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Synchronization control of stochastic neural networks with time-varying discrete and continuous delays has been investigated. A
novel control scheme is proposed using the Lyapunov functional method and linear matrix inequality (LMI) approach. Sufficient
conditions have been derived to ensure the global asymptotical mean-square stability for the error system, and thus the drive system
synchronizeswith the response system.Also, the control gainmatrix can be obtained.With these effectivemethods, synchronization
can be achieved. Simulation results are presented to show the effectiveness of the theoretical results.

1. Introduction

In recent years, stochastic neural networks (NNs) have gained
particular research interests. These systems represent a class
of stochastic systems that is popular in modeling practical
systems which may experience random disturbances and pa-
rameters varying. Such a system can be found in biology sys-
tems, social systems, and wireless communication networks.
Numerous results on stochastic neural network have been re-
ported in the literature [1–5]. As one of the mostly investi-
gated dynamical behaviors, the synchronization in stochastic
NNs with or without time delays has drawn significant re-
search interest; see, for example, [6–10] and the references
therein.

On the other hand, time delays are frequently encoun-
tered in many practical control systems, such as aircraft,
chemical, or process control systems. The existence of the
time delays may be the source of instability of serious dete-
rioration in the performance of the closed-loop systems.
Thus, stability of delayed NNs has been a focal subject for
research [11–15]. Most recently, significant and substantial
progresses have been achieved in the synchronization of

stochastic NNs. These include synchronization of randomly
coupled neural networks with Markovian jumping and time-
delay [15], adaptive synchronization for stochastic NNs with
time-varying delays and distributed delays [16], passivity
analysis for discrete time stochastic Markovian jump NNs
with mixed time delays [17], adaptive synchronization for
stochastic T-S fuzzy NNs with time-delay and Markovian
jumping parameters [18], nonfragile synchronization of NNs
with time-varying delay and randomly occurring controller
gain fluctuation synchronization of biological NN systems
with stochastic perturbations and time delays [19], global
exponential adaptive synchronization of complex dynamical
networks with neutral-type NN nodes and stochastic distur-
bances [20], adaptive synchronization for uncertain chaotic
neural networks with mixed time delays using fuzzy disturb-
ance observer [21], the effects of time delay on the stochastic
resonance in feed-forward-loop NN motifs [22], state esti-
mation for wireless network control system with stochastic
uncertainty and time delay based on sliding mode observer
[23], pinning synchronization in fixed and switching directed
networks of Lorenz-type nodes [24], consensus tracking for
higher-order multiagent systems with switching directed
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topologies and occasionally missing control inputs [25], and
consensus tracking ofmultiagent systemswith Lipschitz-type
node dynamics and switching topologies [26].

Although substantial progresses have been made in the
synchronization control of delayed stochastic neural network
systems [16–32], there are still some problems which have
not been fully studied. For example, many control schemes
of time-varying delayed NNs assume that the derivative of
the time-delay function is less than one. Also, few works have
been done on the synchronization of mixed delayed stochas-
tic NNs. In this paper, we propose sufficient conditions of the
synchronization of the stochastic NN system, as well as the
state feedback control design. At first, sufficient conditions
are proposed in terms of LMIs to guarantee the stochastic
asymptotical stability of the error system. The assumption
that the derivative of the time-delay function is less than one
is eliminated. Then, we give some corollaries to solve the
problem in some special cases.

This paper is organized as follows. After the introduction
in Section 1, the problem statement and preliminaries are
presented in Section 2. Next, some sufficient conditions are
presented for the synchronization of the delayed drive and
response system. Also, some corollaries and remarks are
given to show the advantages of this paper in Section 3.Then,
the numerical simulation result is given in Section 4. A con-
clusion is drawn in Section 5.

2. Problem Statement and Preliminaries

Before proceeding, we introduce some notations which will
be used later for derivations and discussions. ‖ ⋅ ‖ denotes the
Euclideannormof a vector or the Frobenius normof amatrix.
𝑀 > 0 (<0) denotes that matrix 𝑀 is a positive (negative)
definite matrix. 𝐸⋅ denotes the mathematical expectation.

The recurrent network under investigation is

𝑑𝑥 (𝑡) = [ − 𝐶𝑥 (𝑡) + 𝐴𝑓 (𝑥 (𝑡)) + 𝐵𝑓 (𝑥 (𝑡 − 𝜏 (𝑡)))

+𝐷∫
𝑡

𝑡−𝜎(𝑡)

𝑓 (𝑥 (𝑠)) 𝑑𝑠] 𝑑𝑡,

(1)

where 𝑥(𝑡) = [𝑥
1
(𝑡), 𝑥
2
(𝑡), . . . , 𝑥

𝑛
(𝑡)]
𝑇 is the system state

associatedwith the neurons, 𝑛denotes the number of neurons
in the network,𝑓(𝑥(𝑡)) = [𝑓

