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Objective: To explore the diagnostic value of CT radiographic images and radiomics
features for invasive classification of lung adenocarcinoma manifesting as ground-glass
nodules (GGNs) in computer tomography (CT).

Methods: A total of 312 GGNs were enrolled in this retrospective study. All GGNs were
randomly divided into training set (n � 219) and test set (n � 93). Univariate and multivariate
logistic regressions were used to establish a clinical model, while the minimum redundancy
maximum relevance (mRMR) and least absolute shrinkage and selection operator (LASSO)
algorithm were used to select the radiomics features and construct the radiomics model. A
combined model was finally built by combining these two models. The performance of
these models was assessed in both training and test set. A combined nomogram was
developed based on the combined model and evaluated with its calibration curves and
C-index.

Results: Diameter [odds ratio (OR), 1.159; p＜ 0.001], lobulation (OR, 2.953; p � 0.002),
and vascular changes (OR, 3.431; p＜ 0.001) were retained as independent predictors of
the invasive adenocarcinoma (IAC) group. Eleven radiomics features were selected by
mRMR and LASSO method to established radiomics model. The clinical model and
radiomics mode showed good predictive ability in both training set and test set. When two
models were combined, the diagnostic area under the curve (AUC) value was higher than
the single clinical or radiomics model (training set: 0.86 vs. 0.83 vs. 0.82; test set: 0.80 vs.
0.78 vs. 0.79). The constructed combined nomogram could effectively quantify the risk
degree of 3 image features and Rad score with a C-index of 0.855 (95%: 0.805∼0.905).

Conclusion: Radiographic and radiomics features show high accuracy in the invasive
diagnosis of GGNs, and their combined analysis can improve the diagnostic efficacy of IAC
manifesting as GGNs. The nomogram, serving as a noninvasive and accurate predictive
tool, can help judge the invasiveness of GGNs prior to surgery and assist clinicians in
creating personalized treatment strategies.
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INTRODUCTION

Lung cancer is the major cancer leading in cancer-related deaths,
and imaging played an important role in diagnosis and treatment.
With the popularity of computed tomography (CT) and artificial
intelligence (AI), the discovery of lung cancer manifesting as
ground-glass nodules (GGNs) increased sequentially during the
process of CT screening. Early detection, follow-up, and timely
intervention were of positive significance for GGNs. No doubt,
these findings deserved the attention of society, medical
professionals, and the general public.

GGNs could be divided into pure ground-glass nodules (pGGNs)
and mixed ground-glass nodules (mGGNs) according to the
presence of the solid composition. At present, the development
mechanism of GGNs was not clear. GGNs may exist in various
pathological entities, including tumor, inflammation, focal
hemorrhage, and focal interstitial fibrosis (Park et al., 2007).
Although GGN was in nonspecific radiologic findings, persistent
GGN was more likely to be malignant. Studies had shown that 20%
of pGGNs and 40% ofmGGNs increase gradually or show a trend of
increasing solid composition (Kobayashi et al., 2018). However, the
GGN growth was slow and the process of deterioration may take
several years, which was why multiple current guidelines
recommend longer follow-up times.

Surgical resection was the most effective method for GGN
treatment. Preinvasive lesions and minimally invasive
adenocarcinoma (MIA) could also be well treated by
lobectomy (wedge resection or segmental resection), with a 5-
year disease-free survival rate of 100%. It was necessary to analyze
the imaging characteristics of each pathological subtype before
operation and to judge the infiltrability of the GGN.

Earlier studies had paidmore attention to GGN imaging features,
such as size, consolidation, and morphological characteristics.
Medical imaging technology had been developing in recent years,
and its use in clinical oncology had expanded from the initial

diagnostic tools to personalized treatment and management tools.
Artificial intelligence and radiomics diagnosis were widely
concerned. Radiomics referred to the automatic extraction of a
large number of quantitative features from medical images by
computer software and the use of statistical methods to screen
and establish diagnosis related to the results. The radiomics model
showed good sensitivity and specificity in tumor pathological type
discrimination and invasive judgment.

