. Since this requires calculating all pairs of vector
distances, it can be time consuming for a larger k. From our
simple test, using a mice gut microbial sample (Morissette et al.,
2020), the newly recovered protein annotations drops to less than
10% when pursuing 10 neighbors (Supplementary Table S5). In
metaBP-ML, top ten nearest neighbors are recommended for
small protein annotations.

The final protein annotation strategy based on the ten nearest
neighbors is heuristic. First, rule of thumb is used if there is a most
frequent annotation in the neighborhood. Second, if there is no
difference between annotation frequencies, the top annotation is
always picked. Third, if useful annotation cannot be extracted
from the top ten neighbors, the protein will be left as
unannotated.

In this study, the enzyme commission (EC) number and the
taxonomy information will be provided in the small protein
annotation. For simplicity of this research, protein copy
numbers are used to quantify the abundance of every
annotation so that different samples are compared. The
protein copy numbers are added together from different
clusters with the same annotation. The protein copy numbers
can be normalized by the total number of small protein copies in
the data set. The normalized protein copy number [or counts,
denotated as c(.)] for a certain annotation A is calculated with the
following formula, where s(C) is the size of cluster C. Analogous
to transcriptome quantification, the normalized value can be
multiplied by 106 to represent the copy numbers per million
proteins.
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c(A) � ∑
C∈A

s(C) × 106/∑
C

s(C).

3 RESULTS

3.1 Small Protein Identification bymetaBP in
a Wide Range of Samples
The metaBP is applied on various metagenomic data sets,
including sixteen mice gut samples (Morissette et al., 2020),
one human gut sample (Lee et al., 2017), one human skin
sample, one saliva sample, and environmental microbe
samples in soil and marine (see Supplementary Table S1 for
NCBI Bioproject IDs). The data size varies from 5 million to
45 million of sequencing reads (Table 1; Supplementary Table
S1). The sequencing read length varies between 100 and 200 base
pairs from each end. On average, about one third of the resulted
sequences are short sequences from the protein assembly results.
However, only less than 5% of the sequences are in a cluster with
at least four sequences, which is consistent with previously
reported percentage of small open reading frames in
metagenomic samples. Thus, clusters with at least four
sequences are treated as reliable small protein families in the
sample. Overall, about 5,000–8,000 clusters with their small
representative proteins are generated within every million of
the total assembled proteins. These clusters and representative
sequences are sent to metaBP-ML (and/or eggNOG) for
annotation, so that the taxonomy and enzyme commission
(EC) information can be obtained and quantified for each sample.

The analysis from mice samples shows interesting enzyme
activities. In order to compare EC numbers across samples,
only those ECs existing in all the samples are used in this

analysis. First, the normalized counts of every EC number
from mice samples are tested by ANOVA and the top ten
important EC functions enriched in the high-fat diet of 12-
week-old mice are presented in the heatmap (Figure 2A). The
complete EC quantification table is available in the
Supplementary Table S6. These top ten ECs corresponding
to the high-fat diet mice show potential enzyme activities from
small protein families. For example, the proteins marked with
EC 1.11.1.6 belong to the catalase which is important for
radical degradation. Catalases and antioxidant enzymes are
known to increase in order to benefit the mice with a high-fat
diet (Liang et al., 2015; Piao et al., 2017). It is necessary to
mention that after the Benjamini–Hochberg p-value
correction, none of the EC numbers are significant in the
high-fat diet mice anymore. So, the EC numbers displayed in
the heatmap are simply ranked by its original p-value (less than
5%). It is noticeable that the quantification pattern of these EC
numbers from the human gut sample is more like the mice gut
samples compared with the other samples. Human saliva
samples do not have good yield of small proteins compared
to the other samples.