1
(𝑥
1
(𝑡)), 𝑓

2
(𝑥
2
(𝑡)), . . . , 𝑓

𝑛
(𝑥
𝑛
(𝑡))]

corresponds to the activation functions of neurons, and 𝜏(𝑡)

and 𝜎(𝑡) are the time-varying discrete delay and continuous
delay, respectively; the initial conditions are given by 𝑥(𝑡) =

𝜙(𝑡) ∈ ℓ([−𝜏, 0], 𝑅
𝑛
), where 𝜙(𝑡) ∈ ℓ([−𝜏, 0], 𝑅

𝑛
) denotes

the set of all continuous functions from [−𝜏, 0] to 𝑅. 𝐶 =

diag(𝑐
1
, 𝑐
2
, . . . , 𝑐

𝑛
) is a diagonal matrix, 𝐴 = (𝑎

𝑖𝑗
)
𝑛×𝑛

, 𝐵 =

(𝑏
𝑖𝑗
)
𝑛×𝑛

, and 𝐷 = (𝑑
𝑖𝑗
)
𝑛×𝑛

are the connection weight matrix,
discrete time-delay, and continuous time-delay connection
weight matrices, respectively.

In this paper, we consider model (1) as the master system.
The response system is

𝑑𝑦 (𝑡) = [ − 𝐶𝑦 (𝑡) + 𝐴𝑓 (𝑦 (𝑡)) + 𝐵𝑓 (𝑦 (𝑡 − 𝜏 (𝑡)))

+𝐷∫
𝑡

𝑡−𝜎(𝑡)

𝑓 (𝑦 (𝑠)) 𝑑𝑠 + 𝑢 (𝑡)] 𝑑𝑡

+ 𝜎 (𝑡, 𝑒 (𝑡) , 𝑒 (𝑡 − 𝜏 (𝑡))) 𝑑𝜔 (𝑡) ,

(2)

where 𝐴, 𝐵, 𝐶, and 𝐷 are matrices which are the same as (1)
and 𝑢(𝑡) is the controller. It has the same structure as the drive
system. 𝑒(𝑡) = 𝑦(𝑡) − 𝑥(𝑡) is the error state. 𝜔(𝑡) = [𝜔

1
(𝑡),

𝜔
2
(𝑡), . . . , 𝜔

𝑛
(𝑡)]
𝑇 is a 𝑛 dimension Brownian motion defined

on a complete probability space (Ω, 𝐹, 𝑃).
To propose our main results, it is necessary to make the

following assumptions.

(A1) Each function 𝑓
𝑖
is nondecreasing and globally Lips-

chitz with a constant 𝑘
𝑖
> 0:

𝑓𝑖 (𝑥) − 𝑓
𝑖
(𝑦)

 ≤ 𝑘
𝑖

𝑥 − 𝑦
 ∀𝑥, 𝑦 ∈ 𝑅, 𝑖 = 1, 2, . . . , 𝑛,

𝐾 = diag (𝑘
1
, 𝑘
2
, . . . , 𝑘

𝑛
) .

(3)

(A2) Matrix function 𝜎(𝑡, 𝑒(𝑡), 𝑒(𝑡 − 𝜏(𝑡))) satisfies

trace [𝜎𝑇 (𝑡, 𝑒 (𝑡) , 𝑒 (𝑡 − 𝜏 (𝑡))) 𝜎 (𝑡, 𝑒 (𝑡) , 𝑒 (𝑡 − 𝜏 (𝑡)))]

≤
𝑀1𝑒 (𝑡)


2

+
𝑀2𝑒(𝑡 − 𝜏(𝑡))


2

,
(4)

where𝑀
1
and𝑀

2
are matrices with appropriate dimensions.

(A3) Discrete delay 𝜏(𝑡) and continuous delay 𝜎(𝑡) are both
differential functions of time, and the following con-
ditions hold:

0 ≤ 𝜏 (𝑡) ≤ 𝜏, ̇𝜏 (𝑡) ≤ 𝜏
1
, 0 ≤ 𝜎 (𝑡) ≤ 𝜎, (5)

where 𝜏, 𝜏
1
, and 𝜎 are positive constants. It is worth to

emphasis that the constraint, the derivative of time-delay
function is less than one [1], is eliminated in this paper, while a
more general upper boundary constraint is utilized instead of
it. This improvement makes our results applicable for a wide
range of time-delayed stochastic neural networks.

Let error state be 𝑒(𝑡) = 𝑦(𝑡)−𝑥(𝑡); subtracting (1) from (2)
yields the synchronization error dynamical system as follows:

𝑑𝑒 (𝑡) = [ − 𝐶𝑒 (𝑡) + 𝐴𝑔 (𝑡) + 𝐵𝑔 (𝑡 − 𝜏 (𝑡))

+𝐷∫
𝑡

𝑡−𝜎(𝑡)

𝑔 (𝑠) 𝑑𝑠 + 𝑢 (𝑡)] 𝑑𝑡

+ 𝜎 (𝑡, 𝑒 (𝑡) , 𝑒 (𝑡 − 𝜏 (𝑡))) 𝑑𝜔,

(6)

where 𝑔(𝑡) = 𝑓(𝑦(𝑡)) − 𝑓(𝑥(𝑡)).
In this paper, we design a memoryless state feedback

controller:

𝑢 (𝑡) = 𝐺𝑒 (𝑡) , (7)

where 𝐺 ∈ 𝑅
𝑛×𝑛 is a constant gain matrix.
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Substituting the controller into the error system (6), we
get

𝑑𝑒 (𝑡) = [ (−𝐶 + 𝐺) 𝑒 (𝑡) + 𝐴𝑔 (𝑡) + 𝐵𝑔 (𝑡 − 𝜏 (𝑡))

+𝐷∫
𝑡

𝑡−𝜎(𝑡)

𝑔 (𝑠) 𝑑𝑠] 𝑑𝑡

+ 𝜎 (𝑡, 𝑒 (𝑡) , 𝑒 (𝑡 − 𝜏 (𝑡))) 𝑑𝜔.

(8)

It is well known that system (8) has a unique solution [33].

Definition 1. The system (8) is called globally asymptotically
mean-square stable, if the following holds:

lim
𝑡→∞

𝐸‖𝑒 (𝑡)‖
2
= 0, for any 𝑒 (𝑡

0
) , (9)

where 𝐸⋅ is the mathematical expectation. The following
Lemma is given.

Lemma 2 (Schur complement lemma). For matrices 𝐴, 𝐵,
and 𝐶 with compatible dimensions, the following three condi-
tions are equivalent:

(a) [
𝐴 𝐶

𝐶
𝑇

𝐵
] < 0; (10)

(b) 𝐴 − 𝐶𝐵
−1
𝐶
𝑇
< 0, 𝐵 < 0, if B is invertible;

(11)

(c) 𝐵 − 𝐶
𝑇
𝐴
−1
𝐶 < 0, 𝐴 < 0, if A is invertible.

(12)

Lemma 3. For vector function 𝑓(𝑡) ∈ 𝑅
𝑛 and symmetric ma-

trix 𝑃 > 0, the following holds:

∫
𝑏

𝑎

𝑓
𝑇
(𝑡) 𝑑𝑡 𝑃∫

𝑏

𝑎

𝑓 (𝑡) 𝑑𝑡 ≤ (𝑏 − 𝑎) ∫
𝑏

𝑎

𝑓
𝑇
(𝑡) 𝑃𝑓 (𝑡) 𝑑𝑡. (13)

3. Criteria of Synchronization

In this section, new criteria are presented for the global as-
ymptotical stability of the equilibrium point of the neural
network defined by (8), and thus the drive system (1) syn-
chronizes with the response system (2). Its proof is based on a
new Lyapunov functional method and linear matrix inequal-
ity (LMI) approach.

Theorem 4. Under the assumptions A1–A3, the equilibrium
point of model (8) is called globally asymptotically stable in
mean-square, if there exist symmetric positive-definitematrices
𝑃
𝑗
( 𝑗 = 1, . . . , 4), diagonal matrices 𝐷

1
, 𝐷
2
, and general

matrix 𝑄
1
such that the following inequalities hold:

Π =

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

Π
11

𝑄
1

Π
13

Π
14

0 𝑃
1
𝐷 + 𝜏

2
𝐷 𝜏(−𝐶 + 𝐺)

𝑇
𝑃
1

∗ Π
22

0 𝐾
𝑇
𝐷
2

−𝑄
1

0 0

∗ ∗ Π
33

𝜏
2
𝐴
𝑇
𝑃
1
𝐵 0 𝜏

2
𝐴
𝑇
𝑃
1
𝐷 0

∗ ∗ ∗ Π
44

0 𝜏
2
𝐵
𝑇
𝑃
1
𝐷 0

∗ ∗ ∗ ∗ −𝑃
1

0 0

∗ ∗ ∗ ∗ ∗ −𝑃
4
+ 𝜏
2
𝐷
𝑇
𝑃
1
𝐷 0

∗ ∗ ∗ ∗ ∗ ∗ −𝑃
1

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

< 0, (14)

𝑃
1
< 𝜌𝐼, (15)

where

Π
11

= 𝑃
1
(−𝐶 + 𝐺) + (−𝐶 + 𝐺)

𝑇
𝑃
1
+ 𝑃
2
+ 𝜌𝑀

𝑇

1
𝑀
1
,

Π
13

= 𝑃
1
𝐴 + 𝐾

𝑇
𝐷
1
+ 𝜏
2
(−𝐶 + 𝐺)

𝑇
𝑃
1
𝐴,

Π
14

= 𝑃
1
𝐵 + 𝜏
2
(−𝐶 + 𝐺)

𝑇
𝑃
1
𝐵,

Π
22

= − (1 − 𝜏
1
) 𝑃
2
− 𝑄
1
− 𝑄
𝑇

1
+ 𝜌𝑀

𝑇

2
𝑀
2
,

Π
33

= 𝑃
3
− 2𝐷
1
+ 𝜎
2
𝑃
4
+ 𝜏
2
𝐴
𝑇
𝑃
1
𝐴,

Π
44

= − (1 − 𝜏
1
) 𝑃
3
− 2𝐷
2
+ 𝜏
2
𝐵
𝑇
𝑃
1
𝐵.

