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Abstract: In this study, the effects of graphene and design differences on bow-tie microstrip antenna
performance and bandwidth improvement were investigated both with simulation and experiments.
In addition, the conductivity of graphene can be dynamically tuned by changing its chemical potential.
The numerical calculations of the proposed antennas at 2–10 GHz were carried out using the finite
integration technique in the CST Microwave Studio program. Thus, three bow-tie microstrip antennas
with different antenna parameters were designed. Unlike traditional production techniques, due
to its cost-effectiveness and easy production, antennas were produced using 3D printing, and then
measurements were conducted. A very good match was observed between the simulation and the
measurement results. The performance of each antenna was analyzed, and then, the effects of antenna
sizes and different chemical potentials on antenna performance were investigated and discussed.
The results show that the bow-tie antenna with a slot, which is one of the new advantages of this
study, provides a good match and that it has an ultra-bandwidth of 18 GHz in the frequency range
of 2 to 20 GHz for ultra-wideband applications. The obtained return loss of −10 dB throughout the
applied frequency shows that the designed antennas are useful. In addition, the proposed antennas
have an average gain of 9 dBi. This study will be a guide for microstrip antennas based on the
desired applications by changing the size of the slots and chemical potential in the conductive parts
in the design.

Keywords: antenna performance; bow-tie antenna; bandwidth; graphene; chemical potential;
3D printer

1. Introduction

Microstrip patch antennas are used in aviation and satellite communication, biomedi-
cal, radio, and wireless applications due to their important features such as reduced size,
weight, and cost [1]. However, low efficiency and narrow bandwidth also can give rise to
significant disadvantages [2]. Among the simplest methods of overcoming these deficits,
the best-known methods increase the substrate’s thickness and the conductive elements to
be used [1–3]. The patch antennas typically have a narrow bandwidth, and using a thicker
dielectric substrate widens it [4]; for achieving a bandwidth greater than 10%, a capacitive
probe is generally needed [5,6]. Moreover, bandwidth optimization can be achieved with
thick substrates or stacked patch configuration, but these also cause noise. Unfortunately,
stacked patch solutions can be obtained with a complex fabrication process, and with these
methods, the layers’ alignment can cause some problems, such as air gap formation [7–9].

The compactness of the microstrip antennas is an important feature [10]. Typically,
patch antenna size is determined by its resonant size. However, it can be very large for
some antennas in practical applications, especially at low frequencies, and it can increase
the wireless device’s size. Short-circuit walls [11] and pins [12], folded patches [13], or
substrates with high dielectric permeability [14] can be used to produce compact antennas.
However, shorting pins and walls require complex realization and can generate non-
symmetrical broad-edged radiation [15]. Folded patches can also be difficult to apply.
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Finally, materials with a high dielectric constant have insufficient radiation, and they
reduce the bandwidth and are expensive.

Previously, two physicists at the University of Manchester in 2004 discovered that
graphene could be obtained by isolating a one-atom-thick layer from graphite. The second
one is a simple two-dimensional sheet shaped in a hexagonal pattern consisting of carbon
atoms [16]. Since its discovery, graphene has been the material that has been studied by
many researchers from different fields due to its many new and unique physical properties.
Moreover, apart from having electrical mobility higher than 2.105 cm2Vm, it has a unique
quantum Hall effect, good flexibility, and excellent mechanical resistance, which provides
many advantages for different areas such as nanoelectronics, material science, photo-
voltaics, and engineering. Another important feature is that it has a thermal conductivity of
more than ten times copper [17]. Additionally, graphene is already used in biotechnology,
antibacterial materials, disease diagnosis, drug delivery, and cancer targeting [18–20].

A reconfigurable antenna is defined as an antenna in which at least one of its features
can be changed by external intervention after its production is completed. There are many
ways of classification of these reconfigurable antennas. Here are a few examples in order: It
can be listed as causing the antennas to be changed again (changing the current lines, chang-
ing the dielectric properties of the antenna elements, geometric deformation), having the
elements that allow the change (diodes, transistors, etc.) or changing the geometric struc-
tures of the antennas again. Various techniques are used in antenna reconstruction methods.
Some researchers use localized active components that allow changing half-point current
or impedance lines [21], others apply mechanical remodeling in the antenna [22], and still,
other researchers apply configurations using substrates with tunable properties [23]. Again,
some techniques go the way of reconfiguring power supply networks or opting for excita-
tion antenna arrays [24]. Developments in microelectronics, the discovery of electrically
operable switches, and varactors have revealed important suggestions for the emergence
of reconfigurable devices. However, the elements to be put into the configuration increase
the device size and bring additional production costs. During the reconstruction process,
the electromagnetic properties of an antenna can be changed by applying the properties
of the materials in the antenna structure (such as permeability, electric–magnetic field
effects) with external control without adding any elements. These antenna structures are
mostly used in the patch or substrate parts that make up the antennas. Graphene is a great
material because it has excellent optical and electronic properties [25–27] and also because
its resonance properties can be easily changed by applying an external voltage [28–30].

