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Abstract

Predicting the response of a specific cancer to a therapy is a major goal in modern oncology that should ultimately lead to a
personalised treatment. High-throughput screenings of potentially active compounds against a panel of genomically
heterogeneous cancer cell lines have unveiled multiple relationships between genomic alterations and drug responses.
Various computational approaches have been proposed to predict sensitivity based on genomic features, while others have
used the chemical properties of the drugs to ascertain their effect. In an effort to integrate these complementary
approaches, we developed machine learning models to predict the response of cancer cell lines to drug treatment,
quantified through IC50 values, based on both the genomic features of the cell lines and the chemical properties of the
considered drugs. Models predicted IC50 values in a 8-fold cross-validation and an independent blind test with coefficient of
determination R2 of 0.72 and 0.64 respectively. Furthermore, models were able to predict with comparable accuracy (R2 of
0.61) IC50s of cell lines from a tissue not used in the training stage. Our in silico models can be used to optimise the
experimental design of drug-cell screenings by estimating a large proportion of missing IC50 values rather than
experimentally measuring them. The implications of our results go beyond virtual drug screening design: potentially
thousands of drugs could be probed in silico to systematically test their potential efficacy as anti-tumour agents based on
their structure, thus providing a computational framework to identify new drug repositioning opportunities as well as
ultimately be useful for personalized medicine by linking the genomic traits of patients to drug sensitivity.
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Introduction

High-throughput screening of a large number of molecules is a

widely used approach to identify lead compounds exerting a

beneficial effect on a given phenotype. In the context of cancer,

libraries of chemical entities have been tested in this way against

panels of cell lines grown in different conditions and with

heterogeneous genomic backgrounds [1]. Following the pioneering

work of the ‘‘NCI-60’’, a collection of 59 human cancer cell lines

developed by the National Cancer Institute for in vitro drug

screening [2], recent hallmark studies have shown that screening

very large cell line collections can recapitulate known and identify

novel molecular genomic determinants of drug sensitivity [1,3–5].

In these studies, using systematic statistical inference and

regression methods, determinant such as oncogenic lesions, high

or low levels of basal gene expression and other genotypic traits

have been associated to profiles of increased sensitivity/resistance

to specific compounds. For instance, by applying a multivariate

analysis of variance [6] and the ‘Elastic Net’ regression framework

[7] established drug-genotype associations have been confirmed

and complemented with markers of tissue-specificity and novel

connections, e.g. the EWS-FLI1 translocation in Ewing’s sarcoma

and sensitivity to PARP inhibitors, have been identified and further

experimentally validated. Results of these studies have been made

publicly available, providing unique resources that support the

discovery of new predictive biomarkers for personalised cancer

therapy.

Increasing further the size of the considered cell-line/compound

panels would be very beneficial, as it provides the basis to improve

the accuracy and predictive power of the inferred associations.

However, this requires larger infrastructures and the cost grows

with the screening size. In addition, due to various technical and

logistical reasons in a high-throughput screen [7], the resulting

compound-by-cell line matrix of drug efficacy (typically summa-

rised in their IC50, the half maximal (50%) inhibitory concentra-

tion of a substance with respect to cell viability) is often not

complete. Although many steps are automated, filling experimen-

tally each gap could be expensive and laborious [6]. Hence, an

accurate tool to impute missing IC50s and estimate them for novel

cell lines would be of great value for drug screening design.

Furthermore, a robust prediction tool for in silico identification

of potentially effective drugs for treating a specific cancer could be

used for drug repositioning [8,9]. An approach of this kind is
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represented by the COMPARE algorithm [10,11] that uses drug

response profiles of the NCI-60 screening, through a ‘guilt-by-

association’ paradigm. Following this principle, drugs eliciting a

similar drug-response profile across the cell lines in the NCI-60

panel are hypothesized to share a common mode of action (MoA),

thus enabling MoA discovery for novel drugs (if their tumour-

suppression profile is similar to that of a known and well

characterized drug) as well as the discovery of novel or secondary

effects for established drugs.

