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Abstract: Crohn’s disease (CD) and ulcerative colitis (UC) are both highly inflammatory diseases
of the gastrointestinal tract, collectively known as inflammatory bowel disease (IBD). Although the
cause of IBD is still unclear, several experimental IBD murine models have enabled researchers to
make great inroads into understanding human IBD pathology. Here, we discuss the current pre-
clinical experimental murine models for human IBD, including the chemical-induced trinitrobenzene
sulfonic acid (TNBS) model, oxazolone and dextran sulphate sodium (DSS) models, the gene-deficient
I-kappa-B kinase gamma (Iκκ-γ) and interleukin(IL)-10 models, and the CD4+ T-cell transfer model.
We offer a comprehensive review of how these models have been used to dissect the etiopathogenesis
of disease, alongside their limitations. Furthermore, the way in which this knowledge has led to the
translation of experimental findings into novel clinical therapeutics is also discussed.
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1. Introduction

The inflammatory bowel diseases (IBD) ulcerative colitis (UC) and Crohn’s disease
(CD) are chronic relapsing inflammatory conditions of the gastro-intestinal tract. A system-
atic review of bibliographic databases up to and including 31 December 2016 revealed that
the reported prevalence of IBD exceeded 0.3% in North America, Oceania, and many coun-
tries in Europe [1], with analysis of data from the Global Burden of Diseases, Injuries, and
Risk Factors Study (GBD) 2017 revealing an age-standardised prevalence rate of 464.5 per
100,000 population (0.46%) in the United States of America and 449.6 per 100,000 (0.45%)
in the United Kingdom between 1990 and 2017 [2]. Although historically lower in East
and South Asia, Oceania, and sub-Saharan Africa, the age-standardised prevalence rate of
IBD has increased in newly industrialised countries over the last 30 years [2]. Currently,
diagnosis of IBD is complex and invasive, effective treatment requires tailoring to the indi-
vidual, and there is no cure for disease. The annual financial burden of disease estimated
at more than USD 31 billion in the USA alone [3]—the increasing costs of care for disease,
as well as the increasing incidence of IBD, necessitates a pressing need for cost-effective
strategies to address this disease burden. The use of pre-clinical murine models of human
IBD is currently employed by researchers to better understand disease etiology. Murine
experimental models of human IBD exhibit immune pathological signatures resembling
Crohn’s disease (CD) or ulcerative colitis (UC). These models include the chemical-induced
trinitrobenzene sulfonic acid (TNBS) model, oxazolone and dextran sulfate sodium (DSS)
models, the gene-deficient I-kappa-B kinase gamma (Iκκ-γ) and interleukin(IL)-10 models,
and the CD4+ T-cell transfer model [4–9]. Although most pre-clinical murine models do not
fully recapitulate the complexity of human IBD, these models have added to our knowledge
about the causes of disease and have provided targets for developing new treatments. In
this review, we discuss the most widely used pre-clinical murine models of human IBD,
those which have proven significant in understanding disease and in the use of novel
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therapeutics in the clinic. Table 1 summarises the advantages and disadvantages of these
pre-clinical murine models for IBD, grouped by method of induction.

Table 1. Summary of the advantages and disadvantages of the most widely used pre-clinical murine
models of IBD, organised by induction method.

Induction
Method Examples Disease

Modelled Advantages Disadvantages

Chemical
Induced
Colitis

Oxazolone
colitis UC

• Model used to uncover the role of
type-2 immune responses and propose
a role for NKT cells during UC.

• Inflammation in the distal colon closely
resembles UC.

• High mortality of experimental
animals, or a dichotomous
inflammatory response required
optimisation and a large sample size.

• Despite findings from this model,
clinical trial of novel therapeutics
targeting IL-13 were not significant.

Trinitrobenzene
sulfonic acid

(TNBS) colitis
CD

• Model revealed importance of IL-12
and IL-23 and successful clinical trials.

• Model used to develop understanding
of genetic determinants of CD
(e.g., NOD2).