Using graphene provides a great advantage to antenna designs because it has an effi-
cient dynamic tuning [31,32]. The frequency-dependent surface conductivity of graphene
can be easily changed by causing changes in its chemical potential due to applying a gate
voltage. While this important feature of graphene provides an advantage in adjusting the
resonance frequencies of antennas, this situation provides the chance to easily manufacture
antennas that can be used, especially at microwave frequencies.

The frequency-dependent two-dimensional surface conductivity of single-layer
graphene is expressed by the Kubo formula (Equation (1)) [33]:

σ(ω, µc, Γ, T) ≈ −j
q2

e kBT
πh2(ω − 2jΓ)

×
(

µc

kBT
+ 2 ln(e−

µc
kBT + 1)

)
(1)

ω: the angular frequency
µc: the chemical potential
Γ: the scattering rate
T: the temperature
τ: the relaxation time
kB: the Boltzmann
h2: the reduced Planck constant.

The effect of changing graphene’s chemical potential (µc) on the surface conductivity
has been studied [34]. This effect varies depending on the carrier density, which can be
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controlled by gate voltage, electric bias field, or chemical doping. Increasing the chemical
potential also causes an increase in graphene surface conductivity. In other words, this
causes a shift in antenna resonances at higher frequencies. On the other hand, it allows
the emergence of flexible antenna designs that can be changed by the shift in antenna
resonance caused by the chemical potential change. The value in chemical potential can
be controlled electrically by varying the gate voltage (Vg). The formula explaining this
situation is given below (Equation (2)). Graphene conductivity ranges are given according
to the relevant frequency bands in the study of Gatte et al. [34].

Vg =

[
qeµ2

c h
πh2v2

f ε0εr

]
(2)

Inum et al. give the real and imaginary values of the surface conductivity of graphene
depending on the frequency for a changing chemical potential and a constant relaxation
time at their study [33]. They show that the chemical potential and the conductivity change
point are important parameters to adjust the resonance frequency.

In a study [35], the antenna produced with graphene was compared with the other
antennas with different metals instead of graphene. When the results are examined, it is
seen that the reflection coefficients of the metal-based antenna are less adapted than the
graphene. On the other hand, graphene performs better in terms of reflection coefficient,
decreasing from −6.440 to −15.125 dB. Graphene shows better results than metal in terms of
performance with a well-adapted resonance frequency. Prasanna and Banu [36] examined
the “Effect of Copper and Graphene Material Bow-tie Structured Antenna for 1.2 GHz
Application.” It is seen that graphene performs better in antennas, since its conductivity
is much better than copper. In addition, resistance and stub-matching problems are
significantly reduced compared to copper and offer better bandwidth. All these situations
suggest that using graphene is more functionally effective than copper. Considering all
these parameters, graphene was used as a conductive material to produce the antenna
suitable for the desired target both at an affordable cost and in the desired bandwidth, and
a 3D printer was used as the production technique.

A traditional microstrip patch antenna has a high-quality factor, leading to some disad-
vantages related to the narrow bandwidth. Many techniques have been developed to increase
the impedance bandwidth, including adopting the known stacked patches [37], parasitic
resonators [38], and capacitive coupling feed [39,40]. It is still challenging to obtain a wider
bandwidth, since the main solution uses a thick and/or low dielectric constant substrate.

Metamaterial-based absorbers and antennas with different fractal structures are being
studied to expand the bandwidth [41,42]. While studies to increase the bandwidth of an-
tennas are important, it is also very important that antenna production costs are affordable
and easy to manufacture.