Ultimately, in silico methods to accurately predict the effective-

ness of drugs based on the molecular making of tumours (i.e.

genome, transcriptome) would be a major milestone towards

personalized therapies for cancer patients based on molecular

biomarkers [12].

Results

We therefore investigated whether it is possible to build

machine learning models (for details see ‘‘Materials and Methods’’

section, ‘‘Machine learning’’ subsection) that can predict drug

sensitivity using cell line screening experimental data, where cell

lines are treated with variable concentration of a given drug and

the resulting dose-response curve summarized by an IC50. We

focused on the most comprehensive cancer drug screening dataset

available to date, from the ‘‘Genomics of Drug Sensitivity in

Cancer’’ (GDSC) project [3]. For each drug, a neural network

model was trained to predict its IC50 profile across the panel of cell

lines based on the genomic background of each cell, as

characterised by microsatellite instability status (1 = unstable or

0 = stable), somatic coding variants in the coding sequence of 77

cancer genes (1 = any change in protein sequence and 0 = wild

type) and copy number alterations denoting gene amplification

and deletion of those cancer genes (1 = amplification/more than 7

copy numbers, 0 = wild type/between 1 or 7 copy numbers, and –

1 = deletion/no copy number). However, the predictive power of

these initial models was limited, especially for those drugs without

a well-known oncogene-to-drug response dependency.

We reasoned that cancer cell sensitivity to drug molecules is

driven by features from both cells and drugs. Whereas cell features

are ultimately connected to the inner workings of the cell, drug

features include physicochemical properties that are correlated

with the ability of the molecule to cross the cell membrane (e.g.

lipophilicity) or its selectivity to intracellular targets (e.g. finger-

prints encoding the chemical structure).

Indeed, extensive work has been done on Quantitative

Structure-Activity Relationship (QSAR) approaches to predicting

whole-cell activity of molecules based of their chemical properties

[13–16], including applications to predicting anti-cancer activity in

drugs [17,18]. However, such QSAR approaches exclusively

based on chemical features cannot distinguish between resistant

and sensitive cell lines. For instance, building a model without any

information of the cell lines, the model will be not capable of

predicting cell line A to be more resistant than cell line B to drug

C, which is the main aim of integrating chemical and genomic

features in our models.

We therefore extended our machine learning models to include

as input chemical features from the drugs, besides the molecular

characterization of the cell lines (see Fig 1). This integrative

approach not only integrates two complementary streams of

information, but also allows the model to be trained with much

larger amounts of data, which is often a key factor to improve

predictive performance (see Fig 2). Consequently, data was pre-

processed to include 689 chemical descriptors of the drugs and 138

genomic features for differentiating the cell lines, resulting in an

input space of 827 features.

Chemical descriptors were generated with PaDEL software [19]

from simplified molecular-input line entry system (SMILES)

structures. Descriptors include physicochemical features such as

weight, lipophilicity, rule of five, and additionally fingerprints of

the drugs (for details see ‘‘Materials and Methods’’ section,

‘‘Features’’ subsection, and http://padel.nus.edu.sg/software/

padeldescriptor/).

For building our model, we used GDSC screening data from

608 genomically characterised cell lines and 111 drugs for which

chemical information were available (see Fig 2 and Methods for

details). The published version of this matrix holds 38,930 IC50

values (,58% of the total, due to technical and logistic reasons).

We performed an 8-fold cross-validation, where the test set of

each fold was not used for training so as to measure the predictive

power of the resulting models across all drugs rather than for each

drug separately. Neural networks were able to impute missing

log(IC50) values on the test sets with an averaged Pearson

correlation coefficient (Rp), coefficient of determination (R2) and

root mean square error (RMSE) (Text S1) of 0.85, 0.72 and 0.83

across all 111 drugs, respectively (Fig 3A). Alternatively, random

forests achieved comparable performances (Rp of 0.85, R2 of 0.72

and RMSE of 0.84; full details in supplementary materials).