• Model enables better understanding of
how host-gut microbial interactions
influence disease.

• Mice develop a chronic transmural
colitis, mimicking characteristics of CD.

• Variation in responses requires
optimisation and the use of large
experimental mouse numbers per
treatment group.

• Variability between TNBS lots
requires testing and re-optimization
between batches

Dextran Sulfate
Sodium (DSS) UC and CD

• The Th1/Th2 cytokine mileu closely
models both UC and CD

• Model revealed the importance of
innate immunity in disease induction.

• Model has revealed the importance of
IL-17 and IL-23 in IBD.

• Interbatch variability of DSS affects
colitis phenotype.

• Disease is highly dependent on
microbial status

• Repeated administration of DSS
required to elicit chronic, remitting
and relapsing colitis.

Spontaneous
colitis

Iκκ-γ (NEMO)
Deficiency

Colitis

NEMO-
deficiency

• This model enables research into the
interaction between gut microbiota and
spontaneous intestinal inflammation.

• NEMO-deficient patients exhibit a
variety of mucocutaneous diseases
and may carry concomitant
mutations in IBD-associated genes

IL-10
Deficiency

Colitis

Childhood
IBD

• Model has enabled research into the
influence of the microbiome on
intestinal inflammation.

• IBD patients are not always deficient
in IL-10 and may not benefit from
IL-10 therapy.

Immune cell
Induced
Colitis

CD4+ T cell
transfer CD

• Revealed the importance of regulatory
T cells in IBD development.

• Allows early events underlying IBD to
be studied.

• Supported a role for IL-17 and IL-23 in
IBD development.

• Supported a role for NK cells in IBD
development.

• Inflammation in small bowel and colon
similar to CD.

• “Leakiness” and altered NK function
in immune-deficient mice.

• Model requires use of magnetic cell
separation and/or automated cell
sorting, which can be costly.

• Use of immune-deficient mice
precludes modelling of the
multifactorial nature of CD
induction/development.

2. Chemical Induced Colitis
2.1. Oxazolone Colitis

Oxazolone colitis (OC) is induced by the intrarectal administration of a haptenis-
ing agent known as oxazolone (4-ethoxymethylene-2-phenyl-2-oxazolin-5-one) in ethanol
(Figure 1) [4].
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restricted NKT cells. The resulting chronic inflammatory responses result in goblet cell depletion, 
increased intestinal permeability, and increased adhesion of commensal intestinal microbiota to the 
epithelium. Key: inflamed epithelial cells (Infl.EC), healthy epithelial cells (HEC), damaged epithe-
lial cell (dam.EC). Created with BioRender.com, accessed on 18 August 2022. 

Two methods of OC induction are currently employed to elicit either a self-resolving 
acute or a chronic response. The former is achieved by the single administration of an 
oxazolone enema, while the latter is preceded by a dermal pre-sensitisation five days be-
fore administration of an oxazolone enema, leading to chronic OC [10,11]. Both acute and 
chronic OC in mice are characterised by a superficial inflammation of the distal colon mu-
cosa, a high volume of inflammatory infiltrate (neutrophils, macrophages, and lympho-
cytes), goblet-cell depletion, oedema formation, epithelial cell loss, haemorrhage, and vas-
cular dilation [10,12,13]. These histologic features, as well as the distribution of OC, re-
semble human UC [4]. 

Chronic activation of type-2 immune responses has been proposed to be the main 
driver of human UC [14] (Figure 1). In the murine model, oxazolone activation of the type-
2 immune response is characterised by the production of interleukin (IL)-4 in the acute 
phase, then superseded by the production of IL-13 in the chronic phase [10,15–17]. In-
creased production of IL-13 (and IL-5) was also evident in lamina propria T cells isolated 

Figure 1. Immune response during oxazolone colitis. Oxazolone administration results in the
production of IL-25, activation of ILC2, and production of IL-13, activating CD4+ T cell responses
and amplifying type-2 cytokine production. Oxazolone administration also results in the expansion
of T cells with surrogate markers of NKT cell function and IL-13 production by populations of CD1-
restricted NKT cells. The resulting chronic inflammatory responses result in goblet cell depletion,
increased intestinal permeability, and increased adhesion of commensal intestinal microbiota to the
epithelium. Key: inflamed epithelial cells (Infl.EC), healthy epithelial cells (HEC), damaged epithelial
cell (dam.EC). Created with BioRender.com, accessed on 18 August 2022.