(16)

Proof. The Lyapunov function candidate is given as

𝑉 (𝑡) =

5

∑
𝑖=1

𝑉
𝑖
(𝑡) , (17)
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where

𝑉
1
(𝑡) = 𝑒

𝑇
(𝑡) 𝑃
1
𝑒 (𝑡) ,

𝑉
2
(𝑡) = ∫

𝑡

𝑡−𝜏(𝑡)

𝑒
𝑇
(𝑠) 𝑃
2
𝑒 (𝑠) 𝑑𝑠,

𝑉
3
(𝑡) = ∫

𝑡

𝑡−𝜏(𝑡)

𝑔
𝑇
(𝑠) 𝑃
3
𝑔 (𝑠) 𝑑𝑠,

𝑉
4
(𝑡) = 𝜏∫

𝜏

0

∫
𝑡

𝑡−𝑠

̇𝑒
𝑇
(𝜃) 𝑃
1

̇𝑒 (𝜃) 𝑑𝜃 𝑑𝑠,

𝑉
5
(𝑡) = 𝜎∫

0

−𝜎

∫
𝑡

𝑡+𝑠

𝑔
𝑇
(𝜃) 𝑃
4
𝑔 (𝜃) 𝑑𝜃 𝑑𝑠.

(18)

The weak infinitesimal operator 𝐿 of the process {𝑥
𝑡
= 𝑥(𝑡 +

𝑠), 𝑡 ≥ 0, −𝜏 ≤ 𝑡 ≤ 0} is given by

L𝑉
1
= 2𝑒
𝑇
(𝑡) 𝑃
1
[ (−𝐶 + 𝐺) 𝑒 (𝑡) + 𝐴𝑔 (𝑡)

+𝐵𝑔 (𝑡 − 𝜏 (𝑡)) + 𝐷∫
𝑡

𝑡−𝜎(𝑡)

𝑔 (𝑠) 𝑑𝑠]

+ trace [𝜎𝑇 (𝑡, 𝑒 (𝑡) , 𝑒 (𝑡 − 𝜏 (𝑡)))

× 𝑃
1
𝜎 (𝑡, 𝑒 (𝑡) , 𝑒 (𝑡 − 𝜏 (𝑡))) ] .

(19)

By (5) and (14), we have

trace [𝜎𝑇 (𝑡, 𝑒 (𝑡) , 𝑒 (𝑡 − 𝜏 (𝑡)))

× 𝑃
1
𝜎 (𝑡, 𝑒 (𝑡) , 𝑒 (𝑡 − 𝜏 (𝑡))) ]

≤ 𝜌 trace [𝜎𝑇 (𝑡, 𝑒 (𝑡) , 𝑒 (𝑡 − 𝜏 (𝑡)))

× 𝜎 (𝑡, 𝑒 (𝑡) , 𝑒 (𝑡 − 𝜏 (𝑡))) ]

= 𝜌 [𝑒
𝑇
(𝑡)𝑀
𝑇

1
𝑀
1
𝑒 (𝑡)

+𝑒
𝑇
(𝑡 − 𝜏 (𝑡))𝑀

𝑇

2
𝑀
2
𝑒 (𝑡 − 𝜏 (𝑡))] ,

(20)

𝐿𝑉
2
(𝑡) = 𝑒

𝑇
(𝑡) 𝑃
2
𝑒 (𝑡) − (1 − ̇𝜏 (𝑡)) 𝑒

𝑇

× (𝑡 − 𝜏 (𝑡)) 𝑃
2
𝑒 (𝑡 − 𝜏 (𝑡)) ,

(21)

𝐿𝑉
3
(𝑡) = 𝑔

𝑇
(𝑡) 𝑃
3
𝑔 (𝑡) − (1 − ̇𝜏 (𝑡)) 𝑔

𝑇

× (𝑡 − 𝜏 (𝑡)) 𝑃
3
𝑔 (𝑡 − 𝜏 (𝑡)) ,

(22)

𝐿𝑉
4
(𝑡) = 𝜏

2
̇𝑒
𝑇
(𝑡) 𝑃
1

̇𝑒 (𝑡) − 𝜏∫
𝑡

𝑡−𝜏

̇𝑒
𝑇
(𝑠) 𝑃
1

̇𝑒 (𝑠) 𝑑𝑠, (23)

𝐿𝑉
5
(𝑡) = 𝜎

2
𝑔
𝑇
(𝑡) 𝑃
4
𝑔 (𝑡) − 𝜎∫

𝑡

𝑡−𝜎

𝑔
𝑇
(𝑠) 𝑃
4
𝑔 (𝑠) 𝑑𝑠. (24)

By Lemma 3, we obtain

− 𝜏∫
𝑡

𝑡−𝜏

̇𝑒
𝑇
(𝑠) 𝑃
1

̇𝑒 (𝑠) 𝑑𝑠

≤ −𝜏 (𝑡) ∫
𝑡

𝑡−𝜏(𝑡)

