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Abstract 

Mitochondrial function is of particular importance in brain because of its high demand for 
energy (ATP) and efficient removal of reactive oxygen species (ROS). We developed rat 
mitochondrion-neuron focused microarray (rMNChip) and integrated bioinformatics tools 
for rapid identification of differential pathways in brain tissues. rMNChip contains 1,500 genes 
involved in mitochondrial functions, stress response, circadian rhythms and signal transduc-
tion. The bioinformatics tool includes an algorithm for computing of differentially expressed 
genes, and a database for straightforward and intuitive interpretation for microarray results. 
Our application of these tools to RNA samples derived from rat frontal cortex (FC), hip-
pocampus (HC) and hypothalamus (HT) led to the identification of differentially-expressed 
signal-transduction-bioenergenesis and neurotransmitter-synthesis pathways with a dominant 
number of genes (FC/HC = 55/6; FC/HT = 55/4) having significantly (p<0.05, FDR<10.70%) 
higher (≥1.25 fold) RNA levels in the frontal cortex than the others, strongly suggesting active 
generation of ATP and neurotransmitters and efficient removal of ROS. Thus, these tools for 
rapid and efficient identification of differential pathways in brain regions will greatly facilitate 
our systems-biological study and understanding of molecular mechanisms underlying complex 
and multifactorial neurodegenerative diseases. 
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INTRODUCTION 

Mitochondrial function is of particular im-
portance in brain because of its high energy (ATP) 
demand. Ninety percent (90%) of the cell ATP are 
generated via mitochondrial oxidative phosphoryla-
tion (OXPHOS). Although the human brain repre-
sents only 2% of body weight, it receives 15% of the 
body’s cardiac output, and uses 20% of total body 
oxygen. The high levels of oxygen and energy needs 
are continuous, and a brief period of deprivation may 
impair neuron function and even result in neuron 
death. In addition, mitochondrial dysfunctions are 

frequently documented as a key pathogenic factor in 
stress related mental disorders[1-3].  

Mitochondria are the double-membrane- 
enclosed intracellular organelles and widely known 
as the “energy factories” of the cell for their role in 
ATP production via OXPHOS, a process that also 
produce reactive oxygen species (ROS) as the by-
products. The high ATP production in the neurons 
implies an efficient removal of ROS. Other roles of 
mitochondria include β-oxidation, the tricarboxylic 
acid (TCA) and urea cycles, the synthesis of steroid 
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hormones and heme, calcium signaling, mitochondri-
al fission and fusion, regulation of lipid concentration 
in the mitochondrial membranes and the mitochon-
drial permeability, and control of cell cycle, survival 
and death[4;5]. Mitochondria are the only organelles 
possessing DNA (mtDNA) as well as transcription 
and translation machineries in the cytoplasm[6]. The 
number of mitochondria per cell varies widely from a 
single mitochondrion to thousands of mitochondria 
per cell[7;8]. mtDNA encodes only 37 gene products; 
the vast majority of mitochondrial proteins are en-
coded by the nuclear DNA (nDNA), synthesized by 
ribosomes in the cytoplasm, and imported into the 
organelles[9]. The highly integrated cross- 
functionality between nuclear and mitochondrial ge-
nomes is essential for maintenance of cellular homeo-
stasis. Defects and abnormal expression of mitochon-
dria-focused genes are correlated to rare disease (e.g., 
Leigh syndrome and lethal infantile cardiomyopa-
thy)[10;11] and are also recognized in common dis-
eases, such as neurodegeneration, aging, cancer, obe-
sity and diabetes[12-14].  

Here, we described the development of rat mi-
tochondrion-neuron focused oligonucleotide micro-
array (rMNChip) and integrated bioinformatics tools. 
rMNChip contains the 37 mtDNA-encoded genes, 
1,098 nDNA-encoded and mitochondria-related 
genes[15], and 365 nDNA-encoded and neu-
ron-related genes, each in triplicate. The rMNChip 
bioinformatics tool consists of an algorithm for au-
thentic identification of differentially expressed genes, 
and a database for straightforward and intuitive in-
terpretation for microarray results. Applying these 
tools for analysis of RNA samples derived from rat 
frontal cortex (FC), hippocampus (HC) and hypo-
thalamus (HT) led to rapid identification of the inter-
related, differentially-expressed signal-transduction- 
bioenergenesis and neurotransmitter-synthesis path-
ways between the frontal cortex and the hippocampus 
or hypothalamus. Thus, the rMNChip and integrated 
bioinformatics tools are useful for rapid identification 
of differential pathways and will facilitate our sys-
tems-biologic study and understanding of molecular 
mechanisms underlying complex and multifactorial 
neurodegenerative diseases. 