Two methods of OC induction are currently employed to elicit either a self-resolving
acute or a chronic response. The former is achieved by the single administration of an
oxazolone enema, while the latter is preceded by a dermal pre-sensitisation five days
before administration of an oxazolone enema, leading to chronic OC [10,11]. Both acute
and chronic OC in mice are characterised by a superficial inflammation of the distal
colon mucosa, a high volume of inflammatory infiltrate (neutrophils, macrophages, and
lymphocytes), goblet-cell depletion, oedema formation, epithelial cell loss, haemorrhage,
and vascular dilation [10,12,13]. These histologic features, as well as the distribution of OC,
resemble human UC [4].

Chronic activation of type-2 immune responses has been proposed to be the main
driver of human UC [14] (Figure 1). In the murine model, oxazolone activation of the
type-2 immune response is characterised by the production of interleukin (IL)-4 in the
acute phase, then superseded by the production of IL-13 in the chronic phase [10,15–17].
Increased production of IL-13 (and IL-5) was also evident in lamina propria T cells isolated
from UC patients [18]. Interestingly, the use of mice deficient in IL-4 receptor-alpha (IL-
4Rα), a common receptor for both IL-4 and IL-13, resulted in the exacerbation of OC,
which could only be rescued by depletion of IL-13 in these mice [19]. Moreover, OC was
prevented in mice given an IL-13 receptor subunit alpha-2 (IL-13Rα2) fusion protein that
neutralises IL-13 bioactivity [10], alluding to the possible involvement of IL-13 signalling
in the exacerbation of IBD in both pre-clinical models and patients [20]. Similarly, human
subjects carrying a variant of IL-13 (R130Q) with a reduced affinity for IL-13Rα2 had a
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lower risk for CD [20]. Heller et al. proposed that prevention of OC in mice given the
IL-13Rα2 fusion protein may be due to the involvement of IL-13 in mediating tissue injury
and subsequent inflammation in the mucosa [10]. Subsequently, IL-13 signalling through
IL-13Rα2 was shown to regulate transforming growth factor (TGF)-β1 production during
OC and promoted the deposition of collagen in a lung fibrosis model [21]. However, pre-
clinical experiments using Pitrakinra, an antibody that blocks the production of IL-13 and
IL-4, had no significant therapeutic effect on OC [22]. No significant therapeutic effect
was found in a Phase IIa clinical trial of UC patients with an antibody targeting IL-13
(anrukinzumab) [23]. Similarly, phase IIa clinical trials of UC patients with tralokinumab,
another IL-13-neutralising antibody, did not significantly improve clinical response but did
result in a higher clinical remission rate and mucosal healing rate in 43 patients with UC,
compared to 37 patients with UC receiving a placebo control [24].

Although the initial cell source of IL-13 in UC is yet undetermined, both natural
killer T cells (NKT) and conventional CD4+ T cells secrete copious amounts of IL-13
during OC [10,19]. CD1d-restricted NKT cells expressing an invariant T-cell receptor can
secrete IFN-γ or IL-4, activating CD4+ T cells to become Th1 or Th2 cells (Figure 1) [25].
Indeed, oxazolone administration resulted in IL-13 production by populations of CD1-
restricted invariant NKT cells [10] (Figure 1). Although depletion of NK1.1-positive cells
protected mice from OC [10], removing DX5+CD1d-tetramer+ NKT cells from transferred
CD4+ T cells still resulted in restoration of OC in mice lacking IL-4Rα on CD4+ T-cells,
strongly suggesting that IL-4Rα-responsive Th2 cells also play a role in the development of
disease [26]. Interestingly, tissue from human ulcerative colitis patients is dominated by
non-classical NKT cells, differing from the dominance of invariant NKT cells in mice [18].
This discrepancy may suggest the challenges of translating animal findings to human
clinical settings but may also signify the need for novel methods to define all subclasses of
NKT cells in both experimental and clinical colitis.