The aim of this study was to explore the diagnostic value of
imaging features and radiomics features in the invasive diagnosis
of lung adenocarcinoma manifested as GGN, so as to assist
clinical diagnosis and treatment.

MATERIALS AND METHODS

Patients
This retrospective study was approved by the corresponding
institutional review board (grant: 2021057), and the patients’
informed consent was waived. Clinical data and chest CT image
of resected GGN between July 2017 and December 2020 at
Zhongnan Hospital of Wuhan University were retrospectively
collected. A total of 291 patients with 312 GGNs were enrolled in
this retrospective study. The inclusion criteria were as follows: (1)
the nodules showed as GGN at lung window setting (width 1500
HU; level is –700 HU), image thickness ≤1.25 mm; 2) maximum
diameter of nodules measured on lung windows <30 mm; 3)
accurate surgical and pathological results must be obtained.
Exclusion criteria were as follows: 1) incomplete chest CT
image, heavy artifacts or poor quality; 2) GGN who have no
pathological results or perform only a biopsy without surgery.

Data Flowchart
As seen in Figure 1, the data processing of this study could be
divided into three parts. The first (Figure 1A) is the clinical

FIGURE 1 | Flowchart of clinical and radiomics feature analysis.
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characteristic analysis and modeling. Clinical characteristic
analysis contained univariate logistic regression and
multivariate logistic regression step by step; two types of
characteristics (demographics and traditional imaging
features) were considered in this part. The second
(Figure 1B) is the image analysis and radiomics modeling,
which contained image acquisition, image segmentation,
radiomics feature extraction, and modeling step by step. In
this study, several most used machine learning models and a
deep learning (DL) method were tried and compared, then the
most suitable model was selected for radiomics modeling. After
the analysis of these two parts, the screened clinical risk factors
and constructed radiomics model were combined to construct
the combined model and radiomics + clinical nomogram
(Figure 1C).

All data sets were divided into a training set and a test set
according to a 7:3 ratio using the stratified random sampling
method, in which the samples were stratified according to
different groups of IAC, and then randomly sampled; feature
analysis and modeling were performed based on the training set,

and the performance of constructed models was validated based
on both training and test set.

Clinical Characteristics Analysis and
Clinical Modeling
Clinical characteristics contained two types: three demographics
(patient sex, age, and operation mode) and 14 traditional imaging
features, which were extracted from CT images, including
diameter, volume, ratio of consolidation, mean CT value,
mass, location, margin, shape, pleural indentation sign,
bubble-like lucency, air bronchus sign, vascular change,
speculation, and lobulation. A large number of studies (Yang
et al., 2018) have confirmed that traditional imaging features play
crucial roles in the diagnosis and pathological classification of
GGN. The selection of these traditional imaging features was
referred to these studies (Yang et al., 2018).

Diameter, mean CT value, volume, and ratio of consolidation
were obtained by automatic cutting and calculation according to
the Intelligent 4D Imaging System for Chest CT 6.8 (Hangzhou
YITU Healthcare Technology Co., Ltd., Hangzhou, China). Mass
was an important sign of tumor growth, which could reflect the
change of tumor volume and the difference of cell density (Qi
et al., 2020). Calculation formula Mass � volume×1000+(meanCT value)

1000 .
Count data were defined as follows. Location: divided into left

upper lobe (LUL), left lower lobe (LLL), right upper lobe (RUL), right
middle lobe (RML), and right lower lobe (RLL). Margin: a clear
demarcation between the lesions and the surrounding lung
parenchyma range, more than 75% of the perimeter was defined
as clear, otherwise defined as blurred. Pleural indentation sign: linear
or small patch between the nodules and the local pleural. Bubble-like
lucency: boundary-clear air density or cavity within the nodules. Air
bronchus sign: the bronchial shadow was seen in the increased
density area. Vascular change: morphological changes of the
vessels when passing through the GGN, such as dilatation,
stiffness, correction, distortion. Spiculation: fine lines around the
nodules point to the lung. Lobulation: the outline of the nodules was
raised in multiple arc due to different growth speed.

