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Abstract

Objective: This study was performed to examine the value of computed tomography-based

texture assessment for characterizing different types of ovarian neoplasms.

Methods: This retrospective study involved 225 patients with histopathologically confirmed

ovarian tumors after surgical resection. Two different data sets of thick (5-mm) slices (during

regular and portal venous phases) were analyzed. Raw data analysis, principal component analysis,

linear discriminant analysis, and nonlinear discriminant analysis were performed to classify ovarian

tumors. The radiologist’s misclassification rate was compared with the MaZda (texture analysis

software) findings. The results were validated with the neural network classifier. Receiver oper-

ating characteristic curves were analyzed to determine the performances of different parameters.

Results: Nonlinear discriminant analysis had a lower misclassification rate than the other anal-

yses. Thirty texture parameters significantly differed between the two groups. In the training set,

WavEnLH_s-3 and WavEnHL_s-3 were the optimal texture features during the regular phase,

while WavEnHH_s-4 and Kurtosis seemed to be the most discriminative features during the

portal venous phase. In the validation test, benign versus malignant tumors and benign versus

borderline lesions were well-distinguished.

Conclusions: Computed tomography-based texture features provide a useful imaging signature

that may assist in differentiating benign, borderline, and early-stage ovarian cancer.
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Introduction

Ovarian neoplasms include benign, border-
line, and cancerous lesions based on histo-
pathology.1 Among them, borderline
ovarian tumors (BOTs) show mild nuclear
atypia and cell proliferation without stro-
mal invasion, and their biological behavior
falls between that of cancerous and benign
tumors.2 Early-stage ovarian cancer (OC)
(International Federation of Gynecology
and Obstetrics [FIGO] stage I–II) has a sig-
nificantly higher 5-year survival rate than
other types of epithelial OC,3 and it
accounts for approximately 25% of all
ovarian neoplasms.4,5

Ovarian tumors are usually treated sur-
gically, and the operative plan depends on
the lesion type. Benign, borderline, and
malignant neoplasms often have different
management plans because a conservative
or fertility-sparing operation can be an
option if desired.6 However, the preopera-
tive differentiation among benign, border-
line, and early-stage malignant ovarian
neoplasms has always been a clinical chal-
lenge because imaging cannot accurately
and effectively identify these lesions.
Perioperative frozen sections can guide
gynecologists in selecting the optimal sur-
gery for a given patient. A robust systemat-
ic review revealed that the concordance
rates between frozen section findings and
final diagnoses were 94%, 79%, and 99%
for benign, borderline, and cancerous
lesions, respectively.7 However, intraopera-
tive frozen section assessment has well-
known limitations in diagnosing lesions
such as BOTs, mucinous ovarian tumors,
and large tumors.8 Therefore, preoperative

and qualitative diagnosis and accurate pre-
diction of the lesion type are crucially
important for designing the best therapeutic
approach.

Computed tomography (CT) uses
acceptable radiation doses and is broadly
applied for preoperative ovarian tumor
assessment. However, the quantitative CT
features that are useful for preoperative
diagnosis of ovarian tumor types have
rarely been examined. With the great
advances that have been made in digital
technologies, a new graphics assessment
tool called texture analysis has been devel-
oped for analyzing medical images based on
quantitative analysis of grayscale distribu-
tion parameters, inter-pixel relations, and
spatial parameters.9

Texture analysis is attracting growing
attention in CT-based texture analysis,
which can help to evaluate and quantify
tumor heterogeneity. Such a tool could
noninvasively detect aggressive and
treatment-resistant lesions.10

The texture features of ovarian tumors
have been examined in few reports, mostly
those focusing on magnetic resonance imag-
ing and/or ultrasound. However, CT tex-
ture assessment has not been evaluated to
determine its value in histologically group-
ing ovarian tumors.11,12 We hypothesized
that there are differences in the intrinsic het-
erogeneity among benign, borderline, and
cancerous lesions and that these differences
can be reflected by CT-based texture fea-
tures. Therefore, we performed the present
study to comparatively assess the CT-based
texture parameters of benign tumors, bor-
derline lesions, and early-stage OC and to
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generate a machine learning model for char-

acterizing ovarian tumors.