Furthermore, we conducted a blind test using 13,565 new

experimental IC50 values only received after training our models

in order to verify our cross-validation results (drug-to-cell line

matrix updated by ,18%, with these newly generated IC50s

exclusively used as the blind test set). The results on the blind test

were almost as good as in the cross-validation, obtaining an Rp of

Figure 1. IC50 prediction workflow. Our method is based on two different input streams: (1) cell line features of 77 oncogenes and their mutation
state, (2) drug features that are generated with PaDEL software [19] from the simplified molecular-input line entry system (SMILES), see method
section for details. The continuous IC50 value is predicted with state-of-the-art machine learning algorithms (neural networks and random forests).
doi:10.1371/journal.pone.0061318.g001

Predicting Drug Effect from Genomics and Chemistry

PLOS ONE | www.plosone.org 2 April 2013 | Volume 8 | Issue 4 | e61318



0.79, R2 of 0.64 and an RMSE of 0.97 (Fig S1, Text S2). The

accuracy of the predictions encouraged us to train the networks

with fewer IC50 values. Remarkably, the predictive power of the

models did not fall appreciably off in quality, even if the amount of

training data was reduced to 20% of the total (Fig 3B).

Using an analysis of variance (ANOVA) to identify drug-to-

oncogene associations, we investigated how well the IC50 values

predicted for the test set using our model recapitulate associations

manifested in the experimental data, for instance, whether a given

mutation is causing sensitivity or resistance against a drug [3].

Using only predicted IC50 values, we correctly captured 79%

(168/213) of the significant observations with the same t-test

tendency (positive or negative effect on drug sensitivity) identified

with the experimental IC50s. When only considering significant

associations from our model (p-value adjusted with Benjamini-

Hochberg, FDR = 0.2), we correctly predicted 28% (59/213) of all

experimentally identified associations. Where we failed to detect

an association the ANOVA effect size is often small, or the

experimental correlation is associated with a mutation either not

or infrequently represented within the subset of cell lines with

predicted IC50 values. Notably, as example of the utility of this

approach, using only predicted IC50 values we identified known

drug-to-oncogene associations such as sensitivity of BRAF-mutated

cells lines to MEK1/2-inhibitors (Fig 4B) [20]. The range of

predicted IC50 values for a drug are typically narrower than for the

observed values and is likely because currently available genomic

dataset are in sufficient to explain the observed range of drug

responses across the cell lines.

In addition, we assessed the predictive power of our model for

unknown cell lines. Therefore, we applied a more stringent 8-fold

cross-validation, where a cell line was either included in the train

or test set. These models achieved an Rp of 0.82, R2 of 0.68 and an

RMSE of 0.89 (Fig S2) demonstrating the accuracy of our model

to predict IC50 values for completely new cell lines. In an

additional simulation, we left out all cancer cell lines from a

specific tissue, e.g. we removed all lung cancer cell lines (106 out of

608 cell lines) and still obtained an Rp of 0.79, R2 of 0.61 and

RMSE of 0.99 (Fig S3).

Discussion

Our results show that by using genomic features from the cell

lines and chemical information from drugs, it is possible to build in

silico multi-drug models to impute missing IC50 values with non-

parametric machine learning algorithms such as neural networks

and random forests. As output for our method, we chose to

explore IC50 values as generated by Garnett et al. [3], which

enables us to compare our results to them, however other metrics

(such as a capped IC50 or area under the curve), might provide

additional insight and potentially lead to more robust models.