It is known that all conventional antenna manufacturing techniques have disadvan-
tages such as high tool and equipment cost, small volume prototyping, or long lead times
for production [43–46]. The new technologies used for antenna prototyping are laser mi-
cromachining and 3D printing technologies. The laser micro-processing technology is a
common method that can be used to process many materials such as plastic, glass, and
metal and has a versatile process to produce the desired outputs by providing thin foils.
This technology includes many mechanisms such as cutting, drilling, marking, turning,
and threading. The ability to drill holes at the micron level or make fine cuts is preferred
in antenna production as in many areas. Apart from that, this technology presents some
problems as it has a thermally induced process. For example, it causes a change in material
properties in the heat-affected area, as well as causing thermal stress. In addition, they are
economically very expensive and have optical problems. Therefore, laser micromachining
technology was not preferred in this study.

Recently, the expansion of 3D printing offers new chances for low-cost, fast, and
on-demand production of millimeter-wave, microwave, and terahertz (THz) antennas and
components [47–50]. With the rapid development of 3D-printing technology, an alternative
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solution has been provided, especially for the application of microwave antennas [51,52]. It
offers higher manufacturing accuracy at a lower cost and provides great flexibility in design
and production. Therefore, it has many advantages compared to the standard production
methods. With 3D printing, the devices can be produced in one piece, and the performance
loss caused by combining the parts can be prevented.

There are two widely used 3D-printing techniques [53–61]: polymer/dielectric and
all-metal. As the working frequency band enters the millimeter/microwave range, the
printed parts’ quality for the resulting antenna is of great importance. The print resolution,
structural limitations, and surface quality are among the many intangible factors that
are hugely important for a functional antenna part. Millimeter-wave/microwaves/THz
antennas usually have great details in their geometry, which poses challenging fabrication
methods. For all these reasons, it has become attractive to use commercial 3D printers to
achieve high spatial resolution, small structure layer thickness, and low surface roughness.

Microstrip antennas have become remarkably interesting in that they can be used in
many different application areas owing to their wide operating bandwidth and easy adjust-
ment alternatives [62–66]. Due to advances in handheld electronic devices, these devices
need to be thinner to improve performance in small-sized devices [67–69]. Until now, in
the literature, many antenna studies with different designs—the circle [70], ellipse [71],
triangle [72], fractal [73], U-shaped [74], etc. [75–77]—have been carried out to increase the
bandwidth and miniaturization. The bow-tie antenna, one of the microstrip antenna types,
has also been studied in many different applications.

It is well known that the bow-tie antenna designs are application-specific, and the
slots are added to increase the bandwidth. Therefore, two parameters need to be well
specified for better performance: the location and size of the slot. One of the contributions
of this study is that the slot dimensions are chosen especially for the required bandwidth
and gain.

Graphene-based antenna studies have been carried out intensively, especially for the
last five years [33,35,78–86]. However, using graphene as an antenna is not always an easy
task, and the production techniques also play an essential role in this manner. Another
contribution of this study is that a standard and cheap 3D printer is used to produce the
antennas. In addition, the study results can be used as a practical reference of the effect of
the slot size on the antenna performance and can be considered the novelty of this study.
Finally, the graphene-based patch antenna’s gain is better than the copper antennas when
used as the radiating element.

2. Material and Method
2.1. Materials

In this study, Esun PLA Plus Filament (Filament, esun, Shenzhen, China) was preferred
for the substrate material of the antenna due to its high surface quality, high layer structure,
and ten times more durability than standard PLA filaments. Detailed information on
Physical and Print performances is given in Table 1.

Table 1. Physical and print performance properties of Esun PLA+ filament [87].

Physical Performance Properties Print Performance Properties

Parameters PLA+ Parameters PLA+
Appearance white Surface finish No obvious layering

Tensile strength 63 Mpa Hole column fitting model 0.3 mm
Elongation at break 20% Hanging model <60◦

Bending strength 74 Mpa Suspension bridge 50 mm
Flexural modulus 1934 Mpa - -

Notch impact 9 - -
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Black Magic 3D Conductive Graphene Composite filament is used for the conductive
part of the antenna due to its superior conductivity and improved mechanical properties,
and its detailed properties are given in Table 2.

Table 2. Properties of 3D-conductive graphene composite filament [88].