Materials and methods

The reporting of this retrospective study

conforms to the STARD guidelines.13,14

The present study was approved by the

Institutional Research Board of Guangxi

Medical University Affiliated Cancer

Hospital (approval no. 2021-ky-114). All

patients provided written informed consent.

Consecutive patients ultimately diagnosed

with benign tumors, borderline lesions, or

early-stage OC from December 2015 to

December 2020 were analyzed. The inclu-

sion criteria were confirmation of an ovar-

ian tumor by surgical resection or biopsy,

availability of patient data, and complete

CT data and medical history. The exclusion

criteria were an ovarian mass that either

had a longest diameter of <1 cm or was

undetectable on CT images; pronounced

CT image artifacts precluding delineation

of the region of interest (ROI); secondary

ovarian tumors; other cancers detected in

the past 5 years; and presurgical treatments,

including chemotherapy, radiotherapy,

and/or local therapy. The study flowchart

is presented in Figure 1. In total, 225

patients were finally included in this study.

Their ages ranged from 12 to 89 years

(mean, 46.87� 15.2 years). The training

set comprised 73 early malignant tumors,

35 borderline tumors, and 78 benign

tumors (Table 1). Based on the above-

listed eligibility criteria, 17 early malignant

Figure 1. Study flowchart.
CT, computed tomography.
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tumors, 5 borderline tumors, and 17 benign

tumors diagnosed in 2020 were enrolled in

the validation set.
High-resolution CT was carried out with

64-row detector (Discovery CT750 HD; GE

Healthcare, Chicago, IL, USA) and 128-

channel CT (Discovery CT750; GE

Healthcare) scanners using the following

parameters: field of view, 25 cm; matrix,

512� 512; tube voltage, 120 kVp; tube cur-

rent, 200 to 400 mA; rotation, 0.5 s, pitch,

0.984:1; and interval, 1.3mm. The contrast

agent (iodine, 350mg/mL) was adminis-

tered at a dose of 2mL/kg (but not exceed-

ing 100mL) and rate of 2mL/s. The portal

venous phase (PVP) of contrast-enhanced

CT images was obtained. The slice

thickness was 0.625mm, and image

reconstruction to 5-mm thickness was car-

ried out. All CT data were anonymized

prior to upload to the texture analysis soft-

ware (V4.6; Instytut Elektroniki, http://

www.eletel.p.lodz.pl/mazda/).
The CT images were reviewed by two

radiologists with 3 and 30 years of experi-

ence in abdominal CT data analysis, respec-

tively. The radiologists were blinded to the

patients’ data and performed the classifica-

tions in an independent manner.
A picture archiving and communication

system was utilized for image storage. The

slice with the greatest tumor diameter

underwent exportation as a .bmp file.

ROIs were consensually delineated by two

evaluators: the images that most overtly

displayed the tumor boundary were utilized

Table 1. Demographic and clinical characteristics of patients with benign, borderline, and malignant ovarian
neoplasm in the training set.

Characteristic Benign (n¼ 78) Borderline (n¼ 35) Malignant (n¼ 73)

Age, years

<50 49/78 (63.0) 16/35 (45.7) 38/73 (52.1)

�50 29/78 (37.0) 19/35 (54.3) 35/73 (47.9)

Menopausal status

Yes 27/78 (34.6) 20/35 (57.1) 30/73 (41.1)

No 51/78 (65.4) 15/35 (42.9) 43/73 (58.9)

Histologya

Epithelial tumors Serous (30) Serous (11) Serous (22)

Mucinous (15) Mucinous (22) Mucinous (7)

Seromucinous (1) Seromucinous (2) Seromucinous (3)

Endometrioid (8)

Clear cell (11)

Mesenchymal tumors \ \ Carcinosarcoma (2)

Sex cord-stromal tumors \ \ Granulosa cell (10)

Germ cell tumors Mature teratoma (27) \ Yolk sac tumor (5)

Immature teratoma (1)

Dysgerminoma (2)

Mixed germ cell tumor (2)

FIGO stageb

I 27 57

II 8 16

Data are presented as n (%) or n.