MATERIALS and METHODS 

Gene selection, oligonucleotide design and 
preparation: rMNChip contains 1,500 genes including 
37 mitochondrial DNA (mtDNA)-encoded genes, 
1,098 nuclear DNA (nDNA)-encoded and mitochon-
dria-focused genes[15], and 365 neuron-related genes. 
These 365 genes were derived by searching the NCBI 
database (www.ncbi.nlm.nih.gov/gene) using the key 

words: fear response, circadian rhythms and signal 
transduction. The oligonucleotides were designed 
from the full length mRNA sequences as the tem-
plates by using the software MacVector v10.6.0 
(MacVector). The criteria for selecting oligonucleo-
tides included 50 nucleotides in length (50-mer), ab-
sence of hairpin structures in the sequence, 45-55 
percent of G+C contents and a Tm higher than 
65oC[16]. An amino-C6 was added to the 5’ end of 
each probe to enhance binding of the DNA to glass 
slides and accessibility for hybridization with target 
DNA. 5’-amino-C6 modified 50-mers were synthe-
sized and extracted to high purity by a commercial 
service (Eurofins MWG Operon).  

Microarray design and fabrication: The 1,500 
test genes (including 80 “housekeeping” genes as 
positive control) and 36 negative controls (non rat 
DNA) were printed, each in triplicates, onto the 
N-hydroxysuccinimide ester reactive groups-coated 
glass slides (CodeLink Activated Slide, SurModics, 
Eden Prairie, Minnesota). DNA probes in the print 
buffer (50 mM sodium phosphate) at the final con-

centration of 20 M of 5’-amino-C6 modified 50-mers 
were printed in the Class 100 super-clean environ-
ment as described previously[15;17;18], using 
100-micron pins and the GeneMachine OmniGrid 100 
Microarrayer (Genomic Solutions, Ann Arbor, MI). 

Microarray labeling and hybridization, image 

scanning and processing: RNA samples of rat brain 
tissues were purchased from Zyagen (San Diego, Cal-
ifornia). One microgram RNA per sample was used 
for Cy5-dUTP (Enzo Life Sciences, Plymouth Meeting, 
Pennsylvania) labeling of cDNA. The cDNA synthesis 
and microarray hybridization were carried out by use 
of the express array detection kit (3DNA Array 900, 
Genisphere, Hatfield, Pennsylvania) following the 
manufacturer’s instructions. Slides were scanned us-
ing the ScanArray Microarray Scanner (PerkinElmer) 
at 90% laser power, 68 PMT voltages, 5 micron reso-
lution and LOWESS method. Microarray images were 
quantified by use of the rMNChip gene array list file. 
In the digitized data, each scanned spot was labeled 
by a flag either as “0” (found but not good), “1” (not 
found), “2” (absent), “3” (good), or “4” (bad). The 
“good” spots were defined by the scanner software 

setups as the spot with a calculated footprint <100 m.  
Database and data analysis: A database includes 

individual and relational expression files, and rela-
tional and category bioinformation files were com-
piled with the software FileMaker Pro (FileMaker, 
Inc., Santa Clara, CA) as described previously[15]. 
Microarray data were filtered within the database 
using the following criteria: (i) test gene spots, being 
included for further analysis; (ii) spot flag = 0 or 2, 
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being removed; spot flag = 1, being removed if it oc-
curs in all samples; spot flag = 3, being included; spot 
flag = 4, being removed; and (iii) signal to noise ratio 
(i.e., spot mean pixel intensity minus background 
mean pixel intensity and then divided by background 
standard deviation) ≥1 in all genes and samples. To 
normalize spot data, the background-subtracted mean 
intensities of a spot were multiplied by the corre-
sponding spot area ([diameter÷2]2 π) and then, the 
resultant values were divided by a common area with 
the spot diameter of 100 microns. Data were normal-
ized across all intra- and inter-slide spots and array 
experiments, and then used for the calculation of 
means, standard deviations, fold changes, moderated 
p values and false discovery rates (FDR).  

Gene bioinformation: Gene IDs, official symbols 
and names were downloaded from the NCBI database 
(www.ncbi.nlm.nih.gov/gene). Ontology (molecular 
function, biological process, and cellular component), 
phenotype (genetic disorder), Kyoto Encyclopedia of 
Genes and Genomes (KEGG) pathways and Online 
Mendelian Inheritance in Man (OMIM) were from 
DAVID Bioinformatics Resources (http://david.abcc. 
ncifcrf.gov). Drug targets associated with gene prod-
ucts were from PharmGKB pharmacogenomics 
knowledge base (http://www.pharmgkb.org/ 
search/index.jsp).  

