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Background: Ca2+  signaling pathway is suggested to play an essential role 
in mediating oocyte maturation. Aims: The aim of this study was to evaluate 
intracellular Ca2+  of resistant immature oocytes that failed to resume meiosis 
following subsequent in  vitro culture reach metaphase II after calcium ionophore 
A23187 activation. Settings and Design: This in vitro analytical experimental study 
was conducted at Animal Science Laboratory of Indonesian Medical Education and 
Research Institute (IMERI), Human Reproductive Infertility and Family Planning of 
IMERI, and Electrophysiology Imaging of Terpadu Laboratory, Faculty of Medicine, 
University of Indonesia. Methods: A  total of 308 oocytes classed as resistant 
immature following in  vitro culture were randomly allocated to control  (n  =  113) 
and treatment groups  (n  =  195). The oocyte activation group was exposed to 
A23187 solution for 15 min and then washed extensively. Maturation was evaluated 
by observing the first polar body extrusion 20‒24  h after A23187 exposure. 
Ca2+  imaging was conducted using a confocal laser scanning microscope to identify 
the dynamic of Ca2+ response. Statistical Analysis: SPSS 20, Chi‑square, and Mann–
Whitney U‑test were used in this study. Results: Activation of resistant immature 
oocytes with A23187 significantly increased the number of oocyte maturation 
compared with the control group  (P  <  0.001). Furthermore, fluorescent intensity 
measurements exhibited a significant increase in the germinal vesicle stage when 
activated (P = 0.005), as well as the metaphase I stage, even though differences were 
not significant  (P  =  0.146). Conclusion: Artificial activation of resistant immature 
oocyte using chemical A23187/calcimycin was adequate to initiate meiosis progress.
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whether the modification of intracellular Ca2+  regulation 
of resistant immature oocytes that failed to resume 
meiosis after overnight culture could reach metaphase 
II (MII) after A23187 activation.

Methods
Oocytes collection
A total of 308 mouse oocytes classed as resistant immature 
following in  vitro culture were randomly allocated to 

Introduction

A23187 is a chemical agent that is commonly 
used to increase the intracellular Ca2  +  levels, 

especially in parthenogenetic studies, leading to oocyte 
activation,[1‑18] and it has been used to treat patients with 
a previous history of low fertilization and poor embryo 
development.[18‑25] Successful maturation of immature 
oocytes after exposure to A23187 has been reported 
in both mammals and nonmammals.[26,27] However, 
the effect of A23187 on resistant immaturity has not 
yet been investigated. This study aimed to investigate 
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control  (n  =  113) and treatment groups (n  =  195). This 
study conducted at Animal Science Laboratory of IMERI, 
Human Reproductive, Infertility, and Family Planning 
Research Center of IMERI, and Electrophysiology 
Imaging of Terpadu Laboratory, Faculty of Medicine, 
University of Indonesia. Immature oocyte after in  vitro 
culture was included in this study, whereas exclusion 
criteria were mature and degenerated oocytes.

Immature mouse oocytes were obtained by priming 
8–12‑week‑old DDY hybrid female mice with 7.5 IU 
of a pregnant mare’s serum gonadotropin  (Intervet, 
The Netherlands)  (intraperitoneal). A  total of 
44‒48‑h later ovarian dissection was performed to 
collect immature oocytes using a 26.5G sterilized 
needle in G‑MOPS medium  (Vitrolife, Sweden). 
Subsequently, maturation cultures were divided 
into two groups based on cumulus status  (intact 
or without cumulus cells)  [Figure  1] in G‑IVF 
medium  (Vitrolife, Sweden) for 14‒16  h at 37°C 
and 5% CO2. Oocytes in both germinal vesicle (GV) 
and MI stages were randomly allocated to 
activation treatment and control groups by an 
embryologist  [Figure 2].