̇𝑒
𝑇
(𝑠) 𝑃
1

̇𝑒 (𝑠) 𝑑𝑠

≤ −∫
𝑡

𝑡−𝜏(𝑡)

̇𝑒
𝑇
(𝑠) 𝑑𝑠 𝑃

1
∫
𝑡

𝑡−𝜏(𝑡)

̇𝑒 (𝑠) 𝑑𝑠,

(25)

− 𝜎∫
𝑡

𝑡−𝜎

𝑔
𝑇
(𝑠) 𝑃
4
𝑔 (𝑠) 𝑑𝑠

≤ −𝜎 (𝑡) ∫
𝑡

𝑡−𝜎(𝑡)

𝑔
𝑇
(𝑠) 𝑃
4
𝑔 (𝑠) 𝑑𝑠

≤ −∫
𝑡

𝑡−𝜎(𝑡)

𝑔
𝑇
(𝑠) 𝑑𝑠 𝑃

4
∫
𝑡

𝑡−𝜎(𝑡)

𝑔 (𝑠) 𝑑𝑠.

(26)

By Newton-Leibniz formula, we have

𝑒 (𝑡) − 𝑒 (𝑡 − 𝜏 (𝑡)) = ∫
𝑡

𝑡−𝜏(𝑡)

̇𝑒 (𝑠) 𝑑𝑠. (27)

From assumption A1, we get

𝑔
𝑇
(𝑡) 𝐷
1
𝑔 (𝑡) ≤ 𝑔

𝑇
(𝑡) 𝐷
1
𝐾𝑒 (𝑡) ,

𝑔
𝑇
(𝑡 − 𝜏 (𝑡))𝐷

2
𝑔 (𝑡 − 𝜏 (𝑡)) ≤ 𝑔

𝑇
(𝑡 − 𝜏 (𝑡))𝐷

2
𝐾𝑒 (𝑡 − 𝜏 (𝑡)) ,

(28)

where 𝐾,𝐷
1
, and 𝐷

2
are positive-definite diagonal matrices.

By (27) and (28), we define several nonnegative expressions
as follows:

𝐿1 = 2𝑒 (𝑡 − 𝜏 (𝑡)) 𝑄
1
[𝑒 (𝑡) − 𝑒 (𝑡 − 𝜏 (𝑡)) − ∫

𝑡

𝑡−𝜏(𝑡)

̇𝑒 (𝑠) 𝑑𝑠]

= 0,

(29)

𝐿2 = 2 [𝑔
𝑇
(𝑡) 𝐷
1
𝐾𝑒 (𝑡) − 𝑔

𝑇
(𝑡) 𝐷
1
𝑔 (𝑡)] ≥ 0, (30)

𝐿3 = 2 [𝑔
𝑇
(𝑡 − 𝜏 (𝑡))𝐷

2
𝐾𝑒 (𝑡 − 𝜏 (𝑡)) − 𝑔

𝑇
(𝑡 − 𝜏 (𝑡))

×𝐷
2
𝑔 (𝑡 − 𝜏 (𝑡)) ] ≥ 0.

(31)

Then expressions 𝐿1, 𝐿2, and 𝐿3 are to be added to the
inequality of 𝐿𝑉(𝑡) to facilitate the proof.

Therefore, combining (19)–(29) we have

𝐿𝑉 (𝑡) ≤

5

∑
𝑖=1

𝐿𝑉
𝑖
(𝑡) + 𝐿1 + 𝐿2 + 𝐿3

≤ 𝑒
𝑇
(𝑡) [2𝑃

1
(−𝐶 + 𝐺) + 𝜌𝑀

𝑇

1
𝑀
1
+ 𝑃
2
] 𝑒 (𝑡)

+ 𝑒
𝑇
(𝑡 − 𝜏 (𝑡)) [− (1 − 𝜏

1
) 𝑃
2
+ 𝜌𝑀

𝑇

2
𝑀
2
− 2𝑄
1
]

× 𝑒 (𝑡 − 𝜏 (𝑡))
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+ 𝑔
𝑇
(𝑡) [𝑃
3
− 2𝐷
1
+ 𝜎
2
𝑃
4
] 𝑔 (𝑡)

+ 𝑔
𝑇
(𝑡 − 𝜏 (𝑡)) [− (1 − 𝜏

1
) 𝑃
3
− 2𝐷
2
] 𝑔 (𝑡 − 𝜏 (𝑡))

− ∫
𝑡

𝑡−𝜏

̇𝑒
𝑇
(𝑠) 𝑑𝑠 𝑃

1
∫
𝑡

𝑡−𝜏

̇𝑒 (𝑠) 𝑑𝑠

− ∫
𝑡

𝑡−𝜎

𝑔
𝑇
(𝜃) 𝑑𝜃 𝑃

4
∫
𝑡

𝑡−𝜎

𝑔 (𝜃) 𝑑𝜃

+ 2𝑒
𝑇
(𝑡) 𝑄
1
𝑒 (𝑡 − 𝜏 (𝑡))