Statistics: The quantile normalization method 
(27) in software R/Bioconductor version 2.7.1 (The R 
Foundation for Statistical Computing) was used to 
normalize data. Means, standard deviations and fold 
changes were calculated from triplicate experiments 
using XLSTAT 2006 (XLSTAT, New York, NY, USA). 

Differentially expressed genes were identified arbi-
trarily as having a ≥1.25-fold change in the average 
expression of the background-subtracted mean inten-
sity ratios of a gene between comparisons. The mod-
erated p-values and false discovery rate (FDR) for 
multiple statistical testing with Benjamini and 
Hochberg methods [19] were calculated with the 
software R/Bioconductor. The level of statistical sig-
nificance was set at a p-value <0.05 with a specific 
FDR indicated. 

RESULTS 

Fifteen hundred genes and oligonucleotide 

probes on rMNChip 

rMNChip contains 1,500 rat genes, consisting of 
37 mtDNA-encoded genes, 1,098 nDNA-encoded and 
mitochondrial structure- and function-related genes, 
and 365 genes relevant to stress response, circadian 
rhythms and signal transduction. Our gene bioinfor-
matic analysis of these 1,500 genes revealed 1,109 
molecular functions associated with 1,394 genes, 2,558 
biological processes with 1,309 genes, 439 cellular 
components with 1,334 genes, 180 canonical pathways 
with 838 genes, 705 OMIM-associated diseases with 
397 genes, and 941 drugs and/or chemical com-
pounds with 524 genes (Table 1). Using the uniform 
criteria, we designed 1,500 probes of 5’-amino-C6 
modified 50-mers and created the rMNChip microar-
rays. Supplementary Material: Table S1 lists 1500 rat 
gene ID, the official gene symbols, and the probe se-
quences.  

Table 1. Bioinformation of 1,500 Genes on rMNChip Gene Chip 
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Uniform spot shape, low background, and high 
signal-to-noise ratio of rMNChip microarrays 

The rMNChip quality was assessed by microar-
ray experiments with technical and experimental 
triplicates using RNA samples of rat frontal cortex, 
hippocampus, hypothalamus, cerebrum and cerebel-
lum. The microarray images showed a uniform spot 
shape, low background intensities, high sig-
nal-to-noise ratios and overall consistent signal inten-
sities on hybridized chips (Fig. 1). Specifically, the 
diameters of 108 negative control, 240 positive con-
trol, 111 mtDNA-encoded gene and 4,149 
nDNA-encoded gene spots were 99.88±0.33, 
118.44±2.04, 118.12±2.17, and 117.20±2.21 microns, 
respectively. The corresponding back-
ground-subtracted mean pixel intensities were 

9.95±29.07, 5017.37±1141.38, 5516.82±1487.24, and 
5293.43±1258.56, respectively. On average, the signal 
intensities of mtDNA-encoded gene spots (5516.82 
units per pixel) and nDNA-encoded gene spots 
(5293.43 units per pixel) were 554.5-fold and 
532.0-fold higher than those of the negative control 
(9.95 units per pixel), respectively. The mean sig-
nal-to-noise ratios of the negative control, positive 
control, mtDNA-encoded and nDNA-encoded gene 
spots were 2.33±0.31, 14.07±1.45, 15.70±1.98, and 
15.17±1.83, respectively. The differences between the 
test genes or positive controls and the negative con-
trols were all highly significant (p <0.0001). In con-
trast, the differences among the positive controls, 
mtDNA- and nDNA-encoded genes were not statis-
tically significant (p >0.05), as expected (Fig. 1).  

 

 

Fig. 1. High quality rMNChip microarray. (A) Representative microarray image of rMNChip. This pseudo-colored 

image represents an rMNChip microarray hybridized with the Cy5-labeled target cDNA reverse-transcribed from a rat 

brain RNA sample. Eight printing pinss were used to print 8 sub-arrays of rMNChip and each element was printed as a spot 

of technical triplicates adjacent to each other. The pixel intensities on spotted probes reflect abundances of hybridized target 

cDNA. (B) The inset shows details of spots morphologies of 12 genes (36 spots) with signal intensities ranging from high, to 

low and undetectable. (C) A table summarizes information of the genes and spots in the negative controls, positive controls, 

mtDNA- and nDNA-encoded test genes. The differences between the negative control and the others were highly signif-

icant (p<0.0001) while the difference between the positive control and the test spots were not statistically significant 

(p>0.05), as expected. 
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Consistent intra- and inter-chip results 

The consistency between rMNChip microarrays 
was evaluated by two-by-two comparisons of the 
normalized (but not log transformed) mean pixel in-
tensities between the same rMNChip spots (intra-chip 
comparison) and between the different rMNChip 
spots (inter-chip comparison) hybridized with cDNA 
labeled using the same RNA samples. Our results 
revealed high similarities between the comparisons 
(Fig.2A). Specifically, when one set of genes (Array 1) 

was compared with another (Array 2), a linear rela-
tionship of y=0.977x + 0.017 and a coefficient of de-
termination of r2=0.955, were obtained on a scatter 
plot of the normalized mean pixel intensities between 
the comparison. A linear relationship of y=0.965x + 
0.026 and the coefficient of determination of r2=0.932 
were found in the comparison between Arrays 4 and 
5. In the case of the inter-chip comparison, a linear 
relationship of y=0.943x + 0.043 and the coefficient of 
determination of r2=0.887 were derived (Fig. 2A). 