FIGO, International Federation of Gynecology and Obstetrics.
aBased on the 2014 World Health Organization classification of tumors of female reproductive organs.
bBased on the 2014 FIGO staging system.
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for drawing the ROI, which was copied and
pasted onto another image with necessary
adjustments; the two-dimensional ROI was
then manually placed within the lesion
boundary (Figure 2). In challenging cases
(obscure lesions on CT scans), magnetic res-
onance imaging was applied when
available.

A texture analysis of axial regular and
enhanced CT scans in the PVP was carried
out. CT-based texture analysis was per-
formed with MaZda v4.6, which is a com-
mercially available software.15 The image
gray-level intensity was normalized as
reported previously. This package included
image processing, extraction, and selection
of texture features. To minimize the influ-
ence of contrast and brightness variation,
image gray-level intensity normalization
was performed using a method that normal-
izes image intensities within a range
(m� 3 d, mþ 3 d; m, mean gray level value;
d, standard deviation; both m and d are
computed separately for every ROI) in
MaZda.16

MaZda helped to compute roughly 300
texture parameters based on the image
histogram, co-occurrence matrix (COM),
run-length matrix, image gradient, auto-
regressive model, and Haar wavelet
(WAV). Fisher’s coefficient (F), classifica-
tion error probability combined with aver-
age correlation coefficients (P), and mutual
information (M) were jointly applied
(FPM) to identify the 30 texture parameters
with the greatest potential in distinguishing
lesions.

The 30 parameters were obtained from
the target images and further processed
and classified with module B11 of MaZda.
The image reflecting the greatest lesion area
was selected, with the lesion boundary
consensually delineated by the above-
mentioned radiologists.

The feature standardization option of
module B11 was utilized (mean value by
standard deviation). Raw data analysis

(RDA), principal component analysis
(PCA), linear discriminant analysis (LDA),
and nonlinear discriminant analysis (NDA)
were performed for all image subsets to
group the texture features. The default
neural network features of module B11
were applied. Nearest-neighbor classification
was carried out to assess raw data, with the
most expressive and discriminating parame-
ters determined by PCA and LDA, respec-
tively. NDA was performed to classify the
features by an artificial neural network.
These classification procedures were con-
ducted by using RDA, PCA, LDA, and
NDA on module B11, and misclassification
rates were calculated.

Additionally, a senior radiologist blinded
to the software analysis and histopatholog-
ical diagnoses grouped the cases into
benign, BOT, and early malignant cases in
an independent fashion, and the misclassi-
fication rate was determined. After compar-
ing the RDA, PCA, LDA, and NDA results
for the misclassification rate, the method
with the highest accuracy was compared
with the radiologist’s findings.

The validation set was examined based
on the same 30 texture parameters, and mis-
classification rates were determined.

Parametric tests were performed to
assess continuous variables due to the cen-
tral limit theorem of conformity.17

Numerical data with normal and skewed
distributions are presented as mean� stan-
dard deviation and median with interquar-
tile range, respectively, and were compared
using the independent-samples t-test and
the Mann–Whitney U-test, respectively.
Categorical data were compared using
Pearson’s chi-square test or Fisher’s exact
test. Qualitative data were analyzed with
the chi-square test. The independent-
samples t-test or independent Mann–
Whitney U test was utilized to determine
whether the 30 texture parameters obtained
from each phase had significant differences
among benign, BOT, and early malignant