More recently, the role of innate lymphoid cells (ILCs) has grabbed the attention of
researchers seeking to elucidate the initial responders to assault on the mucosa (Figure 1).
In response to IL-25 production during OC, both NKT and the nuocyte population of
ILC2s produced IL-13 [27]. Interestingly, the frequency of group 2 ILC (ILC2) populations
expressing chemoattractant receptor-homologous molecule expressed on Th2 cells (CRTH2)
in intestinal biopsies was increased in patients newly diagnosed with UC, whereas the
frequency of both ILC2 and group 1 ILC (ILC1) populations was increased in patients with
established UC or CD [28]. A recent study reported increased proportions of ILC2s within
the ileal fraction of CD patients, compared to healthy controls [29].

Several experimental challenges are associated with this pre-clinical model, including
rapid weight loss and high levels of mortality following oxazolone administration in the
acute model of disease [4]. In addition, administration of lower doses of oxazolone resulted
in a dichotomous inflammatory response, characterised by the majority of mice dying
rapidly, or selective survival of a minority of mice with only mild, transient disease [10].
In comparison, animals in the chronic model of OC given this same dose of oxazolone
developed a sustained weight loss, with high mortality by day 9 post-administration [10].
Variation in responses and the need for optimisation in this model necessitates the use
of large experimental mice numbers per treatment group, which may be costly and raise
ethical issues.

As a model for human UC, oxazolone colitis aetiology does not fully reflect that in UC,
exemplified by the difference in NKT subsets pivotal in both pathologies and the insignifi-
cance of IL-13 neutralisation in human UC. Although the chronic oxazolone colitis model
leads to progressive colitis [10], human disease is characterised by periods of remission
and repeated relapses. Researchers have broadened the use of the oxazolone colitis model
in a novel humanised mouse model, transplanting human peripheral blood mononuclear
cells from patients with UC into immune-deficient non-obese diabetic-severe combined im-
munodeficiency interleukin-2Rγ(null) mice (NOD-SCID IL2Rγ(null)), allowing for a more
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accurate assessment of the efficacy of therapeutics targeting the immunological responses
underlying the development of IBD in patients [30].

2.2. TNBS-Induced Colitis

This pre-clinical model also utilises intrarectal administration of a haptenising agent
in ethanol: 2,4,6-trinitrobenzene sulfonic acid (TNBS). Administration of 0.5 mg of TNBS
in 50% ethanol to mice resulted in chronic transmural colitis, characterised by diarrhoea,
weight loss, and rectal prolapse, pathology that mimics some characteristics of CD in
humans [7]. Although one administration of TNBS resulted in acute chemical damage to
the gut epithelium, inflammation was self-limiting, rather than the chronic inflammation
seen in human disease [7]. Differing responses in mice are apparent in this acute model
of colitis, varying according to several factors including age, genetic background, and
TNBS dose [31]. To achieve chronic colitis, this model was developed by pre-sensitising
the skin with 1% TNBS, followed by up to six repeated weekly intrarectal administrations
of increasing doses of TNBS [17]. This model resembled the chronic phase of CD and was
accompanied by production of IL-23 and IL-17 by lamina propria cells [32].

Isolated lamina propria CD4+ T cells from mice given TNBS secreted high levels of
the Th1 cytokine interferon (IFN)-γ, resembling the cytokine profile produced by isolated
lamina propria CD4+ T cells from CD patients [33]. This distinguished them from the Th2
profile of the same cells isolated from UC patients, or mice given oxazolone [33]. Although
antibodies against IL-12, a pivotal cytokine for Th1 differentiation, abrogated established
colitis and the initiation of TNBS-disease in BALB/c mice [7], TNBS-dependent colitis was
exacerbated in IFN-γ-deficient mice on a BALB/c background [34].