 

Fig. 2. Consistency of the rMNChip microarrays and data normalization. (A) The consistency in gene expression 

levels between the intra and inter rMNChip microarrays hybridized with the same RNA sample. A scatter plot and fitted line 

of signal intensities of 1,465 informative genes between two sets of genes on Array 1 and Array 2 on Slide 1 (left panel) and 

Array 4 and Array 5 on Slide 2 (middle panel), and between two different rMNChip microarrays (right panel). Each array was 

hybridized with Cy5-labeled cDNA sample synthesized from the same RNA samples via parallel microarray experiments. 

The normalized (but not log-transformed) signal intensities of 1,465 informative genes from one were plotted against those 

of the other. The strong linear relationship (y = ax + b) and the positive coefficient of determination (r2) were computed 

from the scatter plots and indicated in each comparison. “x”: signal intensity of a spot on one microarray, “y”: signal intensity 

of the corresponding spot on the other microarray. (B) Box plots of expression data before and after normalization. The 

quantile normalization algorithms were used to adjust the values of the background-subtracted mean pixel intensities of each 

and every set of 4,395 spots across intra- and inter- rMNChip microarrays hybridized with Cy5-labeled RNA samples 

indicated. In contrast to the boxplot of pre-normalization data (top panel), the post-normalized data distributes in the same 

intervals with the same density center, indicating successful adjustment of data. The post-normalized data were used for 

further analysis. Ln: the natural logarithm, Tis: brain tissue, Exp: microarray experiments including technical and experi-

mental triplicates, CL: cerebellum, CR: cerebrum, FC: frontal cortex, HC: hippocampus, and HT: hypothalamus. 
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rMNChip computing procedures for identifica-
tion of differentially expressed genes 

The customized computational procedures in-
clude microarray image evaluation, data filtering, 
spot size correction, inclusion, normalization and 
comparison. Microarray image evaluation is aimed at 
revealing image quality including background, sig-
nal-to-noise ratio, and overall consistent spot pixel 
intensities. An image with a uniformly low back-
ground, high signal-to-noise ratios and overall con-
sistency is used for data acquisition. Data filtering is 
aimed at removing data that may lead to false posi-
tives or negatives. Spot size correction is aimed at 
normalizing spot signal intensities; spot sizes need to 
be normalized because a spot’s area changes slightly 
as the hybridized signal intensities do. Data inclusion 
is aimed at determining whether all spots passing the 
data filtering should be used for further analysis. Be-
cause not all 9 spots per gene per sample (i.e., tripli-
cate spots/chip and triplicate experiments/sample) 
may pass the filter criteria, inclusion of genes with 
fewer than 9 spots per gene may complicate data 
analysis due to the missing spots. Alternatively, one 
may choose to include only genes with all the 9 spots 
fulfilling the filtering criteria for further analysis, but 
the number of genes in the final result may be re-
duced. 

Data normalization is aimed at removing 
non-biological variations that can arise in any step of 
microarray experiments, such as array printing, RNA 
preparation, labeling, hybridization, or scanning[20]. 
Before and after performing quantile normaliza-
tion[21], the pixel intensities of 65,925 spots (i.e., trip-
licate spots/gene/chip, of 1465 genes included, from 
triplicate array experiments, performed on five rat 
brain tissue samples) were transformed into the nat-
ural log. The transformed values were plotted as the 
boxplots to visualize successful adjustment of the data 
(Fig. 2B).  