He et al. 5



Figure 2. (a, b) Images of a 31-year-old woman with an ovarian serous benign tumor. Regular and portal
venous phase (PVP) images show the main lesion in the red region of interest (ROI). (c, d) Images of a
45-year-old woman with an ovarian serous borderline lesion. Regular and PVP images show the main lesion
in the green ROI and (e, f) Images of a 67-year-old woman with an ovarian seromucinous borderline lesion.
Regular and PVP images show the main mass in the blue ROI.
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cases. Receiver operator characteristic

curve analysis was performed to determine

the areas under the receiver operating char-

acteristic curves (AUCs). A p-value of

<0.05 indicated statistical significance.

SPSS 26.0 (IBM Corp., Armonk, NY,

USA) was utilized for data analysis.

Results

Clinicopathologic findings in the training

set

In total, 186 individuals were included in

the training set (Table 1). The median

ages of patients with benign lesions,

BOTs, and early malignant lesions were

43.5 (range, 16–76), 48.7 (range, 15–78),

and 48.9 (range, 12–80) years, respectively

(p< 0.001). Table 1 summarizes all clinico-

pathologic features. Most lesions were of

epithelial origin. The early malignant can-

cers included 57 stage I and 16 stage II

cases, whereas the borderline lesions includ-

ed 27 stage I and 8 stage II cases. Table 2

summarizes the morphological parameters

of all ovarian lesions. The configuration,

maximum diameter of the lesions, and

number of loculi were significantly different

between any two types (p< 0.05).

Training set

Table 3 shows the grouping data for benign

versus borderline, borderline versus early

malignant, and benign versus early malig-

nant lesions in various imaging phases

based on MaZda. In the comparison of

RDA, PCA, LDA, and NDA, NDA

showed the lowest misclassification rate.

The lowest misclassification rate was 5/151

(3.31%), which occurred with NDA of the

regular phase in differentiating between

benign and early malignant cases.

However, the misclassification rates were

similar in NDA between the regular phase

and PVP for distinguishing between border-

line and early malignant cases and between

benign and early malignant cases. Of these

methods, NDA had a lower misclassifica-

tion rate than RDA, PCA, and LDA.

Table 2. Morphological CT parameters of ovarian lesions in the training set.

CT features Benign (n¼ 78) Borderline (n¼ 35) Malignant (n¼ 73) p-value*

Morphology 0.114

Lobulated 47/78 20/35 32/73

Round/oval 31/78 15/35 41/73

Configuration <0.001

Purely cystic 20/78 5/35 7/73

Predominantly cystic 34/78 7/35 9/73

Mixed cystic/solid 22/78 20/35 45/73

Predominantly solid or solid 2/78 3/35 12/73

Maximum diameter of lesions, cm <0.001

<7 42/78 5/35 12/73

�7 36/78 30/35 61/73

Number of loculi 0.001

Unilocular 25/78 5/35 6/73

Multilocular 40/78 26/35 4773

Honeycomb loculi 13/78 4/35 20/73

CT, computed tomography.

Data are presented as n.

*Different values among the three groups.
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Additionally, in both the regular phase and

PVP, the four methods significantly differed

in distinguishing among benign, borderline,

and early malignant cases (p< 0.01). The

lowest misclassification rate obtained by

the radiologist was 29.03% (54/186) in dif-

ferential diagnosis between benign and

early malignant cases; this rate was mark-

edly higher than that of NDA for all

sequences (p< 0.05).
AUCs were determined for all texture

parameters showing significant differences;

those with an AUC of >0.7 are shown in

Table 4. WAV-based and COM-based

parameters had good classification values.