In this study, 29 of the known short proteins derived from
bacteria are searched from the metaBP output and only four of
those are discovered in our samples (Figure 2B). The Uniprot IDs
of these small genes are listed in the Supplementary Table S7.
The most abundant small genes, senS are discovered in 12 of the
16 mice gut samples, but not in the human gut. The other three
genes, AgrD, BacSp222, and SdaA are only recovered from the
human gut sample. Indeed these 29 small genes are all from
human associated microbes (Sberro et al., 2019) so that they may
not be easily observed in the soil and marine samples. While
metaBP-ML has discovered four of these 29 genes in our samples,

TABLE 1 | Data samples and statistics in metaBP analyses.

Sample Biosample Reads structure # of reads (m) # of assembled total
proteins

# of small
protein clusters with
4 or more members

Time for protein
assembly

(HH:MM:SS)

Time for metaBP-ML
annotation

(DD-HH:MM:SS)

1.1 Mice gut 2 × 100 bp 32.7 1847781 16475 00:56:55 01:06:28:23
1.2 Mice gut 2 × 100 bp 29.8 1969398 12725 00:59:14 23:04:32
1.3 Mice gut 2 × 100 bp 25.9 1714448 12916 00:48:12 01:00:06:49
1.4 Mice gut 2 × 100 bp 32.0 1705080 11870 00:56:49 22:07:28
1.5 Mice gut 2 × 100 bp 30.1 1662298 15140 00:49:58 16:48:22
1.6 Mice gut 2 × 100 bp 32.3 1999701 14555 01:03:55 01:15:22:07
1.7 Mice gut 2 × 100 bp 28.3 1525231 12758 00:49:56 01:00:56:54
1.8 Mice gut 2 × 100 bp 37.4 2483994 18411 01:14:25 12:58:13
1.9 Mice gut 2 × 100 bp 33.0 1948886 14380 01:00:10 01:02:03:12
1.10 Mice gut 2 × 100 bp 33.4 2808475 18745 01:23:08 01:08:10:31
1.11 Mice gut 2 × 100 bp 33.7 2167085 16087 01:02:30 01:07:40:41
1.12 Mice gut 2 × 100 bp 35.6 2376492 15779 01:12:33 01:04:21:47
1.13 Mice gut 2 × 100 bp 37.0 2974313 17935 01:39:31 01:07:51:20
1.14 Mice gut 2 × 100 bp 44.5 3626380 19818 01:53:51 12:02:22
1.15 Mice gut 2 × 100 bp 32.5 1965315 16659 01:02:31 01:05:44:15
1.16 Mice gut 2 × 100 bp 31.1 2322776 12481 01:12:24 22:28:17
2 Human gut 2 × 151 bp 37.5 29194727 171238 01:26:04.66 20:15:30:00
3 Human skin 2 × 150 bp 5.1 679115 2874 00:30:24.91 04:54:01
4 Meadowsoil 2 × 200 bp 24.7 14947269 23640 14:41:28.71 01:14:07:31
5 Marine 2 × 150 bp 13.1 4595883 23410 02:12:55.85 01:14:22:30
6 Human saliva 2 × 126 bp 26.8 133743 583 00:36:04.86 01:06:08
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the annotation from eggNOG does not show any of these
29 genes.

3.2 Small Protein Annotation by eggNOG
and metaBP-ML
Besides the search for the known 29 small genes, sixteen mice
gut samples are used to systematically compare the
annotation outcomes from eggNOG and metaBP-ML for
small protein families. As known that not many small
proteins have clear enzyme activities, EC number
annotation overall has lower yields compared with the
taxonomy (organism group) annotation, no matter by
eggNOG or metaBP-ML.

For the EC number annotation, metaBP-ML can annotate
almost five times more proteins than eggNOG (Figure 3A).
Both methods can annotate the same set of 19,283 proteins,
but 6,865 proteins have the consensus EC annotation.
Among the top 11, the most abundant EC numbers in
eggNOG and metaBP-ML (Figures 3B,C), EC2.7.7.7
(DNA-directed DNA polymerase) and EC2.7.13.3

(histidine kinase), occur in both methods. However, it is
hard to confirm if the small proteins can have these enzyme
activities or not, since the functions are assigned only by the
similarity computation.