Data comparison is aimed at computing the 
means, standard deviations, fold changes, p-values 
and FDR of the normalized gene pixel intensities be-
tween desired comparisons, in order to reveal differ-
entially expressed genes. Significantly differentially 
expressed genes between the frontal cortex and the 
hippocampus or hypothalamus, and between hippo-
campus and hypothalamus were presented as the 
supplementary data (See Supplementary Material: 
Table S2, Table S3 and Table S4). The cerebrum and 
cerebellum contain a numerous brain regions and 
their data were not further analyzed. 

rMNChip database 

The rMNChip database was built to expedite 

data analysis and interpretation of results. Figure 3A 
shows a user interface of the rMNChip database; 
Figure 3B and 3C show the linked canonical pathway 
and drug webpages viewable by clicking the Entrez 
“L” or the PharmGKB “L” on the user interface. The 
user-interface allows importing, searching, browsing, 
comparing, displaying, and exporting of (i) genes of 
interest, with the associated expression changes and 
canonical pathways, (ii) expression changes of inter-
est, with the associated genes and canonical path-
ways, and (iii) canonical pathways of interest, with 
the associated genes and expression results. 
Pre-linked with the NCBI Entrez gene database and 
the PharmGKB drug database is for conveniently 
updating gene information.  

Differential signal-transduction-bioenergenesis 
and neurotransmitter-synthesis pathways 

To identify differential pathways, we browse the 
regulatory (signal transduction), carbohydrate and 
fatty acid metabolisms, TCA cycle, OXPHOS, REDOX, 
protein and neurotransmitter synthesis pathways 
together with the associated genes within the 
rMNChip database. Our results showed the pathways 
including glycolysis/gluconeogenesis (ADH1, ADH6, 
ALDH2, ALDO, DLAT, GAPDH and HK2), the TCA 
cycle (CS,DLAT, FH1, IDH3A, IDH3G, OGDH, PDK2, 
SDHA, SDHB, SDHC and SUCLA2), fatty acid me-
tabolism (ACAA2, ACAT1, ACSL3, ACSL4, ACSL6, 
ADH1, ADH6, ALDH2, CPT1A, ECHS1, EHHADH, 
PECI and SLC25A29,), OXPHOS (ATP5D, ATP5E, 
ATP5I, ATP5O, ATP6V1E1, ATPAF2, COX15, COX17, 
COX18, COX6C, COX7A2, MIPEP, mt-ATP8, mt-ND1, 
NDUFA1, NDUFA10, NDUFA4, NDUFAB1, 
NDUFAF1, NDUFB10, NDUFB4L1, NDUFS1, 
NDUFS2, NDUFV1, PPA2, SDHA, SDHB, SDHC and 
UQCRFS1), REDOX (GPX1, GSTZ1 and PRDX1), and 
neurotransmitter production and transport (ABAT, 
AGXT, CAD, DDC, GAD1, GLS2, GLUD1, GPT, 
SLC25A18 and SLC25A22). The regulatory pathways 
include insulin signaling (ELK1, GRB2, HK2, 
MAP2K2, MKNK1, PIK3CB, PIK3R3, PRKAR2A and 
PRKAR2B) and peroxisome proliferator-activated 
receptor delta (PPARD) signaling (ACSL3, ACSL4, 
ACSL6, APOA1, CPT1A, EHHADH, FABP3, FABP4, 
HMGCS2, PPARD, RXRA, SCP2 and SLC27A2). In 
protein synthesis pathways, 34 genes (MRPL1, 
MRPL14, MRPL16, MRPL2, MRPL21, MRPL23, 
MRPL28, MRPL30, MRPL34, MRPL4, MRPL40, 
MRPL43, MRPL45, MRPL48, MRPL52, MRPL53, 
MRPS18A, MRPS25, MRPS27, MRPS31, MRPS34, 
MRPS36, mt-RNR1, mt -RNR2, mt –TC, mt –TF, mt 
–TI, mt –TK, mt -TL1, mt –TN, mt –TQ, mt –TR, mt 
–TV and mt –TW) were expressed differentially 
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among the frontal cortex, hippocampus, and hypo-
thalamus (Table 2). The integrated map of these 
pathways revealed an overwhelming number of the 

genes that were expressed significantly higher in the 
frontal cortex than in either the hippocampus (55 vs. 6, 
Fig. 4) or the hypothalamus (55 vs. 4, Fig. 5).  

 

 

Fig. 3. rMNChip database compiled in FileMaker Pro including individual expression files, gene information files and a 

relational expression file. Individual expression files keep raw microarray data imported from a microarray image and is 

linked with the relational expression file via index (a unique numerical ID to each spot on rMNChip). A gene information file 

keeps gene biological information, for example, canonical pathways and drug targets of genes. A relational expression file 

contains information on probes, array design, expression data and comparison, gene symbols and full names, and direct-links 

with the NCBI Entrez Gene Ontology and the PharmaGKB drugs and drug targets as indicated here. (A) A user-interface of 

relational gene information file displaying microarray probes, gene ID, official gene symbols and full names, gene expression 

comparisons and statistics, pathways, drugs and drug targets, as well as direct-links via gene IDs to the NCBI Entrez Gene 

website and the PharmaGKB for instantly checking or updating information. (B) An example of linking of dopa decarboxilase 