Activation of resistant immature oocyte
Both resistant immature oocytes in either 
GV or MI stages were exposed to 10 μM/L 
A23187  (Sigma‑Aldrich) in G‑MOPS PLUS 
medium (30–40 μL activation drop) from stock solution 
dissolved in dimethyl sulfoxide  (Invitrogen)  (1:99) for 
15 min. Exposure was accomplished in the darkroom at 
37°C and maintained inside the incubator without CO2 
during treatment. The oocytes were then extensively 
washed in G‑MOPS medium and recultured at 37°C, 
5% CO2. The effectiveness of A23187 activation was 
evaluated 14–16  h later based on the first polar body 
extrusion. Since the cumulus cells were denudated due 
to matured observation, the activation does not involve 
the cumulus cells. To observe whether preactivation 
cumulus status implied response of resistant immature 
oocytes during activation, the activation was performed 
separately according to cumulus cell status at the time of 
collection.

Measurement of intracellular Ca2+  intensity with 
confocal laser scanning microscopy
Oocytes that exhibited resistance to meiotic maturation 
were exposed to 0.2% pronase for 2  min to remove 
the zona pellucida and then washed extensively. 
The oocytes were loaded to 10 μM/L Fura Red AM 
ester (Invitrogen) and 0.2% Pluronic F‑127 (Invitrogen) 
for 30  min in G‑MOPS medium. After washing 
extensively, the oocytes were cultured for 30  min at 
37°C and 5% CO2 to complete the intracellular Fura 
Red de‑esterification. The basal concentration of free 
Ca2+  intensity was measured in a glass‑bottomed 
dish using a confocal laser scanning microscope 
700  (Zeiss). A  fluorescent measurement was made to 
observe calcium dynamic every 15 s (time series) with 
a specific filter that provided excitation at 405  nm 
and 488  nm wavelengths. Oocytes were then treated 
with a 10‑µL droplet of A23187 solution to collect the 
free Ca2+  intensity during activation. Free intracellular 
Ca2+  concentration either in basal or activation was 
obtained from the fluorescence ratio between 405 and 
488 wavelengths  (expressed in relative fluorescent 
intensity).

Study approval
Ethical approval was issued by the Ethics Committee of 
Health Research of the Faculty of Medicine, University 
of Indonesia; Committee reference number: 0187/UN2.
F1/ETHIC/2018, approved on March 5, 2018.

Statistical analysis
Statistical analysis was performed using the 
Statistical Package for the Social Sciences (Release 
20.0, SPSS, Inc., Chicago, IL, USA). The categorical 
variable  (maturation, degeneration, and spontaneous 
cleave) was compared using the nonparametric 
Chi‑square test. The Mann–Whitney U‑test was used 
to compare the continuous data (Ca2+ intensity) since it 
was not normally distributed. Confidence interval 95% 
was used in this study.

Results
Resistant immature oocyte response to A23187 
exposure
The maturation rate of resistant immature oocytes 
post‑A23187 activation was significantly higher 
compared to the control group  (25.64%  [50/195] vs. 
1.77%  [2/113], P  <  0.001, respectively). There was a 
significant increase in oocyte degeneration compared to 
the control group  (6.15%  [12/195] vs. 0.88%  [1/113], 
P  =  0.036, respectively). A23187 exposure also led to 
a significant increase in spontaneous cleavage compared 
to the control group  (20%  [39/195] vs. 8.85%  [10/113], 
P = 0.010, respectively) [Table 1].

Figure 1: Immature oocytes collected from ovaries  (Bar 50 µm),  (a) 
oocyte with intact cumulus cells, (b) oocyte without cumulus cells
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Resistant immature oocyte response to A23187 
exposure based on preactivation cumulus status
Preactivation cumulus status of resistant immature oocytes 
either in intact or without cumulus did not influence the 
response of those oocytes to A23187 activation to resume 
the meiosis progress. As shown in Table 2, no significant 
difference was found in both oocytes with intact and 
without cumulus cells in the term of maturation (29.73% 
[22/74] vs. 23.72% [28/121], P = 0.307, respectively). 
Similarly, degeneration rate (4.08% [3/74] vs. 10.74% 
[13/121], P = 0.099, respectively) and spontaneous 
cleavage (20.27% [15/74] vs. 11.57% [14/121], P = 0.098, 
respectively) after activation were not significantly 
different between the groups.