Two experienced chest radiologists blinded evaluated these CT
traditional imaging features independently and resolve the
differences through discussion.

Image Processing and Radiomics Modeling
Chest CT scans were performed using a GE Discovery 750HD
scanner (GE Medical Systems, Milwaukee, WI, USA) and/or a

TABLE 1 | Summary of radiomics features used in this study.

Feature classes No. of features 3 representative features

Histogram 42 FrequencySize, MaxIntensity, MeanValue,. . .
GLCM 144 ClusterProminence, ClusterShade, Correlation,. . .
GLSZM 11 SizeZoneVariability, HighIntensityEmphasis, IntensityVariability,. . .
RLM 180 GreyLevelNonuniformity, HighGreyLevelRunEmphasis, LongRunEmphasis,. . .
Formfactor 15 Compactness1, Maximum3DDiameter, Sphericity,. . .
Haralick 10 HaraEntroy, contrast, differenceEntropy,. . .
Total 402

GLCM, gray-level co-occurrence matrix; GLSZM, gray-level size zone matrix; RLM, gray-level run-length matrix.

TABLE 2 | Clinical characteristics of GGNs.

Characteristics Number

Sex
Male 103 (33.0%)
Female 209 (67.0%)
Age, year 58 (50–65)

Pathological subtype
Benign 25 (8.0%)
AAH 12 (3.8%)
AIS 20 (6.4%)
MIA 74 (23.7%)
IAC 181 (58.0%)

EGFR mutation (n � 30)
Mutation in exon 21 12 (40.0%)
Mutation in exon 19 10 (33.3%)
Wild type 8 (26.7%)

Preoperative position (n � 75)
Pneumothorax 29 (38.6%)
Hemorrhage 32 (42.7%)
Without complications 14 (18.7%)

Interoperative biopsy (n � 197)
Misdiagnosis 7 (3.6%)
Underestimate the infiltration 20 (10.1%)

AAH, atypical adenomatous hyperplasia; AIS, adenocarcinoma in situ; MIA, minimally
invasive adenocarcinoma; IAC, invasive adenocarcinoma.
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SOMATOM Definition scanner (Siemens Healthineers,
Forchheim, Germany), with a reconstruction slice thickness �
1.25 mm, slice interval � 1.25 mm, matrix size � 512 × 512, tube
voltage � 120 kV, and tube current 100–350 mA. All images were

then transmitted to the workstation and PACS for post-
processing.

Before image analysis, all images were first resampled into the
same sampling size (1 mm × 1 mm×1 mm) using the linear

TABLE 3 | Univariate analysis of clinical and imaging features in the training and test sets.

Characteristic Training set (219) p Test set (93) p

Non-IAC
group (n = 86)

IAC group (n = 133) Non-IAC
group (n = 43)

IAC group (n = 50)