Figure 2. Comparison of single-drug models and the multi-drug model. The performance of the multi-drug model (red asterisk) and the
family of 111 single-drug models (blue histogram) is represented using three different metrics: (A) Pearson correlation Rp, (B) coefficient of
determination R2, and (C) root mean square error RMSE.
doi:10.1371/journal.pone.0061318.g002

Figure 3. IC50 prediction. Predictions are achieved with 8-fold cross-
validations. Performance values are exclusively calculated on the test
sets. (A) Correlation between predicted to experimental observed
log(IC50) values (Pearson correlation Rp = 0.85 ; coefficient of determi-
nation R2 = 0.72, root mean square error RMSE = 0.83). Although there is
an enrichment of resistant cell lines, which tend to have higher log(IC50)
values than sensitive cell lines, the lower log(IC50) values are still
decently predicted. (B) Expected improvement of the IC50 prediction by
filling experimentally gaps in the cell-to-drug matrix. The vertical grey
line corresponds to the published data set (filled to ,58%, due to
logistic reasons), which corresponds to the results in panel (A).
However, similar accuracies (Rp of 0.84 instead of 0.85, R2 of 0.70
instead of 0.72) can be achieved using exclusively 20% of the whole
matrix.
doi:10.1371/journal.pone.0061318.g003
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The Pearson correlation (Fig. 2A) and coefficient of determi-

nation (Fig. 2B) of the multi-drug model are significantly better

than the single-drug models, while the RMSE error is similar (Fig

2C). This means that the error (on average) of predicting a given

IC50 value is the same in the multi-drug and single-drug models

(RMSE) and, since some drugs are active at different concentra-

tion ranges, the model is able to cover a much larger dynamic

range with a similar precision. The coefficient of determination

balances these two terms, and thus a broader range with the same

RMSE increases R2. Thanks to the use of chemical descriptors,

multi-drug models are trained with a volume of data that is two

orders of magnitude bigger than the data to train each single-drug

model. This larger dataset weights the difficulty in training

heterogeneous response values across drugs.

In several instances, the use of multi-drug models permitted the

in silico identification of genomic events associated with altered

drug sensitivity, which is only possible when genomic properties

are considered.

Although our models did not capture all known gene to drug

associations, we anticipate that as larger drug sensitivity and

genomic datasets become available in coming years the predictive

power of these models will increase. We believe that the predictive

power of our models is due to the large number of cell lines and

broad range of drugs in the GDSC panel that samples intensively

the chemical space of common cancer drugs (chemotherapeutic

and kinase inhibitors). It remains to be determined how these

models will predict completely unknown families of therapeutic

agents.

The predictive ability of our methods for individual values is still

limited and could be further improved by extending the set of

input features with additional layers of molecular characterization

of the cell lines, such as basal transcriptional profiles and

phosphoproteomic data. These data types have been used to

predict drug responses in various contexts [21–24]. Another

valuable extension could be the inclusion of gene expression data

following drug treatment, a powerful in silico resource for

predicting treatment outcomes and elucidating compound mode

of action [25,26], as well as a promising gateway to the

identification of new drug repositioning opportunities [27].

Additionally, epigenetics data could enhance the prediction

capabilities of future methods [28].

Our method uses purely experimental data, but additional

predictive power can be expected from including knowledge of the

underlying network [29]. It has been shown that the prediction of

drug response and mode of action by transcriptional profiling is

significantly enhanced when paired with known a priori gene and

protein networks [30,31] and drug similarities have been inferred

based on the corresponding in silico predicted impinged pathway

[32]. Prior knowledge could also increase the interpretability of the

results. Known regulatory relationships between genes and

transcriptional data [33] and protein networks [34] can be used

to identify deregulated pathways, and be further linked to the

Figure 4. Comparing ANOVA with prediction. (A) Analysis of variance (ANOVA) of experimental data and predicted output for drug-to-
oncogene associations (20% FDR). The size of each association (dot) is proportional to the amount of treated cell lines containing the particular
mutated oncogene. Blue dots indicating the same t-test tendency in our predictions, and red ones the opposite. (B) Predicted and measured IC50s of
BRAF-mutated vs. wild-type cell lines exposed to the MEK1/2-inhibitor PD-0325901 (p- value of prediction = 1.91610205, t-test multiple hypothesis
corrected with Benjamini & Hochberg).
doi:10.1371/journal.pone.0061318.g004
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genomic alterations that drive them [35], highlighting subnetworks

of importance for drug response.