For taxonomy annotation, metaBP-ML can annotate
almost twice of the proteins than eggNOG (Figure 3D). In
order to compare the predicted taxonomy labels directly,
taxonomy IDs from both the methods are normalized to
family IDs. This means among the same set of
15,353 proteins that gain the taxonomy annotation from
both the methods, only 4,198 proteins have exactly the
same family name from both the methods. The consensus
rate is between 1/3 to 1/4 between two approaches. Top
11 abundant taxa from eggNOG are family names, order
names or phylum names (extracted from the narrowest
annotation from eggNOG results), while top 11 taxa from
metaBP-ML, which can be as detailed as species level
annotation (Figures 3E,F). From the top taxa lists
obtained in both the methods, Lachnospiraceae,
Oscillospiraceae, and Clostridia are the consensus. Overall,
our metaBP-ML can provide more annotations with more

FIGURE 2 | Small protein quantification in each sample. (A) Normalized counts (small proteins per million) for top ten EC numbers comparing the high-fat diet mice
with the normal mice after 12 weeks. (B) Protein copy numbers for 4 known small genes recovered from the samples.
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details mainly because of a very specific small protein
database constructed.

3.3 Small Protein Landscape bymetaBP-ML
As mentioned above, the entire small protein database composed
of 3 million of short sequences are transformed into a 1,280-
dimension vector space. In order to visualize the landscape within
two dimensions, principal components analysis is performed, and
the first two principal dimensions are shown in a dot plot
(Figure 4A). The collected 29-known small genes are overlaid
on this landscape and their relative locations and gene names are
in a zoomed-in plot (Figure 4B). Surprisingly, within the first two
principal components, the small protein landscape clearly shows

three clusters: left, right, and some outliers on the top right
corner. It is hard to tell if this pattern of distribution reflects the
true biology or some artifacts in the data collection, which
requires future investigation. The known 29 small genes are
mainly located on the right side of the landscape. When the
mice samples are overlaid to this landscape (Figure 4C), there is
no observable sample effects. When more samples are overlaid
onto this landscape (Figure 4D), we can observe that the soil
sample and skin sample are more on the right side while the
human saliva sample is more located under the conjunction of the
two parts. This entire landscape built from small proteins makes
it possible to visualize the sample specific patterns from a natural
microbial community.

FIGURE 3 |Comparison of small protein annotations from eggNOG and metaBP-ML. (A)Number of proteins can be annotated with EC numbers by eggNOG and
metaBP-ML. A total of 6,865 proteins in dashed edge circle are annotated with exactly the same EC numbers. (B) Top 11 EC numbers predicted from eggNOG (C) Top
11 EC numbers predicted frommetaBP-ML. (D)Number of proteins can be annotated with taxonomy terms by eggNOG andmetaBP-ML. A total of 4,198 proteins in the
dashed edge circle are annotated with exactly the same family names. (E) Top 11 taxonomy terms predicted from eggNOG. (F) Top 11 taxonomy terms predicted
by metaBP-ML.
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3.4 Sequence Diversity in Small Protein
Clusters

To explore several interesting clusters identified in the mice gut
samples, we pull out the protein cluster sequences from metaBP
results and conduct further analyses. The clusters shown in this
section are from the 12-week-old mice with a high-fat diet. One of
the known small genes, senS, is widely discovered in the mice gut
samples, and its sequence diversity is shown after the sequence
alignment (Figure 5A). The senS protein sequences, including the
consensus sequence and one of the mutants, are overlaid with all

small proteins (Figure 5B). This cluster is located on the right
side of the landscape (Supplementary Figure S1). By using
Alphafold2 (Jumper et al., 2021), the consensus sequence of
senS is predicted as an alpha helix structure (Figure 5C).
Having three amino acids mutations, the structure for the
mutant protein still shows a clear helix, but with a slightly
bending effect (Figure 5D).