(Ddc) to the NCBI Entrez Gene KEGG pathways. (C) An example of linking of Ddc to the PharmGKB drugs. The rMNChip 

databases allow searching, browsing, displaying, modifying, updating and exporting information. 
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Fig. 4. Bioenergenesis neurotransmitter pathways with differentially expressed genes between frontal 

cortex and hippocampus. A solid line with arrowhead indicates a direct reaction or transport. A dashed line with ar-

rowhead indicates more than one steps involved in passages. The RNA levels of genes in red or green colors were expressed 

significantly higher or lower in the frontal cortex than in hippocampus, respectively. If the changes in RNA levels were not 

significant (p>0.05) or less than 1.25-fold, the gene symbols or enzymes are not shown in the flow chat. The mean expression 

levels, standard deviations, fold changes, p-values, false discovery rate (FDR) and the full name of genes are listed in Table 2. 

(A) Bioenergenesis neurotransmitter pathways include glycolysis, fatty acid synthesis, and neurotransmitter synthesis in 

cytoplasm and -oxidation, TCA cycle and OXPHOS, REDOX, and neurotransmitter synthesis in mitochondria. Double 

dashed lines represent the inner and outer mitochondrial membranes, of which a portion was enlarged to illustrate 

OXPHOS complexes I, II, III, IV and V with differentially expressed genes in each complex. A proton (H+) flow and ATP 

synthesis are indicated. REDOX enzymes (GPX1, GSTZ1 and PRDX1) are involved in removal of ROS (e.g. O2
-). Mito-
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chondrial and cytoplasmic enzymes with RNA levels higher in the frontal cortex than in hippocampus for synthesis of 

neurotransmitters (gray ovals) include Glud1 for synthesis of the most abundant excitatory neurotransmitter L-glutamate, 

GAD1 and ABAT for the most abundant inhibitory neurotransmitter -aminobutyric acid [GABA], DDC for dopamine, 

histamine and serotonin, and AGXT for serine and glycine. SLC25A18 and SLC25A22 are involved in transport of 

L-glutamate across mitochondrial membranes. (B) Insulin signaling pathway. Insulin binding to its receptor results in the 

tyrosine phosphorylation of insulin receptor substrates. This leads to activation of phosphoinositide-3-kinase (PIK3CB) and 

growth factor receptor-bound protein (GRB2). These in turn lead to upregulation of insulin-responsive genes including 

hexokinase 2 (HK2) and MAP kinase interacting serine/threonine kinase 1 (MKNK1). HK2 at the outer mitochondrial 

membrane phosphorylates glucose into glucose-6-phosphate, the first rate-limiting step of glycolysis pathway. MKNK1 in 

cytoplasm phosphorylates the eukaryotic translation initiation factor (EEIF4E) initiating protein synthesis, of which 18 of 25 

genes displayed RNA levels higher in the frontal cortex than in hippocampus (Table 2). MKNK1 also modifies proteins 

posttranslationally. ELK1 member of ETS oncogene family (ELK1) plays a critical role in mitogen growth factor signal 

transduction, and its downregulation suggests decreased activities in proliferation and differentiation. (C) PPARD signaling 

pathway. Peroxisome proliferator-activated receptor delta (PPARD) is a nuclear hormone receptor and transcriptional 

regulator. Retinoid X receptor alpha (RXRA) is a steroid and thyroid hormone receptor and transcriptional regulator. Both 

PPARD and RXRA are involved in fatty acid transport and oxidation via binding to DNA and regulating transcription.  

 
 

Table 2. Pathways and Differentially Expressed Genes between Frontal Cortex and Hippocampus and between Frontal 

Cortex and Hypothalamus* 
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Fig. 5. Bioenergenesis neurotransmitter pathways with differentially expressed genes between frontal 

cortex and hypothalamus. A solid line with arrowhead indicates a direct reaction or transport. A dashed line with 

arrowhead indicates more than one steps involved in passages. The RNA levels of genes in red or green colors were ex-

pressed significantly higher or lower in the frontal cortex than in hypothalamus, respectively. If the changes in RNA levels 

were not significant (p>0.05) or less than 1.25-fold, the gene symbols or enzymes are not shown in the flow chat. The mean 

expression levels, standard deviations, fold changes, p-values, false discovery rate (FDR) and the full name of genes are listed 

in Table 2. (A) Bioenergenesis neurotransmitter pathways include glycolysis, fatty acid synthesis, and neurotransmitter 

synthesis in cytoplasm and -oxidation, TCA cycle and OXPHOS, REDOX, and neurotransmitter synthesis in mitochondria. 