Male 63 (71.6%) 86 (65.6%) 0.355 26 (60.5%) 34 (68.0%) 0.449
Age, year 57 (49–62) 61 (52–66) 0.009 55 (46–60) 60 (54–65) 0.027
Diameter, mm 11 (8–14) 17 (13–20) ＜0.001 11 (8–15) 17 (14–21) ＜0.001
Volume, mm³ 509 (238–1,047) 1,351 (796–2,639) ＜0.001 552 (248–1,184) 1,517 (816–3,104) ＜0.001
Ratio of consolidation 0.04 (0–0.22) 0.24 (0.10–0.45) ＜0.001 0.04 (0–0.14) 0.28 (0.13–0.54) ＜0.001
Mean CT value, HU −588 (−660–489) −442 (−566–361) ＜0.001 −593 (−675–530) −445 (−553–322) ＜0.001
Mass, mg 199 (104–393) 775 (322–1,352) ＜0.001 256 (101–520) 755 (420–1725) ＜0.001
Location 0.201 0.411
RUL 30 (34.1%) 51 (38.9%) 12 (27.9%) 22 (44.0%)
RML 2 (2.3%) 10 (7.6%) 4 (9.3%) 3 (6.0%)
RLL 20 (22.7%) 20 (15.3%) 5 (11.6%) 8 (16.0%)
LUL 26 (29.5%) 41 (31.3%) 15 (34.9%) 11 (22.0%)
LLL 10 (11.4%) 9 (6.9%) 7 (16.3%) 6 (12.0%)
pGGN 47 (53.4%) 32 (24.4%) ＜0.001 24 (55.8%) 9 (18.0%) ＜0.001
Margin 0.106 0.377
Clear 30 (34.1%) 59 (45.0%) 22 (51.2%) 21 (42.0%)
Unclear 58 (65.9%) 72 (55.0%) 21 (48.8%) 29 (58.0%)
Shape ＜0.001 0.008
Round or oval 60 (68.2%) 54 (41.2%) 29 (67.4%) 20 (40.0%)
Irregular 28 (31.8%) 81 (58.8%) 14 (32.6%) 30 (60.0%)
Pleural indentation sign 27 (30.7%) 74 (56.5%) ＜0.001 15 (34.9%) 22 (44.0%) 0.371
Bubble-like lucency 21 (23.9%) 34 (26.0%) 0.727 6 (14.0%) 14 (28.0%) 0.1
Air bronchus sign 15 (17.0%) 66 (50.4%) ＜0.001 14 (32.6%) 31 (62.0%) 0.005
Spiculation 33 (37.5%) 72 (55.0%) 0.011 13 (30.2%) 28 (56.0%) 0.013
Lobulation 24 (27.3%) 89 (67.9%) ＜0.001 14 (32.6%) 27 (54.0%) 0.038
Vascular change 31 (35.2%) 97 (74.0%) ＜0.001 17 (39.5%) 37 (74.0%) 0.001

LLL, left lower lobe; LUL, left upper lobe; RLL, right lower lobe; RML, right middle lobe; RUL, right upper lobe.

FIGURE 2 | The comparison of the ROC analysis among the machine learning models in the training set and test set.
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interpolation method. Then, the open-source image analysis
software ITK-SNAP (Version 3.6; http://www.itksnap.org) was
used for manual segmentation and radiomics analysis was applied
to the CT images using in-house software (Artificial Intelligence
Kit; GE Healthcare, Chicago, IL, USA). A total of 402 imaging
texture features from the category of histogram, the gray-level co-
occurrence matrix (GLCM), the gray-level size zone matrix
(GLSZM), the gray-level run-length matrix (RLM), and shape-
and size-based features were finally extracted from one single
image (Table 1). The details of each radiomics features are shown
in the Appendix.

Another physician repeated the above segmentation and
feature extraction steps for the test of feature reliability and
reproducibility. The differences between the features generated
by reader one and those by reader two (interobserver reliability),
as well as the differences between the twice-generated features by
reader 1 (intraobserver reproducibility), were all evaluated. Inter-
and intraclass correlation coefficients (ICCs) were used to
evaluate the agreement of feature extraction. A good
agreement was reached when the ICC was greater than 0.8 in
this study.

Minimum redundancy maximum relevance (mRMR) was
used for feature reduction. Then, several machine learning
models and a DL method (detailed in supplemental methods)
were tried and compared in the radiomics modeling. The most
suitable model was selected as the mathematical model of the
radiomics model.

The combined model was constructed using multivariate
logistic regression by combining the clinical risk factors with
the radiomics model, which was used as an independent risk
factor in the combined model. The radiomics + clinical
nomogram transformed the combined model into a simple
and visual graph, making the results of the prediction model
more prominent and of higher clinical use value.