Incorporation of these additional features will require a scheme

to prioritize the input features based on their impact on the final

trained model. Associations between features and outcomes could

be explicitly unveiled by integrating in our models feature

selections criteria and dimensionality reduction techniques.

In terms of predictive models, we have used standard machine

learning methods (neural networks and random forests), given

their flexibility and robustness as predictive models. A fertile

ground for further research is investigating the application of other

modeling techniques, including linear regression methods (e.g.

LASSO, ElasticNets).

Our results also show that one can estimate the accuracy of

prediction for different degrees of sparseness in the data, which

may have utility when designing experiments where coverage has

to be balanced with accuracy. Furthermore, because models are

able to predict IC50 on cell lines not screened yet, predictions from

these models can be used to decide whether it is worthwhile

expanding the panel of cell lines, or rather focus on a few selected

ones.

The implications of our results go beyond their utility to

optimise the experimental design of drug screenings. Once a

model is built, it could be used to systematically test the potential

effect of novel drugs in silico, based on their chemical features and

similarity. These predictions can help to evaluate the potential

activity of new drugs, e.g. from large chemical libraries, to be

screened. Furthermore, predictions on clinically approved drugs is

expected to reveal candidates for drug repurposing and potentially

identify specific disease sub-types that would be most responsive

[8]. Although cell lines are not an exact replica of real tumours,

comprehensive predictive models such as ours together with

expanded genomic and epigenomic datasets may be a good proxy

to facilitate the development new therapeutic strategies tailored to

individual patients [12].

Materials and Methods

Training dataset
We used the data from the Genomics of Drug Sensitivity in

Cancer project [3], which contains 639 cancer cell lines, each of

them characterised by a set of genomic features (details in the next

section). The characterisation is not complete for every cell line,

and therefore we filtered out cell lines with more than 15 missing

genomic features, which reduced the set of selected cell lines from

639 to 608. The dataset contains 131 drugs. As our method

exploits the chemical structure of each drug, this information in

simplified molecular-input line entry system (SMILES) format is

required. Therefore, we did not consider the 20 drugs for which

SMILES were not available, and built our model for the

remaining 111 drugs.

The resulting matrix of 608 cell lines by 111 drugs will have

67,488 possible drug response curves, each summarised by its IC50

value (drug concentration in mM units required to eradicate 50%

of the cancer cells). Currently, the dataset contains 38,930 IC50

values out of these 67,488 (58%), with missing values mostly due to

logistic reasons such as co-ordinating measurements from various

screening centres. The log IC50 ranges from –7.40

(IC50,4N1028 M; the most sensitive drug-cell combination) to

6.91 (IC50,8N106 M; the most resistant). Note that extremely large

and small values are extrapolations in the IC50 that have no

clinical relevance. We use these ranges in this study as those are

the ones used in the paper Garnett et al. [3] that we compare our

results against.

Blind test dataset
We generated test sets during the cross-validation for estimating

the expected error (details in cross-validation section). However,

even cross-validation can overestimate the prospective perfor-

mance of machine learning methods. Therefore, we conducted a

truly blind test in order to demonstrate the prospective capabilities

of our cross-validated models to impute missing IC50 values in the

608 cell lines by 111 drugs matrix (Fig S1). Our blind test contains

13,565 newly generated IC50 values, which were obtained after

training took place, or put it differently, a batch of new

experimental data was generated to independently validate our

models. To sum up, 58% of the IC50 values are in the original

dataset (used for cross-validation), an additional 18% are used for

the blind test (independent test).