+ 𝑒
𝑇
(𝑡) [2𝑃

1
𝐴 + 2𝐾

𝑇
𝐷
1
] 𝑔 (𝑡)

+ 2𝑒
𝑇
(𝑡) [𝑃
1
𝐵] 𝑔 (𝑡 − 𝜏 (𝑡))

+ 2𝑒
𝑇
(𝑡) [𝑃
1
𝐷]∫
𝑡

𝑡−𝜎(𝑡)

𝑔 (𝜃) 𝑑𝜃

+ 2𝑒
𝑇
(𝑡 − 𝜏 (𝑡)) [𝐾

𝑇
𝐷
2
] 𝑔 (𝑡 − 𝜏 (𝑡))

+ 2𝑒
𝑇
(𝑡 − 𝜏 (𝑡)) [𝑄

1
] ∫
𝑡

𝑡−𝜏

̇𝑒 (𝑠) 𝑑𝑠

+ [ (−𝐶 + 𝐺) 𝑒 (𝑡) + 𝐴𝑔 (𝑡) + 𝐵𝑔 (𝑡 − 𝜏 (𝑡))

+𝐷∫
𝑡

𝑡−𝜎(𝑡)

𝑔 (𝑠) 𝑑𝑠]

𝑇

× 𝜏
2
𝑃
1
[ (−𝐶 + 𝐺) 𝑒 (𝑡) + 𝐴𝑔 (𝑡)

+𝐵𝑔 (𝑡 − 𝜏 (𝑡)) + 𝐷∫
𝑡

𝑡−𝜎(𝑡)

𝑔 (𝑠) 𝑑𝑠]

≤ 𝜉
𝑇
𝑁𝜉,

(32)
where

𝜉 = [𝑒
𝑇
(𝑡) , 𝑒
𝑇
(𝑡 − 𝜏 (𝑡)) , 𝑔

𝑇
(𝑡) , 𝑔
𝑇
(𝑡 − 𝜏 (𝑡)) ,

∫
𝑡

𝑡−𝜏(𝑡)

̇𝑒
𝑇
(𝑠) 𝑑𝑠, ∫

𝑡

𝑡−𝜎(𝑡)

𝑔
𝑇
(𝑠) 𝑑𝑠]

𝑇

,

𝑁 =

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

𝑁
11

𝑄
1

Π
13

Π
14

0 𝑃
1
𝐷 + 𝜏

2
𝐷

∗ Π
22

0 𝐾
𝑇
𝐷
2

−𝑄
1

0

∗ ∗ Π
33

𝜏
2
𝐴
𝑇
𝑃
1
𝐵 0 𝜏

2
𝐴
𝑇
𝑃
1
𝐷

∗ ∗ ∗ Π
44

0 𝜏
2
𝐵
𝑇
𝑃
1
𝐷

∗ ∗ ∗ ∗ −𝑃
1

0

∗ ∗ ∗ ∗ ∗ −𝑃
4
+ 𝜏
2
𝐷
𝑇
𝑃
1
𝐷

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

,

𝑁
11

= 𝑃
1
(−𝐶 + 𝐺) + (−𝐶 + 𝐺)

𝑇
𝑃
1
+ 𝑃
2

+ 𝜌𝑀
𝑇

1
𝑀
1
+ 𝜏
2
(−𝐶 + 𝐺)

𝑇
𝑃
1
(−𝐶 + 𝐺) .

(33)

We introduce matrices𝑀 and𝐻 which satisfy

Π = [
𝑀 𝐻

𝐻
𝑇

−𝑃
1

] , 𝑁 = 𝑀 − 𝐻(−𝑃
1
)
−1

𝐻
𝑇
, (34)

where

𝑀 =

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

Π
11

𝑄
1

Π
13

Π
14

0 𝑃
1
𝐷 + 𝜏

2
𝐷

∗ Π
22

0 𝐾
𝑇
𝐷
2

−𝑄
1

0

∗ ∗ Π
33

𝜏
2
𝐴
𝑇
𝑃
1
𝐵 0 𝜏

2
𝐴
𝑇
𝑃
1
𝐷

∗ ∗ ∗ Π
44

0 𝜏
2
𝐵
𝑇
𝑃
1
𝐷

∗ ∗ ∗ ∗ −𝑃
1

0

∗ ∗ ∗ ∗ ∗ −𝑃
4
+ 𝜏
2
𝐷
𝑇
𝑃
1
𝐷

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

,

𝐻 =

[
[
[
[
[
[
[

[

𝜏(−𝐶 + 𝐺)
𝑇
𝑃
1

0

0

0

0

0

]
]
]
]
]
]
]

]

.