Model Validation
The receiver operating characteristic (ROC) curve-related
metrics were employed for the evaluation of model
diagnostic abilities. The area under the curve (AUC) and
Delong’s test were used to evaluate and compare the
diagnosis abilities among different machine learning models
and the DL method. Six ROC-related metrics, AUC, accuracy,
sensitivity, specificity, positive predictive value (PPV), and

negative predictive value (PPV) were used to assess the
constructed radiomics and combined models. The
relationship between nomogram-predicted probability and
actual probability was evaluated by the calibration curve
and C-index.

Statistical Analysis
All statistical analyses were performed with SPSS (version 23.0,
IBM) and R software (version 4.0.1, Vienna, Austria). Continuous
variables with normal distribution were presented as mean ± SD
and test by Student’s t test. Continuous variables with non-
normal distribution were presented as median (interquartile
range, IQR) and tested by Mann–Whitney U test. The
differences of count data between two groups were analyzed
by the chi-square test.

RESULTS

Patients Characteristics
A total of 297 patients with 312 GGNs were included in the
study; of these, 103 (33%) were male and 209 (67%) were
female, and the median age was 58 (IQR: 50–65) years. There
were 181 nodules in the IAC group and 131 nodules in the
non-IAC group (25 benign lesions, 12 AAH, 20 AIS, 74 MIA).
Detailed clinical information of patients is summarized in
Table 2.

Clinical Analysis and Modeling
In the training set, the univariate analysis showed that multiple
clinical parameters were larger in IAC groups (Table 3),
including diameter (17 vs. 11 mm, p < 0.001), volume (1,351
vs. 509 mm³, p < 0.001), ratio of consolidation (0.24 vs. 0.04, p <
0.001), mean CT value (−442 vs. −588 HU, p < 0.001), and mass
(775 vs. 199 mg, p < 0.001). The IAC group had less pGGN and
was easier to exhibit an irregular shape, pleural indentation sign,
air bronchus sign, spiculation, lobulation, and vascular changes
(p < 0.05).

The clinical model was built using multivariable logistic
regression, where diameter [odds ratio (OR), 1.159; p＜0.001],
lobulation (OR, 2.953; p � 0.002), and vascular changes (OR,
3.431; p＜0.001) were identified as independent risk factors. The
AUC of the clinical model in the training set and the test set was
0.83 and 0.78, respectively.

Comparison of Diagnosis Efficacy for
Different Methods
As shown in Figure 2 and Table 4, we found that for both
training and test sets, DL models showed the best diagnostic
performance. However, the difference between it and other
models was not significant, except for the GBDT model
(obvious overfitting). The diagnostic ability of LASSO was the
second highest in the test set, but similarly their difference was
not significant. The LASSOmodel was a linear regression method
using L1 regularization, which could make the learned weights of
some features 0, so as to achieve the purpose of feature sparseness

TABLE 4 | Results of the ROC analysis for different machine learning methods.

Training set Test set

AUC [0.025 0.975] AUC [0.025 0.975]

Logistic 0.806 0.748 0.864 0.776 0.683 0.869
SVM 0.836 0.781 0.891 0.750 0.651 0.849
Bernoulli naive Bayes 0.780 0.718 0.843 0.778 0.685 0.870
Ridge 0.833 0.780 0.887 0.773 0.678 0.867
GBDT 1.000 NaN NaN 0.702 0.596 0.808
LASSO 0.819 0.763 0.874 0.793 0.702 0.885
DL 0.830 0.776 0.884 0.819 0.732 0.905

SVM, support vector machine; GBDT, gradient boosting decision tree; LASSO, least
absolute shrinkage and selection operator; DL, deep learning.
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and selection. Considering that its model structure is simple and
not easy to overfit with a strong clinical interpretability, we
choose LASSO as the mathematical model of the radiomics
model for this study.