There were four WAV-based and one

COM-based feature in the PVP (WavEn

HH_s-4, WavEnHH_s-5, WavEnHL_s-3,

WavEnHL_s-4, and Kurtosis) and four

WAV-based features in the regular phase

(WavEnHH_s-4, WavEnLH_s-3, WavEnHL_

s-2, and WavEnHL_s-3). The most discrim-

inating features were WavEnLH_s-3

(WAV) and WavEnHL_s-3 (WAV) in the

regular phase for distinguishing between

benign and borderline cases (WavEnLH_

s-3: AUC, 0.846) (Figure 3(a)) and between

benign and early malignant cases

(WavEnHL_s-3: AUC, 0.857) (Figure 3(b)).

WavEnHH_s-4 and Kurtosis were the most

discriminating features in the PVP for distin-

guishing between benign and borderline

Table 3. Misclassification rates in the training set for ovarian tumor grouping using FPM.

Regular Portal venous phase

Benign vs.

BOT

Borderline vs.

malignant

Benign vs.

malignant

Benign vs.

BOT

Borderline vs.

malignant

Benign vs.

malignant

RDA 29/113 (25.66) 44/108 (40.74) 33/151 (21.85) 35/113 (30.97) 42/108 (38.89) 43/151 (28.48)

PCA 27/113 (23.89) 44/108 (40.74) 34/151 (22.51) 36/113 (31.86) 41/108 (37.96) 45/151 (29.80)

LDA 20/113 (17.75) 25/108 (23.15) 20/151 (13.25) 21/113 (18.58) 36/108 (33.33) 23/151 (15.32)

NDA 8/113 (7.08) 18/108 (16.67) 5/151 (3.31) 18/113 (15.93) 17/108 (15.74) 6/151 (3.97)

Data are presented as number of misclassifications/total cases (%). In total, 186 cases were included in the training set.

RDA, PCA, LDA, and NDA were utilized for assessment in the regular and portal venous phases. Classifications were

performed according to FPM.

FPM, combination of Fisher’s coefficient (F), classification error probability and average correlation coefficients (P), and

mutual information (M); BOT, borderline ovarian tumor; LDA, linear discriminant analysis; NDA, nonlinear discriminant

analysis; PCA, principal component analysis; RDA, raw data analysis.

Table 4. Texture parameters with AUCs>0.7 and P values based on the independent Mann-Whitney U test
in the training set.

Regular Portal venous phase

Feature p-value AUC Feature p-value AUC

Benign vs. borderline WavEnHH_s-4 (WAV) <0.001 0.841 WavEnHH_s-4 (WAV) <0.001 0.791

WavEnLH_s-3 (WAV) <0.001 0.846 WavEnHH_s-5 (WAV) <0.001 0.754

WavEnHL_s-3 (WAV) <0.001 0.780

WavEnHL_s-4 (WAV) <0.001 0.788

Borderline vs. malignant None Kurtosis (COM) 0.001 0.700

Benign vs. malignant WavEnHL_s-2 (WAV) <0.001 0.724 None

WavEnHL_s-3 (WAV) <0.001 0.857

AUC, area under the receiver operating characteristic curve; COM, co-occurrence matrix; WAV, wavelets transform.
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cases (WavEnHH_s-4: AUC, 0.791) (Figure

3(c)) and between borderline and early

malignant cases (Kurtosis: AUC, 0.700)

(Figure 3(d)).

Validation set

Table 5 summarizes the grouping results in

the validation set for different CT scan

phases. These validation data accurately dis-
tinguished between benign and borderline
cases in the regular phase [misclassification
rate: 0.0% (0/22)], between borderline and
early malignant cases [misclassification rate:
4.5% (1/22)], and between benign and early
malignant cases [misclassification rate: 0.0%
(0/34)]. However, regular phase and PVP
data were not markedly different.