Features
There are two different input data streams in our method: the

genomic background for each cancer cell line, and the chemical

properties of a drug. For the first input data stream, cancer cell

lines are characterised by the mutational status of 77 oncogenes,

where each of them is further described by copy number variation

(any high grade amplification or homozygous deletion of a cancer

gene) and sequence variation (changes in the protein sequence, e.g.

non-synonymous single nucleotide polymorphism). Additionally,

there is one binary feature for the microsatellite stability status of

each cell line. The cell line features were encoded as followed:

Microsatellite instability status ~
1 ,if unstable

0 ,if stable

�

Sequence variation ~
1 ,if mutation

0 ,if wildtype

�

Copy number variation ~

1

0
{1

,if amplification

,if wildtype

,if deletion

8<
:

All mutations considered, we have 77 possible copy number

variations plus 77 possible sequence variations and one microsat-

ellite stability value, which sums up to 155 possible cell line

features. However, a few mutational features are missing for some

cell lines, and we conservatively removed a feature in case it was

missing for any cell line. This led to a final set of 138 genomic

features characterising each cancer cell line.

The second input data stream incorporates 1D and 2D

chemical properties of each drug. We generated these chemical

features using the PaDEL software (v2.11, downloaded from the

project website, http://padel.nus.edu.sg/software/

padeldescriptor/) [19] from the SMILES with default settings.

722 features are physicochemical descriptors and 881 are obtained

from the fingerprints, leading to a total of 1603 chemical features.

We only included chemical features that could be calculated for all

drugs. Furthermore, we removed any feature with the same value

across all drugs, obtaining a final set of 689 chemical features for

each drug (e.g. atom count, bond count, molecular weight, xlogP

or PubChem fingerprint, to name a few). The list of drugs is

available in the Supplementary material (Table S1).

Taking together the cancer cell line and drug stream, we used

827 features to build our predictive models of the log IC50 value of

a given cell line in the presence of a given drug.

Cross-validation
We used an 8-fold cross-validation for building our models.

Therefore, we separated the original dataset into eight equally

sized sets of IC50 values, obtained by randomly distributing all

IC50s of the matrix into 8 bins. One of them was exclusively used

for testing (never involved in any training), other six were destined

for training the model and the remaining piece was used for cross-

Predicting Drug Effect from Genomics and Chemistry
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training. Cross-validation is a process used to avoid under- and

overfitting [36] e.g. identifying the optimal number of hidden units

and training iterations for a neural network (details in ‘‘Machine

learning’’ section). We rotated iteratively the sets so that each data

point was used at least once for training, cross-training or testing.

Finally, we obtained 8 models, which were equally predictive.

Furthermore, we used a more stringent version of the above

described 8-fold cross-validation. We ensured that test, train and

cross-train set are not sharing any cell line, which might occur in

the non-stringent version (described above). For instance, assume

cell line C1 is treated with the drugs D1, D2 and D3; For the non-

stringent cross-validation, the combination C1–D1, C1–D2 and

C1–D3 might be distributed over test, train and cross-train set; for

the stringent cross-validation, every combination with C1 is

exclusively occurring in one of those three sets.

Machine learning
For the neural networks, we used the Java implementation from

Encog 3.0.1 (http://www.heatonresearch.com/encog) [37,38] of a

feed-forward multi layer perceptron, where we defined three

different layers: input, hidden (or middle) and output layer. Every

perceptron of a layer is completely connected to each perceptron

of the upper layer. The number of features determined the

number of input units, or put it differently, required perceptrons in

the first layer. The number of hidden units was explored during

the training for determining the correct model complexity, which

was between 1 and 30 hidden units. Furthermore, each input and

hidden unit had also an bias, which is a permanent activation

input for those perceptrons. We used a single output unit for

predicting the continuous log(IC50) value.

As perceptron activation function for enabling the network to

predict non-linear behaviour, we used the sigmoid function, which

returns values in an interval from 0 to 1. Therefore, we had to

normalise the IC50 values (raw IC50 values, not in log space) also

into a range from 0 to 1, which was done with the following

logistic-like function:

norm yð Þ~ 1

1zy{0:1
where yw0

y: Observed/expected IC50 value, which has to be a positive

number greater than zero.