Properties

Brand Black Magic 3D
Weight 0.1

Volume resistivity 0.6 ohm-cm
Color Black

Diameter 1.75 mm
Size 100 g

Min/max printing temperature 220 ◦C
Country United States

The bow-tie microstrip patch antenna design procedure is given in Figure 1. Computer
analysis software is central to this work for the design process, as the researcher must have
the appropriate design parameters to start the production process. Simulation software is
an essential tool for designing a microstrip patch antenna with bandwidth at the desired
resonance frequency and showing band-pass, band-stop, or ultra-wideband characteristics.
Otherwise, a new antenna must be produced for every changed parameter of the antenna,
and the reflection/transmission be measured. Therefore, this process causes a loss of time
and increases the design cost. For this reason, using simulation and design software to
obtain the transmission/reflection characteristics and optimize the antenna parameters
reduces the cost and saves time. In this study, software named CST Microwave Studio
was used for microstrip patch antenna design. Polylactic Acid from Esun (Esun PLA+)
with a relative dielectric constant of 2.54 and a loss tangent of 0.015 was chosen as the
suitable substrate material for the designed antenna. The dielectric material thickness
was determined as 1.70 mm. Graphene PLA from BlackMagic was preferred for the
conductive part, and its thickness is also 1.70 mm. A computer code that performs the
mathematical calculations of the bow-tie antenna was written using MATLAB software
(2019, The Mathworks, Inc., Natick, MA, USA). According to the calculated dimensions,
the design of the antenna was carried out with the CST Microwave Studio software (CST
Studio Suite 2019, Dassault Systèmes, Waltham, MA, USA).
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Figure 1. The design procedure of bow-tie microstrip patch antenna.

In this section, the parameters affecting the configurability of the graphene-based
antenna are evaluated. The first of the two kinds of parameters are related to the geometric
structure of the antenna, and it can be optimized with numerical simulations, while the
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other is related to the graphene model related to the calculation in the previous section.
The study aims to understand the behavior of the graphene-based antenna and contribute
to future studies of graphene-based antennas.

2.2. Design and Production of the Bow-Tie Microstrip Antenna

A bow-tie microstrip antenna structure is planned to improve the antenna’s perfor-
mance in biomedical applications. The design and simulation study of the proposed
antenna is carried out in the CST Microwave Studio. The antennas are designed in Tinker-
cad, which is an online 3D design platform developed by Autodesk Inc. (San Rafael, CA,
USA) and built with Creality Ender 3 Pro 3D printer (Creality, Shenzhen, China).

Material selection is one of the pivotal problems to be considered in the design
process, as it has a significant impact on antenna performance. Polylactic Acid (PLA; εr
= 2.54 and tanδ = 0.015) and Acrylonitrile Butadiene Styrene (ABS) are effective on the
antennas’ performance. They are frequently preferred in the production of dielectric parts of
antennas and microwave components. On the other hand, graphene is a suitable material
for producing the conductive part of Microwave and Radio Frequency (RF) products
due to its very good properties such as high charge mobility, zero bandgap, high heat
conduction, high surface area, and excellent biocompatibility. Composite Conductive
Graphene PLA filaments have recently been introduced, allowing graphene to be used
with a 3D printer [84]. In this study, the designed antennas are produced using Conductive
Graphene PLA filament for the core of the antenna and standard PLA for the dielectric
substrate parts. The volume resistivity of the used graphene filament is 0.6 Ω-cm [89]. The
product of the sheet resistance (Ω/sq) and the thickness of the material in centimeters is
equal to the volume resistance (Ω-cm) [90–92], and therefore, the sheet resistance can be
obtained as given in Equation (3).

R = the volume resistivity/thickness of graphene sheet
R = 0.6 (Ω − cm)/0.17 (cm) = 0.359 Ω

(3)

The radiating patch of the microstrip antenna may be square, rectangular, circular,
elliptical, triangular, or any other shape [93]. Generally, triangular structures or curved
structures provide better impedance matching. The size and shape of the patch are some
of the most determining factors in the properties of the antenna. However, the change of
shape does not bring significant changes in the radiation characteristics. The half-power
beamwidth is generally 70–90 degrees, and antenna gain is 5–6 dB. By choosing the patch
model and shape appropriately, a design can be made in accordance with the desired
resonance frequency, pattern, impedance, and polarization. Another novelty of this work
is that the slot sizes have been chosen specifically for the required bandwidth and gain.
Slots are used to regulate the current path and shape the electric field. For slots, sharp
points allow electric field lines to break more easily. Circular slots show an improvement in
antenna performance, which is weaker than square and rectangular slots. Filtering is done
for a frequency when a slot is opened in a broadband patch made for ultra-broadband.
Therefore, the optimum values of the antennas, whose numerical analyses were performed
by using the finite integration technique in the CST Microwave Studio simulation program,
were used in the designs. In addition, the effect of slots and their different sizes on antenna
performance is shown.