Resistant immature oocyte response to A23187 
exposure based on meiotic arrest stage
The stage of meiotic arrest  (GV or MI) at the time of 
A23187 exposure did not affect the ability to resume 
meiosis progression after exposure  (22.22%  [18/81] vs. 
28.07 [32/114], P = 0.357, respectively) [Table 3].

Measurement of intracellular calcium intensity 
during A23187 activation
To identify free intracellular Ca2+  response during 
activation, the activation and basal intensity 
levels  (without activation) of each stage were compared. 
During activation, exposure of A23187 to oocytes at the 
GV stage exhibited a significant increase in intensity 

Figure 2: The schematic study of resistant immature oocyte activation

Table 1: Resistant immature oocyte response to calcium A23187 exposure
Activation of calcium A23187 (n=195) Control (n=113) P

Number of post activation maturations (%)
Number of post‑activation degeneration (%)
Number of spontaneous cleavage (%)

50 (25.64)
12 (6.15)
39 (20)

2 (1.77)
1 (0.88)
10 (8.85)

<0.001**
0.036*
0.010*

Data presented as number of oocytes and percentage (n (%)); *P<0.05; **P<0.001
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compared to those at the basal level  (0.2400 ± 0.22 
vs 0.1500 ± 0.03, P  =  0.005, respectively). Oocytes at 
the MI stage also showed increasing intensity during 
activation but did not differ significantly compared to the 
basal level  (0.2400 ± 0.15 vs 0.2200 ±0.05, P  =  0.146, 
respectively) [Table 4].

Discussion
In this experimental study, the use of A23187 to activate 
oocytes that showed resistance to meiotic maturation 
after a 20‒24‑h in vitro culture was adequate to promote 
meiotic progression through the increase of intracellular 
Ca2+  levels. A23187 is a specific lipophilic molecule 
that mediates the exchange of protons and divalent 
cations through an electroneutral exchange transport 
mechanism  (two compounds of A23187 bind to one 
calcium ion).[28,29] Ionophore exposure may have the 
ability to mimic similar cell responses when activated 
by hormones through the Ca2+ mobilization, which is not 
only derived from extracellular influx but also by efflux 
from intracellular storage of endoplasmic reticulum.[30]

A23187 may exert its effects on oocyte maturation 
through triggering the activity of  Ca2+-calmodulin-
dependent protein kinase II (CaMKII) enzyme. 

During activation, A23187 may activate the CaMKII 
autophosphorylation and maintain enzyme activity, even 
without the presence of calcium at a later stage.[31,32] 
CaMKII is an enzyme that is postulated to mediate 
the transition of chromosomes into anaphase. Once 
the CaMKII multifunctional enzyme is activated, 
the downstream activity of CaMKII altogether with 
ATP mediates meiotic progress, as shown by the 
colocalization of calmodulin interacting with CaMKII 
in the meiotic spindle immediately after A23187 
activation.[32]

In this study, oocyte degeneration and spontaneous 
cleavage after A23187 activation also significantly 
increased [Table  1]. Calcium downstream signaling 
seems to activate several proteins to induce cell 
cycle progression or may prompt programmed cell 
death. Regardless of the CaMKII enzyme activity, 
calcineurin  (Ca2+/CaM‑dependent phosphatase) is also 
believed to be activated by calcium signals. Downstream 
effects of CaMKII or calcineurin enzymes lead to 
the activation of numerous transcription factors that 
regulate gene transcription factors such as nuclear 
factor of activated T‑cells  (NFAT) and  Nuclear Factor 
Kappa B  (NFkB).[33] Afterward, NFAT and NFkB 
activate the expression of numerous targeted genes to 
determine whether the cells will enter into the cell cycle 
or the death process. In this research, it was not fully 