Radiomics Analysis and Modeling
After ICC analysis, 217 variables were retained and included in
mRMR and LASSO analysis. Finally, 11 optimal features with
nonzero coefficients were selected to establish a radiomics model
(Figure 3 and Table 5). The radiomics model had AUC values of
0.82 and 0.79 in the training set and the test set, respectively.

Nomogram and Calibration Curve of IAC
Manifested as GGNs
A logistic regression analysis identified the diameter, lobulation,
vascular change, and Rad score as independent predictors, which
were incorporated to develop an individualized prediction
nomogram (Figure 4). The calibration curve showed a high
consistency between predicted probability and observed
probability, and a c-index of 0.855 (95%: 0.805–0.905).

Clinical Use of the Nomogram
Figure 5 and Figure 6 showed the important value of the nomogram
for GGN diagnosis. The total score was calculated based on Rad
score and the imaging performance of the lesion including diameter,
presence of lobulation, and vascular change. Finally, the
corresponding total score indicated the probability of IAC. In
Figure 5, the nodule showed a low IAC risk probability of 0.249,
and the final pathological was confirmed as AAH. Figure 6 showed a
GGNwith high IAC risk probability of 0.943, and the final pathology
result was consistent with the prediction of the nomogram.

Comparison of Diagnosis Efficiency
Between Clinical Model and Radiomics
Model
Delong’s tests showed that the performance of the combined model
was significantly better than that of a single clinical or radiomics
model in the training set (clinical vs. combined, 0.83 vs. 0.86, p �
0.032; radiomics vs. combined, 0.82 vs. 0.86, p� 0.031). In the test set,
there were no significant differences in ROC analysis for the three
models. The diagnostic performances of the clinical model, radiomics
model, and combined model are shown in Table 6 and Figure 7.

DISCUSSION

In this study, we established a clinical model and radiomics
models by analyzing the imaging and radiomics characteristics
of GGN and compared the diagnostic values of different models
to provide a highly effective GGN diagnostic tool for the clinical
diagnosis. The results showed that the diagnostic accuracy of the
clinical model and the radiomics model was similar to the
combined model, but the AUC value increased when the
clinical and radiomics models were combined. This suggested
that radiomics analysis could also be a tool for clinical diagnosis.

FIGURE 3 | Feature selection for the LASSO logistic regression. The selection of the tuning parameter (λ) using a 10-fold cross-validation. At minimal value of the
mean square error of the classification, the dotted vertical line (λ � 0.033) was drawn, including 11 optimal features with nonzero coefficients. The histogram of 11
radiomics features was presented.

TABLE 5 | 11 features selected by the LASSO method.

Index Coefficients

InverseDifferenceMoment_AllDirection_offset1_SD 0.145
ShortRunEmphasis_angle135_offset1 0.119
GLCMEnergy_angle0_offset4 −0.102
MinorAxisLength 0.218
ShortRunHighGreyLevelEmphasis_angle45_offset7 0.533
RunLengthNonuniformity_AllDirection_offset1_SD −0.016
kurtosis −0.053
GLCMEntropy_angle45_offset7 0.406
Percentile35 0.028
HighIntensityEmphasis 0.061
HaralickCorrelation_angle45_offset1 0.149

Frontiers in Genetics | www.frontiersin.org January 2022 | Volume 12 | Article 7833916

Zheng et al. Invasive Ground Glass Nodule Prediction

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


FIGURE 4 | A radiomics-based nomogramwas developed in the training set. The radiomics-based nomogramwas developed in the training set, and the diameter,
lobulation, vascular change, and Rad score were incorporated. The total score was calculated by adding the score for each risk factor, and then the probability of IAC
was predicted on the risk axis.
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Not surprisingly in the selection process of different machine
learning and DL models, the DL method obtained the highest
diagnostic efficacy, which was due to its deep excavation of
information of many high-dimensional and complex image
features. Highly intelligent and automated processing data
using the DL network were the mainstream direction of

artificial intelligence in the future, and medical image analysis
is its important application field. However, how to combine them
organically is still a problem. For example, in this study, to
conduct a personalized evaluation with strong clinical
interpretability and high availability, we hope that the model
is simple with easily understood image features. At the same time,