In this study, three different antennas, one without a slot, Figure 2, the other two with
different patch sizes, Figure 3, are designed and produced. The dimensions of the antennas
are given in Table 3.
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Figure 3. The design geometry of Antenna-2 and Antenna-3 with graphene substrate and different
patch dimensions.

Table 3. Bow-tie Antenna-2 and Antenna-3 parameters.

Parameters Dimensions
Antenna-2

Dimensions
Antenna-3

Patch length PL 36 mm 36 mm
Base length BL 32 mm 32 mm

Gap 4 mm 4 mm
Feedline width 0.6 mm 0.6 mm
Apex length AL 5.4 mm 5.4 mm

Substrate length L 44 mm 44 mm
Substrate width W 88 mm 88 mm

Aperture length for patch X 8 mm 14 mm
Aperture width for patch Y 16 mm 16 mm

The three bow-tie antennas produced for use in biomedical applications are shown in
Figure 4. If it is desired to be used in more specific applications, it can be easily adjusted
with antenna design changes.
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Figure 4. Fabricated bow-tie (a) Antenna-1, (b) Antenna-2, and (c) Antenna-3.

An SMA connector is connected to the antenna’s terminals by heating and softening
the graphene; see Figure 4. The connector’s positive pin is soldered to the right trian-
gular patch that acts as a positive terminal, and the negative pin is soldered to the left
triangular patch.

The microwave antennas’ design and dimensions were optimized through the simu-
lations using the CST Microwave Studio software. The CAD design was prepared using
Tinkercad, and Ultimaker Cura was used to generate gcode for the 3D printer. A com-
mercial Creality Ender 3 Pro printer was utilized to manufacture a 3D printed substrate
part from PLA and a conductor part from graphene. The bed and the nozzle temperatures
were adjusted as 60 ◦C and 205 ◦C, respectively for the PLA and 50 ◦C and 220 ◦C for the
graphene. An intermediate printing head speed of 50 mm/s and 30 mm/s was selected
for PLA and graphene, respectively. A nozzle with 0.5 mm size is used for the printing.
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Figure 5 shows the manufacturing of the antenna with a commercial 3D printer. Antenna
measurements were made in the operating frequency range of 2–20 GHz using a PNA-L
Agilent vector network analyzer. Before the measurement was carried out, the VNA was
calibrated with a calibration kit with a short circuit, open circuit, and loading apparatus,
respectively. After the calibration process, the produced antennas were connected to the
VNA, and the return loss parameter and gain measurement results were obtained.
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In addition, it was also investigated how the changes to be made in antenna geometries,
especially in the graphene patch part, can affect the cross-sectional absorption areas. The
physical parameters for all antennas are assumed to be T = 300 K and µe = 0 eV. It is
seen that the antennas have resonances close to each other, and there is little difference
between them, resulting from different patch structures. As shown in Figure 6, it is clear
that the antenna has a large σabs value, especially in the patch part, which means there is
no inference.
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3. Results and Discussion

Before interpreting the results, the measurement device and its arrangement men-
tioned in the previous section are shown in Figure 7. The transient solver of the simulation
program was used to obtain an accurate result, and the necessary number of network
applications was provided. The return loss of the antenna was measured with the aid of a
network analyzer.
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The reflection coefficients of Antenna-1, Antenna-2, and Antenna-3 are given in
Figure 8a–c, respectively, to show both the advantage of the adjustable surface conductivity
of graphene and to examine its usefulness in microwave antenna designs. Analyses were
carried out by applying electrical fields of 0.1, 0.3, 0.5, and 0.7 eV, respectively, to the
antenna created in the CST Microwave Studio software environment. These data presented
in Figure 8 prove the advantages of highly variable graphene conductivity for tuning
the antenna resonance frequency, which is also mentioned in the graphene material part.
Accordingly, the relaxation time (τ) is accepted as 0.1 ps. When the data in the figure are
examined, there is an observed improvement in harmony of the chemical potential for
Antenna-1 and the reflection coefficient, while inconsistency is observed for Antenna-2 and
Antenna-3, especially at 0.7 eV.