Double dashed lines represent the inner and outer mitochondrial membranes, of which a portion was enlarged to illustrate 

OXPHOS complexes I, II, III, IV and V with differentially expressed genes in each complex. A proton (H+) flow and ATP 

synthesis are indicated. REDOX enzyme (GSTZ1) is involved in removal of ROS (e.g. O2
-). Mitochondrial and cytoplasmic 
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enzymes with the RNA levels higher in the frontal cortex than in hypothalamus for synthesis of neurotransmitters (gray 

ovals) include GLS2 and GPT for synthesis of the most abundant excitatory neurotransmitter L-glutamate, GAD1 and ABAT 

for the most abundant inhibitory neurotransmitter -aminobutyric acid [GABA], DDC for dopamine, histamine and ser-

otonin, and AGXT for serine and glycine. SLC25A18 and SLC25A22 are involved in transport of L-glutamate across mi-

tochondrial membranes. (B) Insulin signaling pathway. Insulin binding to its receptor results in the tyrosine phosphorylation 

of insulin receptor substrates. This leads to activation of phosphoinositide-3-kinase (PIK3CB and PIK3R3) and growth factor 

receptor-bound protein (GRB2). The activated PIK3CB and PIK3R3 lead to upregulation insulin-responsive genes including 

hexokinase 2 (HK2). HK2 localizes to the outer mitochondrial membrane and phosphorylates glucose into glu-

cose-6-phosphate, the first rate-limiting step of glycolysis pathway. PIK3CB and PIK3R3 also activate protein synthesis, of 

which 22 of 23 genes displayed RNA levels higher in the frontal cortex than in hypothalamus (Table 1). Mitogen-activated 

protein kinase kinase (MAP2K2) plays a critical role in mitogen growth factor signal transduction, and its downregulation 

suggests decreased activities in transferring the GRB2 signal for proliferation and differentiation. (C) PPARD signaling 

pathway. Peroxisome proliferator-activated receptor delta (PPARD) is a nuclear hormone receptor and transcriptional 

regulator and is involved in fatty acid transport and oxidation via binding to DNA and regulating transcription. 

 

DISCUSSION 

Microarray and bioinformatics analysis of the 
entire mitochondrial transcriptomes is of importance 
in the systems-biological study of mitochondrial 
functions, especially, of the brain because of its high 
demand for energy. High level production of ATP in 
brain neurons requires accurate regulation of bioen-
ergenesis pathways to maintain physiological home-
ostasis including appropriate disposal of ROS. Oth-
erwise, overproduction of ROS (oxidative stress) as 
inevitable byproducts of the highly active ATP syn-
thesis may become an endogenous pathogenic or toxic 
factor damaging neuron function and survival, a 
characteristics of neurodegenerative diseases[22;23]. 
Previously, our laboratory and other groups have 
developed human and mouse mitochondria-focused 
microarrays and bioinformatics tools for expression 
profiling, including hMitChip2[24], hMitChip3[15], 
h-MitoArray[25], HuMOTIchip[26], and mouse Mi-
toChips[27;28]. These customized gene chips and bi-
oinformatics tools facilitated hypothesis-driven stud-
ies of human diseases such as glucocorticoid-induced 
transcriptional adaptations and MAO-A-mediated 
oxidative stress[29], proliferation rates of human ma-
lignant melanoma (MM) cells [15], molecular mecha-
nisms underlying survival-apoptosis of human MM 
cells[30], expression profiles of survival-apoptosis 
genes in human MM[31], candidate biomarkers in 
postmortem brain tissues of patients with posttrau-
matic stress disorder (PTSD)[3], ANT1-mediated reg-
ulation of mouse oxidative phosphorylation, antioxi-
dant, and apoptotic genes [28], and mouse mitochon-
drial involvement in drug-induced toxicities[27]. 
rMNChip reported here is, to our knowledge, the first 
customized mitochondrion-neuron focused microar-
ray with its integrated bioinformatics tools for the 
systems-biological study of neurodegeneration in rat 
models.  

Unlike other mitochondrial microarrays[32], 
rMNChip was designed specifically for study of 
neurodegenerative diseases. First, rMNChip contains 
1,135 rat genes homologous to all the known human 
mitochondrial genes[15] and 365 genes relevant to 
stress response, circadian rhythms and signal trans-
duction. Second, the rMNChip algorithms reduce 
non-random variance. Third, as a focused microarray, 
rMNChip is particularly useful for hypothesis-driven 
experiments. Most importantly, the rMNChip soft-
ware greatly simplifies microarray data analysis and 
allows rapid identification of differential pathways 
rather than only a list of the differentially expressed 
genes, offering straightforward and intuitive inter-
pretation for microarray results. Moreover, the pros 
and cons of a customized gene chip versus a generic 
gene chip with whole transcriptomes of a species are 
described previously[15]. It is also worth mentioning 
that, in contrast to a generic gene chips with whole 
transcriptomes, the reduction of the number of genes 
makes rMNChip affordable for routinely carrying out 
microarray experiments with technical triplicates, 
experimental triplicates and biological repeats (statis-
tical power). These assure the generation of repro-
ducible and verifiable microarray re-
sults[3;15;30;31;33-35]. Finally, the pre-link to the 
web-based databases allows instant update of the 
pathway and pharmacogenomics information. 