(35)

By Lemma 2, we get that Π < 0 ⇔ 𝑁 < 0, −𝑃
1

< 0. Thus
𝐿𝑉 < 0. From (24) and the Ito formula, it is obvious that

𝐸𝑉 (𝑡) − 𝐸𝑉 (𝑡
0
) = 𝐸∫

𝑡

𝑡0

𝐿𝑉 (𝑠) 𝑑𝑠. (36)

From the definition of 𝑉(𝑡) in (15), there exists positive
constant 𝜆

1
such that

𝜆
1
𝐸‖𝑒(𝑡)‖

2
≤ 𝐸𝑉 (𝑡) ≤ 𝐸𝑉 (𝑡

0
) + 𝐸∫

𝑡

𝑡0

𝐿𝑉 (𝑠) 𝑑𝑠

≤ 𝐸𝑉 (𝑡
0
) + 𝜆max𝐸∫

𝑡

𝑡0

‖𝑒(𝑠)‖
2
𝑑𝑠,

(37)

where 𝜆max is the maximal eigenvalue of𝑁 and it is negative.
Therefore, from (26) and the discussion in [34], we know

that the equilibrium of (11) is globally asymptotically stable in
mean-square. This completes the proof.

Corollary 5. Under the assumptions A1–A3, the equilibrium
point of model (8) is called globally asymptotically stable in
mean-square, if there exist symmetric positive-definitematrices
𝑃
𝑗
(𝑗 = 1, . . . , 4), diagonal matrices 𝐷

1
, 𝐷
2
, and general

matrices 𝑄
1
and 𝑊, such that the following inequalities hold:
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Π =

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

Π
11

𝑄
1

Π
13

Π
14

0 𝑃
1
𝐷 + 𝜏

2
𝐷 𝜏 (−𝐶

𝑇
𝑃
1
+ 𝑊
𝑇
)

∗ Π
22

0 𝐾
𝑇
𝐷
2

−𝑄
1

0 0

∗ ∗ Π
33

𝜏
2
𝐴
𝑇
𝑃
1
𝐵 0 𝜏

2
𝐴
𝑇
𝑃
1
𝐷 0

∗ ∗ ∗ Π
44

0 𝜏
2
𝐵
𝑇
𝑃
1
𝐷 0

∗ ∗ ∗ ∗ −𝑃
1

0 0

∗ ∗ ∗ ∗ ∗ −𝑃
4
+ 𝜏
2
𝐷
𝑇
𝑃
1
𝐷 0

∗ ∗ ∗ ∗ ∗ ∗ −𝑃
1

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

< 0,

𝑃
1
< 𝜌𝐼,

(38)

where

Π
11

= − 𝑃
1
𝐶 − 𝐶

𝑇
𝑃
1
+ 𝑊 + 𝑊

𝑇
+ 𝑃
2
+ 𝜌𝑀

𝑇

1
𝑀
1
,

Π
13

= 𝑃
1
𝐴 + 𝐾

𝑇
𝐷
1
+ 𝜏
2
(−𝐶
𝑇
𝑃
1
+ 𝑊
𝑇
)𝐴,

Π
14

= 𝑃
1
𝐵 + 𝜏
2
(−𝐶
𝑇
𝑃
1
+ 𝑊
𝑇
) 𝐵,

Π
22

= − (1 − 𝜏
1
) 𝑃
2
− 𝑄
1
− 𝑄
𝑇

1
+ 𝜌𝑀

𝑇

2
𝑀
2
,

Π
33

= 𝑃
3
− 2𝐷
1
+ 𝜎
2
𝑃
4
+ 𝜏
2
𝐴
𝑇
𝑃
1
𝐴,

Π
44

= − (1 − 𝜏
1
) 𝑃
3
− 2𝐷
2
+ 𝜏
2
𝐵
𝑇
𝑃
1
𝐵.

(39)

Furthermore, the control gain matrix 𝐺 is given as

𝐺 = 𝑃
−1

1
𝑊. (40)

Proof. Let 𝑊 = 𝑃
1
𝐺 in Theorem 4; it is easy to get the result.

Corollary 6. If the systems (1) and (2) have no integral time-
delay items (e.g., 𝐷 = 0), the result can be simplified as
follows. Under assumptions A1–A3 and𝐷 = 0, the equilibrium
point of model (8) is called globally asymptotically stable in
mean-square, if there exist symmetric positive-definitematrices
𝑃
𝑗
(𝑗 = 1, . . . , 4), diagonal matrices 𝐷

1
, 𝐷
2
, and general

matrices 𝑄
1
and 𝑊, such that the following inequalities hold:

Π =

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

Π
11

𝑄
1

Π
13

Π
14

0 𝜏 (−𝐶
𝑇
𝑃
1
+ 𝑊
𝑇
)