FIGURE 5 | Female, 57 years old; CT showed a pGGN of 11 mm in the right upper lobe, with no significant lobulation and vascular change, and the Rad score of
pGGN was 0.491. Interactive nomogram showing that the IAC risk probability of this nodule was 0.249. The case was confirmed as AAH.

FIGURE 6 | Female, 62 years old. CT showed a mGGN of 18 mm in the right upper lobe, with significant lobulation and vascular change, and the Rad score of
pGGN was 0.864. The interactive nomogram showing the IAC risk probability of this nodule was 0.943. The case was confirmed as IAC.
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we hope that the diagnostic efficacy of the model can be as high as
possible. This is a contradiction in the modeling process, which is
why we finally chose LASSO as the mathematical model.

Traditional imaging feature analysis found that diameter,
lobulation, and vascular changes were independent risk factors
for predicting IAC. In previous studies, several imaging
characteristics were related to GGN. A meta-analysis (Dai
et al., 2018) showed the limited diagnostic efficacy of single-
image features of GGN, with a sensitivity range of 0.41–0.52,
specificity range of 0.56–0.63, and AUC range of 0.60–0.67.
Zhang et al. (Zhan et al., 2019) analyzed for GGN of
5–10 mm and found that GGNs larger than 8.12 mm and with
attenuation greater than −449.52 HU were more likely to be IAC.
Lobulation was another important independent risk predictor
(Lee et al., 2013). Morphological changes such as lobulation
justified the possibility of high invasiveness of small GGNs.
Vascular changes were of important significance for the
invasive judgment of GGN less than 10 mm. The IAC group

was more likely to show vascular stiffness, distortion, expansion,
or correction (Gao et al., 2019).

Size was a vital parameter for assessing the invasiveness of
GGNs. Previous studies showed that the cutoff value of 10 mm
was an optimal predictor for invasive lesions in pGGNs and
14 mm was an optimal predictor for invasive lesions in mGGNs
(Lee et al., 2013). Another study showed a size difference between
noninvasive and invasive group pGGN (0.74 vs. 0.90 cm, p＜
0.001) (Sun et al., 2020).

The consolidation had the potential to identify the infiltration
of the GGN. The consolidation/tumor ratio (CTR) was
commonly used to assess the proportion of consolidation
(Kobayashi et al., 2018). However, the ratio of consolidation in
this study was not an independent risk factor of IAC, which may
be related to different measurement methods. In 2013, Fleischner
Society proposed that the consolidation should be evaluated in
the mediastinal window and its size should be evaluated based on
the average of the measured long and short diameters (Naidich
et al., 2013). One study noted that the average diameter of
consolidation in the mediastinum may not be the most
suitable to assess mGGN progress (Kakinuma et al., 2015).
Now most researchers observed and measured the
consolidation of nodules on the lung window (Lee et al., 2014;
Zhang et al., 2014). In addition, the size of the consolidation in the
mediastinal window does not equal to the size of the infiltration
focal point in the pathological specimen. Since part of the alveolar
collapse, inflammatory, and fibrosis changes also appear as high
density, the size of consolidation on the CT image may be larger
than the actual range of pathological invasiveness.

Radiomics analysis provides a method to quantify and monitor
changes in the treatment process (Aerts et al., 2014). Latest
developments in image acquisition, standardization, and analysis
promote an objective and accurate quantitative analysis that can

TABLE 6 | Comparison of diagnosis efficiency between clinical model and
radiomics model.