The high quality and consistent microarray re-
sults of rMNChip were achieved by (i) using the es-
tablished criteria for design of 50-mer oligonucleotide 
DNA probes, (ii) attaching the amino-C6 motif to the 
5’-end of each probe, (iii) printing 5’-amino-C6 modi-
fied 50-mer probes on glass slides in the Class 100 
super-clean environment, (iv) covalently linking 
probes via 5’-amino groups to the 
N-hydroxysuccinimide ester reactive groups coated 
on the glass slides which allow flexible probes to ac-
cess to and hybridization with target DNA sequences, 
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and (v) blocking the remaining reactive groups on the 
glass slides to reduce background. The high quality 
rMNChip was demonstrated by consistent microarray 
images and statistical analysis. 

Our results revealed 356 differentially expressed 
genes (DEGs) between the frontal cortex and hippo-
campus (Supplementary Material: Table S2), 343 
DEGs between the frontal cortex and hypothalamus 
(Supplementary Material: Table S3), but only 68 DEGs 
between the hippocampus and hypothalamus (Sup-
plementary Material: Table S4). These findings indi-
cate that the molecular differences between the frontal 
cortex with either hippocampus or hypothalamus 
were greater than those between hippocampus and 
hypothalamus. The greater differences also imply 
more active molecular and cellular functions of the 
frontal cortex than the other two. Supporting this 
view, the number of upregulated genes in the frontal 
cortex is much greater than that of downregulated 
genes when compared with either hippocampus (FC 
vs. HC = 310 vs. 46) or hypothalamus (FC vs. HT = 315 
vs. 28). These results strongly suggest higher tran-
scriptional activities in the frontal cortex than the 
other two brain regions. Although one might expect 
that 50% DEGs would be upregulated while the other 
50% would be downregulated, this statistical expec-
tation ought to be carefully evaluated in relationship 
to biological systems under study and to a total 
number of genes in measurement. In addition, it is 
worth mentioning that the changes of many DEGs in 
these comparisons were less than 2 fold (log2-ratio of 
+/- 1). Our confidence on the resultant DEGs would 
have been decreased if without technical triplicates 
and experimental triplicates for the measurement of 
each and every gene on the rMNChip microarrays. 

Our application of the rMNChip and bioinfor-
matic tools led to rapid identification of the differen-
tially expressed regulation (signal transduction), me-
tabolism, bioenergenesis and neurotransmitter bio-
synthesis pathways in rat brain tissues. These path-
ways contain an overwhelming number of the genes 
that were expressed significantly higher in the frontal 
cortex than in either the hippocampus (55 vs. 6 genes) 
or the hypothalamus (86 vs. 4). The results strongly 
suggest that the production of ATP, removal of ROS, 
and synthesis and transport of the excitatory and in-
hibitory neurotransmitters are more efficient in the 
frontal cortex than in the other two. The facts that the 
neurotransmitter genes (L-glutamate, GABA, dopa-
mine, serotonin, histamine, serine and glycine) were 
expressed significantly higher in the frontal cortex 
than in the hippocampus or hypothalamus and that 
these neurotransmitters are known to be involved in 
learning, memory, attention, and problem-solving, 

mood, appetite and sleep[36-41] implies highly active 
neuronal functions in the frontal cortex. These find-
ings are exciting and we begin to believe that the dif-
ferent brain regions at the different developmental 
stages under the different body-and-mind activities 
may require the different amount of ATP and fire the 
different amount and types of neurotransmitters. 
Thus, rMNChip and software are useful for rapid 
identification of differential pathways and facilitate 
our systems-biological study and understanding of 
molecular mechanisms underlying complex and mul-
tifactorial neurodegenerative diseases. 

Supplementary Material 

Table S1. 1,500 rMitChip Genes and Probe Sequences.  

Table S2. 356 Differentially Expressed Genes between 
Frontal Cortex (FC) and Hippocampus (HC).  

Table S3. 343 Differentially Expressed Genes between 
Frontal Cortex (FC) and Hypothalamus (HT).  

Table S4. 68 Differentially Expressed Genes between 
Hippocampus (HC) and Hypothalamus (HT).  

http://www.biolsci.org/v07p0308s1.pdf 
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