Another interesting cluster is from catalase EC1.11.1.6. The
alignment of the sequences shows very few possible mutations are
detected in the high-fat diet mice (Supplementary Figure S2).
The structures predicted by alphafold2, as well as the display of

FIGURE 4 | Landscape for small proteins. (A) The database with 29-known small proteins overlaid. (B) The zoomed-in display for 29-known small proteins in the
two-dimensional space. (C) The different mice gut samples overlay with the database landscape. (D) The human and environmental samples overlay with the database
landscape.
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the protein landscape, show that the two amino acids substitution
with longer side chains (R vs. G, N vs. H) help to make the loop
region a little bit more structured, but not too much overall
change. The structures show an alpha helix and beta sheet motif
for this protein cluster.

4 DISCUSSION

The metaBP adopts protein level assembly by PLASS, and
therefore it is not constraint by the requirement of long
contigs or high-quality MAGs from the nucleotide level
assembly. As we know, low-abundant rare species may overall
constitute a large amount of the sequencing reads in the complex
metagenomic samples but may not yield long contigs. When the
sequencing depth is low, more than half of the data could be
wasted as unassembled sequencing reads. But for small proteins
this fragmented sequencing data should already provide sufficient

information for both the sequence and function. The metaBP
together with metaBP-ML provide users with a complete toolkit
to explore small proteins in natural metagenomic samples. For
potential extension, the metaBP-ML does allow users to build
their application specific models for protein annotation. In
addition to metaBP-ML, we still provide eggNOG in the
package to annotate proteins alternatively. In terms of the
running time, eggNOG is more efficient with their pre-built
reference database. The metaBP-ML is relatively taking more
time when annotating proteins through vectorization and nearest
neighbors. But due to our constructed small protein database,
metaBP-ML can be very specific to identify and annotate small
proteins. With the integration of both the tools, the metaBP can
be used in various kinds of metagenomic data and annotate
arbitrary protein classes.

However, there are still concerns and limitations from the current
version of metaBP. Clusters with singletons at this moment are not
used for the downstream analysis in the current metaBP. We assume

FIGURE 5 | Sequence diversity of senS gene. (A) Sequence alignment and conservation of the senS proteins. (B) The senS cluster and ten neighbors overlay onto
the database landscape. (C) The predicted structure for the consensus sequence of senS. (D) The predicted structure for a mutant of the consensus.
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that only re-occurred sequences within the same cluster can indicate
the reliability of small proteins and their mutations. Generally, high
quality metagenomic data should be sufficient in the sequence depth.
However, in many unexpected cases, metagenomic dataset can be
sparse, and the clusters with lower number of protein members can
also be informative for small proteins. Computationally, there has not
been a perfect strategy to balance the false positives and false negatives
without knowing the ground truth in the real data sets. But with the
metaBP, we can at least provide a short list for the experimental
detection through mass spectrometry and biochemical analysis.

The metaBP quantify the annotated features using the
normalized protein copy numbers. Due to the protein level
assembly, the protein copy numbers are the most
straightforward quantification obtained from the data set.
Although metaBP can recover more annotations than
eggNOG, the quantification may not be sufficient to
statistically recover significant features when comparing the
samples. One future direction is to improve the resolution of
the quantification using the original sequencing reads. The
metaBP also displays the protein diversity by homologous
protein clustering, but the current metaBP cannot quantify the
confidence level of each amino acid mutation. So, the current
metaBP is only for the discovery of the potential sequence
diversity in a protein family, not for the strict quantification of
mutation occurrence.

5 CONCLUSION

This study proposes a new and comprehensive toolkit, metaBP
(and metaBP-ML), to discover and annotate the community
specific bacterial (microbe derived) peptides from the
metagenomic samples. It is built upon a new idea of direct
protein level assembly and one of the current protein
clustering tools, as well as machine learning based approaches.
The exploration of the small protein landscape and the analyses of
peptides annotation demonstrate the efficacy of this work and the
value of machine learning.
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