AUC Sensitivity Specificity PPV NPV Accuracy

Training set
Clinical 0.83 0.76 0.83 0.87 0.70 0.79
Radiomics 0.82 0.77 0.75 0.82 0.69 0.76
Combined 0.86 0.81 0.77 0.84 0.73 0.79

Test set
Clinical 0.78 0.72 0.79 0.80 0.71 0.75
Radiomics 0.79 0.64 0.88 0.86 0.68 0.75
Combined 0.80 0.68 0.84 0.83 0.69 0.75

AUC, area under the curve; PPV, positive predictive value; NPV, negative
predictive value.

FIGURE 7 | ROC analysis of clinical model, radiomics model, and combined model in the training set and test set.
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be used as a non-invasive diagnostic prediction method. Zhang et al.
(2019) used histogram information and morphological features to
construct invasive diagnostic models, with a sensitivity and specificity
of 79.4% and 91.4%, respectively. Sun et al. (2020) found that the
AUC of the combined model was higher than that of a single clinical
model or radiomics model (training group: 0.8 vs. 0.75 vs. 0.73;
validation group: 0.77 vs. 0.71 vs. 0.72). In addition to studying the
tumor’s own characteristics, radiomics can also further analyze the
lung changes around the tumor by obtaining ROI in the peripheral
region of nodules (Huang et al., 2018).

In terms of treatment, Ginsberg and Rubinstein (1995) had
suggested that the long-term effect of lobectomy was better than
sublobar resection. Recent studies have proposed sublobar resection
rather than traditional lobectomy for AIS or pGGN manifesting as
pGGN less than 20mm (Watanabe et al., 2002; Yoshida et al., 2005).
Surgical indications of GGN have not been uniform, and surgery is
usually recommended for GGN with increased diameter or
increased solid composition (Gould et al., 2013). Intraoperative
freezing biopsy of early lung adenocarcinoma plays an important
role in determining the surgical strategy. In this study, the diagnostic
accuracy of frozen biopsy was high (benign/malignant diagnosis
accuracy of 96.5%; pathological subtype diagnosis accuracy of
83.2%) and could help in diagnosis and classification and guide
surgical treatment. When intraoperative frozen biopsy could not
provide a timely diagnosis, radiomics may serve as a reliable
reference for predicting pathological classification (Wang et al.,
2020). In this study, the diagnostic accuracy of the clinical and
radiomics models was lower than that of intraoperative freezing
biopsy. The models still need further optimization in order to be
more suitable for clinical diagnosis.

However, there are several limitations in the present study. First,
this study is a retrospective research, conducted in a single center
with a relatively smaller sample size. Larger sample size increases the
statistical power of the diagnostic analysis which is necessary in the
future, and thus a prospective cohort study should be conducted to
validate these findings. More prospective data at different
institutions should be analyzed to validate the clinical utility of
the study results. Second, the repeatability of manual or
semiautomatic tumor segmentation is an unsolved problem. Parts
of GGN are close to the pleural or attached to blood vessels, which
are more difficult to accurately segment and showed low
repeatability (Kumar et al., 2012). Researchers propose new
approaches to solve the segmentation problems of GGNs such as
boundary leakage and small volume over-segmentation (Li et al.,
2016). A review analysis shows that machine learning-based
methods are useful for detecting and quantifying GGN (Mansoor
et al., 2015). However, lung segmentation methods have not been
amalgamated into single approaches or unified platforms using a
single-user interface. Currently, the lung GGN segmentation is

finished manually by experienced radiologists. This study will
attempt to explore automated segmentation techniques to
improve the efficiency of segmentation in future work.

CONCLUSION

Clinical and radiomics features have high accuracy in the invasive
diagnosis of GGNs. Combined analysis can improve the
diagnostic efficacy of IAC manifesting as GGNs. The
nomogram serves as a noninvasive and accurate predictive
tool to determine the invasiveness of GGNs prior to surgery
and assist clinicians in creating personalized treatment strategies.
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