It has been shown that the polarization and permeability of the antennas can be
achieved without making any changes in the antenna dimensions or physical structure
only by changing the voltage applied to the graphene layer, which changed the Fermi
energy level [94–97]. Equation (1) shows that the conductivity of graphene can be adjusted
dynamically by changing its chemical potential. Figure 9a–c represent the actual and
simulated values of graphene surface permeability for Antenna-1, Antenna-2, and Antenna-
3, respectively, when the chemical potential is changed between 0 and 1.0 eV.
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Figure 10 shows the bandwidth performance of the antennas in terms of return loss
along with the lower ( fL) and upper ( fH) frequencies, where the return loss curve exceeds
−10 dB. While it is seen that Antenna-1 provides the best performance in terms of return
loss bandwidth, other antennas perform quite well in wideband ranges. In Figure 11,
normalized radiation patterns were measured in both the E-plane and the H-plane, and
the results were quite favorable.
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Although the results of the simulation and experimental studies are generally compat-
ible, minor inconsistencies may occur. Simulation environments are ideal environments,
and the values of materials used in simulation environments are average values. There are
slight differences between the values of PLA and graphene material used in the simulation
environment and the materials used. In addition, minor faults caused by production, such
as scratches or difficulties in soldering the SMA connector, can lead to different results. An-
other important situation is that this study used a graphene filament for antennas instead
of the raw graphene material.
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The comparison for efficiency and performance of graphene-based bow-tie antennas
with previous ultra-wideband antennas are given in Table 4. This table shows that the
graphene-based bow-tie antennas designed in this study perform quite well compared to
other studies in the literature. The results obtained from these three proposed antennas
show that they can operate in a wide bandwidth of 2–20 GHz. It has been proven that the
geometric changes made in the conductive parts of the antenna also affect their performance.

Table 4. Performance comparison of previous studies and graphene-based bow-tie antennas designed in this study.

Performance
Parameters

Designed Bow-Tie Antennas Conventional Antennas Graphene-Based Antennas

Ant.1 Ant.2 Ant.3 [98] [99] [78] [100]

Return Loss (dB) −38.85 −34.28 −29.95 −32.50 −64.00 −25.23 −39.92
VSWR 1.06 1.13 1.00 1.06 1.04 NR NR

Peak Gain (dBi) 9.10 8.70 8.90 5.4 7.55 4.83 NR
BandWidth (GHz) 18 18 18 8.2 8.45 7.35 4.0

In order to demonstrate the effect of graphene in one of the graphene-based antenna
studies, the study was carried out by choosing copper as the conductive patch part [101].
From the study of Azizi et al., it is clear that the return loss peak value is almost twice that
obtained with the copper patch (about −29 dB) for the graphene patch [101]. In another
study [34], undoped pure graphene is used for the antenna design, and the antenna
is modeled in the simulation. Then, different graphene models were created, and the
corresponding surface conductors were obtained by applying voltage or adding chemical
additives. To test and compare the graphene antenna performance, also, a traditional
copper antenna design is prepared. The results showed that the graphene antenna has
significant improvements in good reflection, radiation efficiency, and gain compared to the
copper antenna. Furthermore, simulation studies for the Antenna-1 structure in this study
were repeated for the case in which the conductive part is graphene and copper. As can be
seen in Figure 12. Although the geometry is the same, it is seen that the selection in the
conductive part affects the antenna performance.
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Figure 12. The simulation comparison results of the return loss (S11) of the graphene-based antenna
and copper-based antenna for Antenna-1 in this study.

Additionally, the comparison of the antenna produced in this article with the previ-
ously studied antennas is given in Table 5.
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Table 5. Comparison of the manufactured antenna with some studies.

Reference
No.

Antenna
Type

Dimensions mm3

and Applications

Substrate,
Conductive

Element

Bandwidth
(FBW%)

Resonant
Frequency

Antenna Gain
and Efficiency

[102]
Elliptical

quasi-dipole
antenna

46 × 45 mm2, 2 up
to 5 GHz for

low-cost wireless
communications

applications.