Figure 3. (a) Receiver operator characteristic (ROC) curve for WavEnLH_s-3 on regular images in the
training set. (b) ROC curve for WavEnHL_s-3 on regular images in the training set. (c) ROC for
WavEnHH_s-4 on portal venous phase (PVP) images in the training set and (d) ROC for Kurtosis on PVP
images in the training set.
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Figure 4 shows the results of
WavEnLH_s-3, WavEnHL_s-3, WavEnHH_
s-4, and Kurtosis in differentiating benign,
borderline, and early malignant cases in
the validation set. The performances of
WavEnLH_s-3, WavEnHL_s-3, and
WavEnHH_s-4 remained good in the exter-
nal validation. In the regular phase,
WavEnLH_s-3 distinguished between
benign and borderline cases (WavEnLH_s-
3: AUC, 0.824) (Figure 4(a)) while

WavEnHL_s-3 distinguished between
benign and early malignant cases
(WavEnHL_s-3: AUC, 0.720) (Figure 4(b))
with the highest performances. In the PVP,
WavEnHH_s-4 best distinguished between
benign and borderline cases (WavEnHH_s-
4: AUC, 0.800) (Figure 4(c)). However,
Kurtosis extracted from the PVP did not
differ significantly between borderline and
early malignant cases (Kurtosis: AUC,
0.765) (Figure 4(d)).

Figure 4. (a) Receiver operator characteristic (ROC) curve for WavEnLH_s-3 on regular images in the
validation set. (b) ROC for WavEnHL_s-3 on regular images in the validation set. (c) ROC for WavEnHH_s-4
on portal venous phase (PVP) images in the validation set and (d) ROC for Kurtosis on PVP images in the
validation set.
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Discussion

Summary of main results

In the present study, by analyzing the tex-
ture features of CT images of ovarian
tumors in the regular phase and PVP, we
found that use of the radiomics features
based on CT texture assessment could
help to distinguish among benign, border-
line, and early malignant cases. Different
statistical techniques (i.e., RDA, PCA,
LDA, and NDA) were used for differenti-
ating benign, borderline, and early malig-
nant cases based on regular and PVP
images in the training set. As shown
above, NDA had a markedly lower misclas-
sification rate than the other methods in the
regular phase and PVP (p< 0.01) for differ-
entiating benign, borderline, and cancerous
ovarian neoplasms. The goal of NDA is to
identify a nonlinear transformation of var-
ious feature vectors for projecting the input
patterns on a space (potentially with lower
dimensionality, as for PCA and LDA) in
which linear separation occurs. The texture
features of regular images showed the lowest
misdiagnosis rates of 7.08% and 3.31% for
benign versus borderline and benign versus
malignant, respectively, and therefore had
the best performance in distinguishing
among them. However, the texture features
obtained from PVP images better distin-
guished between borderline and cancerous
neoplasms (misdiagnosis rate: 15.74%).

In this study, four texture feature classi-
fications (WavEnLH_s-3, WavEnHL_s-3,
WavEnHH_s-4, and Kurtosis) were vital
factors for characterizing benign, border-
line, and early malignant cases. As shown
above, compared with borderline cases,
Kurtosis in the PVP was markedly elevated
for early-stage OC, suggesting that the PVP
value’s maximum frequency is remarkably
elevated; in other words, microvascular per-
fusion areas are starkly greater in early-
stage OC than in borderline cases. The
above results corroborate previous observa-
tions in other cancers.18 Unfortunately,
Kurtosis did not exhibit a statistically sig-
nificant difference in differentiating border-
line and early-stage OC in the validation
set. The reason may be the relatively small
number of cases in the validation set. As
shown above, WavEnLH_s-3 values were
markedly higher in borderline than in
benign cases, WavEnHL_s-3 was higher in
early malignant than in benign cases, and
WavEnHH_s-4 was higher in borderline
than in benign cases. Wavelet transform
could identify fine structural details not
detectable by the naked eye (e.g., by ampli-
fying subtle intensity variations between
areas while representing homogeneity inten-
sity within an area). Therefore, the histo-
pathological properties of ovarian
neoplasms might be associated with fre-
quency signals in CT, which deserves fur-
ther investigation.

Table 5. Misclassification rates of the validation set for differentiating ovarian neoplasms.