∗ Π
22

0 𝐾
𝑇
𝐷
2

−𝑄
1

0

∗ ∗ Π
33

𝜏
2
𝐴
𝑇
𝑃
1
𝐵 0 0

∗ ∗ ∗ Π
44

0 0

∗ ∗ ∗ ∗ −𝑃
1

0

∗ ∗ ∗ ∗ ∗ 0

∗ ∗ ∗ ∗ ∗ −𝑃
1

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

< 0,

𝑃
1
< 𝜌𝐼,

(41)

where

Π
11

= − 𝑃
1
𝐶 − 𝐶

𝑇
𝑃
1
+ 𝑊 + 𝑊

𝑇
+ 𝑃
2
+ 𝜌𝑀

𝑇

1
𝑀
1
,

Π
13

= 𝑃
1
𝐴 + 𝐾

𝑇
𝐷
1
+ 𝜏
2
(−𝐶
𝑇
𝑃
1
+ 𝑊
𝑇
)𝐴,

Π
14

= 𝑃
1
𝐵 + 𝜏
2
(−𝐶
𝑇
𝑃
1
+ 𝑊
𝑇
) 𝐵,

Π
22

= − (1 − 𝜏
1
) 𝑃
2
− 𝑄
1
− 𝑄
𝑇

1
+ 𝜌𝑀

𝑇

2
𝑀
2
,

Π
33

= 𝑃
3
− 2𝐷
1
+ 𝜎
2
𝑃
4
+ 𝜏
2
𝐴
𝑇
𝑃
1
𝐴,

Π
44

= − (1 − 𝜏
1
) 𝑃
3
− 2𝐷
2
+ 𝜏
2
𝐵
𝑇
𝑃
1
𝐵.

(42)

Furthermore, the control gain matrix 𝐺 is given as

𝐺 = 𝑃
−1

1
𝑊. (43)
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Figure 1: Phase trajectories of drive (a) and response (b) system.

Proof. Let𝐷 = 0 in system (8). It is much similar to the proof
of Theorem 4 and is then omitted.

Remark 7. In this paper, we use a memoryless state feedback
control to achieve the synchronization of the stochastic
delayed neural network system. Compared with the delayed
feedback control [1], it is easy to implement. The biggest
advantage of this approach is that we only need to know the
boundaries of time delays, instead of exact values of time
delays.

Remark 8. In Corollary 5, we give an approach to choose
the control gain matrix 𝐺 and it is helpful for the design of
the controller to let the drive system synchronize with the
response system.

4. Numerical Simulations

In this section, we present numerical simulations to show the
effectiveness of the theoretical results.
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Figure 2: State trajectories of drive system.

Consider the drive system (1) of a delayedHopfield neural
network with coefficient matrices as

𝐴 = [
1 −0.5

−0.2 1
] , 𝐵 = [

−0.5 −0.1

−0.3 −0.6
] ,

𝐶 = [
1 0

0 1
] , 𝐷 = [

1 0

0 1
] ,

𝜏 (𝑡) = 0.3 + 0.3sin (4𝑡) , 𝜎 (𝑡) = 0.4 − 0.2sin (𝑡) ,

𝑓 (𝑡) = [

[

tanh (𝑥
1
)

tanh (𝑥
2
)
]

]

.

(44)

The corresponding response system refers to (2), where

𝜎 (𝑡, 𝑒 (𝑡) , 𝑒 (𝑡 − 𝜏 (𝑡))) = [
‖𝑒 (𝑡)‖ 0

0 0.6‖𝑒 (𝑡 − 𝜏 (𝑡))‖
] . (45)
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Figure 3: State trajectories of response system.
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Figure 4: State trajectories of error system.

It is easy to see that 𝐾 = 𝑀 = 𝑀
1
= 𝐼, where 𝐼 is the iden-

tity matrix. By Theorem 4 and Corollary 5, we can get the
following feasible solutions:

𝑊 = [
−1918.2 12.4

77.5 −1984.4
] ,

𝑄
1
= [

545.5568 3.6943

17.0650 557.7364
] ,

𝐷
1
= [

1046.5 0

0 1207.4
] ,

𝐷
2
= [

226.3259 0

0 242.7899
] ,

𝜌 = 1084.8, 𝐺 = [
−1.8352 0.0425

0.1038 −1.9002
] ,

𝑃
1
= [

1.046.2 0.016.9

0.016.9 1.044.7
] , 𝑃

2
= [

52.1765 −18.3810

−18.3810 48.2007
] ,

𝑃
3
= [

94.2132 −39.7350

−39.7350 86.2442
] , 𝑃

4
= [

2626.1 148.4

148.4 2760.3
] .

(46)

The initial states of drive system and response system are
𝑥(0) = [0.75 0]

𝑇 and 𝑦(0) = [0.5 0.1]
𝑇.

The results are shown in Figures 1, 2, 3, and 4.

5. Conclusion

In this paper, we considered synchronization control of
stochastic neural networks with time-varying delays. We use
Lyapunov functional method and linear matrix inequality
(LMI) technique to solve this problem. Several sufficient
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conditions have been derived to ensure the global asymptot-
ical stability for the error system, and thus the drive system
synchronizes with the response system. Also, the control gain
can be obtained. The results are novel since there are few
works about the synchronization of mixed delayed system
and the constraint of the derivative of the time-delay function
is relaxed. It is easy to apply these sufficient conditions to the
real networks. Finally, a numerical simulation is presented to
verify the theoretical results.
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