Kapton
Polyimide,

graphene flakes
1–5 GHz 2 GHz

2.3 dBi at
4.8 GHz,
56 ± 5%

[103]
CPW-fed

H-shaped slot
antenna

32 × 52 × 0.28,
UWB antenna for

wearable
applications

Flexible ceramic
substrate,
graphene

assembled film
(GAF)

4.1–8.0 GHz 4.45, 5.6, and
7.1 GHz

3.9 dBi at
7.45 GHz

[104]

CPW-fed
rectangular

slot with
chamfer

11.8 × 12.2 × 0.1,
Mobile terminal for

fifth generation
(5G)

Kapton
polyimide,

Graphene ink
14.30–15.71 GHz 13.8 GHz 9.28 dBi, 67.44%

[105] Bow-tie
antenna

Optical near-field
enhancement Glass graphene 14.3–35.3 THz - -

This study Bow-tie
antenna

44 × 88 (outer size),
ultra-wideband
applications for

especially medical
applications

PLA, graphene
filament 2–20 GHz

Antenna-1
10.01 GHz,
Antenna-2
9.6 GHz,

Antenna-3
9.8 GHz

Antenna-1
9.10 dBi,

Antenna-2
8.70 dBi,

Antenna-3
8.90 dBi

Graphene is preferred in antennas due to its many important potentials, such as reduc-
ing antenna sizes, providing good integration with electronic circuits, dynamic adjustment
possibility, transparency, and flexibility [106]. The most important feature of graphene that
makes it usable in antenna applications is the conductivity tensor in its structure [107,108].
The conductivity tensor depends on many parameters such as temperature, scattering
rate, Fermi energy, and electron velocity. The conductivity tensor can be controlled when
interacting with static electricity, and magnetic fields from the outside provide a dynamic
structure for products made of graphene. Another important feature is that it is frequency-
dependent. As the applied electric field increases, the conductivity values increase, but
when the frequency rises above 103 GHz in the same electric field, it quickly decreases to
zero [109]. Therefore, their conductivity changes according to frequency ranges. Since the
frequency range used in this study is between 2 and 20 GHz, graphene is a good conductor
in this range. Although copper offers better properties for antenna production, the fact that
graphene and PLA can be used with a 3D printer provides a very good advantage in terms
of production.

Gómez-Díaz and Perruisseau-Carrier carried out the first graphene-based patch an-
tenna in their study [110]. They produced the antenna patch part from high-rate graphene.
The return loss and radiation efficiency of the antenna were investigated, and it was ob-
served that the efficiency decreased due to losses in graphene. Another important inference
is that regardless of the externally applied electric field, it does not significantly change the
resonance frequency of the patch. Therefore, there is no need to go through reconfiguration
while antenna efficiency can be controlled.

In another study, an antenna with a diaphragm connection was produced to be used
in the band from 14 to 16 GHz [109]. In this study, the patch is made of copper, and
the surface resistance is 100 Ω. This property corresponds to the case where τ = 0.5 ps
and µc = 0.175 eV in graphene. In the simulation study where graphene is applied, the
return loss is quite good, while the radiation efficiency and radiation power are lower
than the metal patch and no-patch conditions. To summarize, it is not very useful to use
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graphene to reduce the size of the antennas or change their geometry, but it is seen that
it is mechanically flexible, has optical transparency, is easy to produce with a 3D printer,
and even creating a conductive patch with graphene and metal mixture provides better
performance. It is known that these examples are valid for simple monoatomic graphene
layers, but this situation changes in multi-layer graphene applications with an increase in
radiation efficiency [109].

4. Conclusions

In summary, three different bow-tie microstrip antennas that can operate in the
2–20 GHz range for ultra-wideband applications have been designed and experimen-
tally implemented. Numerical analyses were made using the finite integration technique
in the CST Microwave Studio simulation program. The designed antennas were selected
from the non-slot state, and the radiating part was selected with two different slot sizes
and produced from graphene filament. The substrate is produced from PLA material. It
has been observed that all three designs perform quite well in ultra-wideband applications.
The effect of design differences in antennas is reflected in antenna return losses. Especially
for Antenna-1, the return loss seems to be quite good. In addition, copper is generally
used for the radiating part in classical methods. This study has also shown that graphene
performs better than copper because it is a good conductor, contrary to classical methods.

Another critical point is that the production of 3D-printer technology is one of the
new aspects of the proposed study, as it is cost-effective and easy to produce, unlike
classical production methods. In addition, the voltages applied to graphene changes the
chemical potential and cause changes in the permittivity of graphene. In this respect, it has
been a critical study to provide the opportunity to create different frequency ranges. It is
considered to use one or more of these produced antennas for biomedical UWB applications
for future studies.
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