Regular Portal venous phase

Benign vs.

borderline

Borderline vs.

malignant

Benign vs.

malignant

Benign vs.

borderline

Borderline vs.

malignant

Benign vs.

malignant

Misclassification

rates

0/22 (0.0) 1/22 (4.5) 0/34 (0.0) 2/22 (10.53) 1/22 (4.5) 0/34 (0.0)

Data are presented as number of misclassifications/total cases (%). In total, 39 cases were included in the validation set.

The neural network classifier was utilized for assessment with the module B11.
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Results in the context of published
literature

CT is widely utilized for evaluating the
severity of disease and monitoring the ther-
apeutic response in patients with ovarian
tumors. Radiologists routinely perform
subjective assessments of CT scans accord-
ing to their experience for diagnosing or
evaluating ovarian tumors.19 Tumor het-
erogeneity is an essential property of
cancer and is driven by highly altered
tissue architecture due to infiltrated cells,
necrosis, anomalous angiogenesis, and
myxoid alterations.20 Tumor heterogeneity
evaluated by CT-based texture assessment
is a novel tool for postprocessing CT data
and generating novel quantitation features
that associate qualitative and/or quantita-
tive imaging data with diagnosis, staging,
prognostication, and treatment-response
assessment in various cancers.21–23

In previous studies, CT texture assess-
ment was considered to provide promising
imaging biomarkers of OC, helping to pre-
dict histopathological features, therapeutic
response, and prognosis.24–26 Among statis-
tical techniques, NDA has been shown to
be effective for assessing texture features in
various diseases,27,28 consistent with the
results of the present study. Among the
many features, Wavelet transform, a rou-
tine tool for texture analysis, converts
signals from the time domain to the fre-
quency domain, revealing the tissue charac-
teristic properties of enhancement kinetics.
It is a potent tool for distinguishing non-
malignant from cancerous lesions.29

Kurtosis reflects the peak of the gray-scale
histogram based on the tissue pixel distri-
bution and indicates the PVP size at maxi-
mum frequency.30 To date, however,
CT-based texture analysis has not been
applied to compare benign, BOT, and
early malignant ovarian neoplasms.

Strengths and weaknesses

This study focused on the preoperative dif-
ferentiation and evaluation of ovarian neo-
plasms through texture analysis of CT
radiomics; i.e., we investigated the diagnos-
tic performance of texture for characteriz-
ing ovarian tumors. The results showed for
the first time that CT texture features could
distinguish among benign, borderline, and
early-stage malignant ovarian neoplasms.
This will allow doctors to more effectively
assess the properties of ovarian neoplasms
by CT examination.

This study had several limitations. First,
it was a single-center trial involving a limit-
ed number of patients. Additionally, stan-
dardized and consistent CT parameters
were applied, decreasing the generalizability
of the study findings. Although all AUC
values in our model were ideal, the introduc-
tion of an externally validated data set would
improve the universality of the results.
Second, texture features were only exam-
ined on two-dimensional images, focusing
on sections with maximum tumor diameters
in all cases. Despite its wide application,
such a strategy might not properly account
for the whole tumor as would a three-
dimensional analysis. Third, we did not
assess interobserver variability. The signifi-
cant associations of texture features with
ovarian lesions in the validation set were
based on few patients, and these data
should be validated in large multicenter
trials. Additional software enabling three-
dimensional texture assessment would also
complement these findings.

Implications for practice and future
research

In conclusion, CT texture features could
distinguish among benign, borderline, and
early-stage malignant ovarian neoplasms,
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and NDA showed the lowest misclassifica-
tion rate for both regular and PVP images.
Regular images might be more informative
for distinguishing between benign and bor-
derline cases or between benign and early
malignant cases, as demonstrated in the
training and validation sets. Kurtosis is an
optimal texture feature on PVP images for
distinguishing between borderline and
early-stage OC. WAV-based parameters
were shown to be most discriminative.
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