Figure 3: Resistant immature oocytes responses to A23187 activation 
(Bar 50 µm); metaphase II (black arrow), degeneration (red arrow), 
spontaneous cleaves (yellow arrow)

Table 2: Response of postactivation oocytes with and without cumulus cells after 20‑24‑h culture
Oocytes with intact 
cumulus cell (n=74)

Oocytes without 
cumulus cell (n=121)

P

Number of post‑activation maturations (%)
Number of post‑activation degeneration (%)
Number of spontaneous cleavage (%)

22 (29.73)
3 (4.08)

15 (20.27)

28 (23.72)
13 (10.74)
14 (11.57)

0.307
0.099
0.098

Data presented as number of oocytes and percentage (n (%)); *P<0.05; **P<0.001

Table 3: Oocytes response based on meiotic arrest stage 
to A23187 exposure

Metaphase 
II (%)

P

Total GV (prophase I) stage oocytes (n=81)
Total MI (metaphase I) stage oocytes (n=114)

18/81 (22.22)
32/114 (28.07)

0.357

Data presented as number of oocytes and percentage (n (%)); 
*P<0.05; **P<0.001. GV=Germinal vesicle, MI=Metaphase I

Table 4: Baseline calcium fluorescence intensity and 
A23187‑induced level

Variable n Median±IQR P
GV stage oocytes

Basal calcium intensity 17 0.1500 ± 0.03 0.005*
Activation calcium intensity 0.2400 ± 0.22

MI stage oocytes
Basal calcium intensity 17 0.2200 ±0.05 0.146
Activation calcium intensity 0.2400 ± 0.15

*P-value <0.05; **P-value <0.001. GV=Germinal vesicle,  
MI= Metaphase I, IQR= Interquartile range
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elucidated how postactivation of resistant immature 
oocytes has shown such different responses in the same 
concentration and duration of exposure.

Resistant immature oocytes cultured with intact or without 
cumulus cells did not show significant differences during 
A23187 activation in terms of maturation  [Table  2]. The 
quality of resistant immature oocytes in both the groups 
was assumed to be defective of the same condition in the 
nucleus and/or cytoplasmic factors. Notably, denudation 
was conducted after in vitro maturation culture to assess the 
meiotic progress; as a consequence, the activation process 
was performed without involving the cumulus cells.

Our study also indicated that exposing resistant immature 
oocytes to A23187 results in increased stages of the meiotic 
progress of either prophase I or MI to MII  [Figure  3]. It 
is accepted that A23187 induces a single‑wave pattern of 
Ca2+  that remains high during exposure.[34‑36] Although the 
pattern of calcium release from the endoplasmic reticulum 
and through membrane transports does not show oscillation 
compared to physiological processes, it is assumed that 
oocytes can tolerate the change of calcium concentration at 
a certain level.[37] Furthermore, some studies indicate that 
oocytes induced by A23187 can develop to the blastocyst 
stage.[37‑39]

The intensity of intracellular Ca2+‑level measurements 
of this study showed that resistant immature oocytes 

in both GV and MI stages responded to the activation 
individually  [Figure  4]. The reason for this is unknown 
and requires further investigation. Nonetheless, this 
response may represent the amount of intracellular 
calcium in the ER as well as the channel activity which is 
responsible for regulating calcium entry into the cells.[40]

Limitations of this study were applied. First, we do not 
perform molecular investigation about the ploidy status 
and normality of MII spindle formation of matured oocytes 
derived from activation, since this study only focused 
on the fluorescent intensity level of resistant immature 
during activation. Second, the RFI of matured oocyte after 
activation followed by fertilization was not investigated.

Conclusion
Artificial activation using A23187 could promote 
meiosis progression of resistant immature mouse oocytes 
either in GV or MI stages. The use of mouse oocytes in 
investigating the effect of A23187 activation is benefited 
as the experimental proxy to show the possible option 
for triggering maturation. Afterward, further study is 
needed to evaluate the developmental potential of the 
matured oocyte generate from activation.
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