We trained the network with the resilient error backpropagation

implementation from Encog with default parameters [39]. For

exploring the final model complexity, which is described by

number of hidden units and amount of training iterations, we

examined different neural network architectures from 1 up to 30

hidden units and trained them for maximal 400 iterations. We

searched the global minimum in that cross-training landscape

(minimizing the root mean square error of cross training set) for

avoiding an under- or overfitting (usually, between 21 and 27

hidden units were chosen as best model after approximately 300

iterations).

We also carried out random forest [40] regression models to

investigate whether there was any significant performance gain

using an alternative non-parametric machine learning methodol-

ogy (Text S3). A random forest is an ensemble of many different

regression trees randomly generated from the same training data

(recommended value of n = 500 trees was used).

Data access
The dataset is fully accessible of the Genomics of Drug

Sensitivity in Cancer project [3], downloaded from the project

website, http://www.cancerrxgene.org/. The training set is based

on release v1.0 from June 2012. Newly generated IC50 values of

the blind test are published in release v1.1 from July 2012, which

are not part of Release v1.0.

Software access
The Encog Machine Learning Framework (version 3.0.1)

[37,38] containing the neural network implementation is a free

available and open source (Apache License 2.5), and could be

downloaded on the Heaton Research webpage (http://www.

heatonresearch.com/encog). For the random forest model, the R

package randomForest (version 4.6–6) [41] is also freely available

under GPL licence from CRAN webpage (http://cran.r-project.

org/web/packages/randomForest/index.html).

Supporting Information

Figure S1 Blind test of multi-drug model. The training

dataset holds 38,930 IC50 values, that is ,58% of all possible

drug-to-cell line combinations. For the blind test, 13,565 novel

IC50 values were generated, an,18% additional data points which

were not included in the training dataset. For obtaining the

predicted log(IC50) values, we averaged the output of each model

(8 different models resulting from the 8-fold cross-validation

procedure). The prediction on the blind test was slightly worse

than that estimated by cross-validation (Fig 3A): root mean square

error (RMSE) was increased from 0.83 to 0.97, coefficient of

determination (R2) declined from 0.72 to 0.64 and the Pearson

correlation coefficient (Rp) was decreased from 0.85 to 0.79. This

small performance decrease is due to the fact that blind test data

points are not selected at random: these tend to come from drug-

cell combinations that are not optimally represented in the

training set (i.e. those cell lines in the training set that have been

probed against every drug in the panel will not have further IC50

values in the test set, as all training and test sets in this study are

non-overlapping).

(TIFF)

Figure S2 Correlation between predicted to experimen-
tal observed log(IC50) values leaving out cell lines. The

stringent 8-fold cross-validation was performed on the distinct set

of cell lines, so that a cell line was neither used for testing or

involved in the training. The figure shows values obtained solely

on the test sets. The prediction quality is slightly worse than the

normal cross-validation (Figure 3A): RMSE increased from 0.83 to

0.89, R2 decreased from 0.72 to 0.68 and the Rp decreased from

0.85 to 0.82.

(TIFF)

Figure S3 Correlation between predicted to experimen-
tal observed log(IC50) values leaving out all lung cell
lines. To further challenge our model and our hypothesis that it is

possible to leave out several cell lines, we removed all lung cell

lines and used them exclusively for testing. There are 106 out of

608 cell lines are from lung tissue (,17% from data), which we

were able to predict with minor performance reduction compared

to including all cell lines (Figure 3A): root mean square error

(RMSE) increased from 0.83 to 0.99, coefficient of determination

(R2) declined from 0.72 to 0.61 and the Pearson correlation

coefficient (Rp) decreased from 0.85 to 0.79.

(TIFF)
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Table S1 Drug list.
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Text S1 Performance measurements.
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Text S2 Comparison of imputation methods and ma-
chine learning approach.
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Text S3 Random Forest.
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