The clinical importance of the TNBS model is demonstrated by the translation of
Neurath’s anti-IL-12 antibody findings from TNBS murine experiments to successful human
trials [35]. Importantly, the antibody used in these same studies was later found to react
with the promiscuous p40 subunit shared by both IL-12 (a 70 kDa heterodimer of the p40
and a p35 subunit) and IL-23 (heterodimer of the p40 and a p19 subunit) (reviewed in [36]).
Clinical trials with “brakinumab”, a monoclonal antibody recognising the human p40
subunit, downregulated both IL-12p70 and IL-23 secretion [37] and resulted in a clinical
improvement in patients with active CD [38]. Drug development of brakinumab was
discontinued due to the existence of another IL-12/IL-23 inhibitor, Stelera (ustekinumab),
on the market, which significantly increased the induction and maintenance of clinical
remission in patients with UC [39]. Despite the findings of exacerbated TNBS-colitis in mice
lacking the p19 subunit of IL-23, novel therapies targeting IL-23 and the IL-23R have been
developed and deemed successful when tested in clinical trials of patients with IBD [40].

The TNBS-colitis model has also been proven useful in understanding the mechanisms
by which genetic mutations might result in IBD. This is exemplified by nucleotide-binding
and oligomerisation-domain-containing 2 (NOD2)-deficient mice, designed to model one
of three possible variations in the NOD2 gene, carried by approximately 40% of CD pa-
tients [41]. Although these mice did not develop spontaneous colitis, they displayed
increased susceptibility to TNBS-colitis [42]. Following administration of TNBS, NOD2−/−

mice exhibited increased lymphoid formations as well as increased IFN-γ production,
paracellular permeability, and bacterial translocation in Peyer’s patches when compared to
wild-type mice [43]. Studies demonstrating the absence of bacterial muramyl dipeptide
recognition by macrophages from NOD2−/− mice [44] and the increased susceptibility
of these animals to bacterial-induced intestinal inflammation [45] led to the suggestion
that NOD2 plays a role in limiting inflammation in response to the intestinal bacterial
flora. Moreover, a parallel study demonstrated that NOD2 negatively regulated Toll-like
receptor 2 (TLR2)-driven activation of excessive type 1 cytokine responses [46]. Indeed, the
construction of mice that overexpress NOD2 demonstrated their resistance to TLR2 ligation
as well as a significantly reduced resistance to TNBS-colitis [47].



Int. J. Mol. Sci. 2022, 23, 9344 6 of 19

A lack of spontaneous colitis in NOD2−/− mice was also associated with increased
proportions of CD4+ regulatory cell populations bearing the latency associated peptide
(LAP) within the lamina propria, when compared with wild-type mice [42]. Indeed,
NOD2−/− recipients of lamina propria mononuclear cells (LPMC) from ethanol-treated
NOD2−/− donors that had been depleted of CD4+LAP+Foxp3− cells exhibited increased
TNBS-induced weight loss when compared to NOD2−/− recipients of intact LPMCs, which
did not develop colitis [42]. Interestingly, through co-housing experiments with NOD2−/−

and wild-type mice, Amendola et al. demonstrated an influence of the endogenous gut
microbiota on the proportion of LAP+ T cells in the lamina propria and susceptibility to
TNBS colitis [42]. During co-housing with NOD2−/− mice, acquisition of Rickenellaceae by
wild-type mice was associated with increased proportions of CD4+LAP+Foxp3− T cells
and less severe TNBS-colitis [48]. The presence of NOD2 variants in 15% of the healthy
population and the failure of NOD2-deficient mice to develop spontaneous colitis confirmed
the multigenic nature of CD [41]. However, these findings using the TNBS-colitis model
strongly suggest that environmental factors impact genetic susceptibility to IBD via their
impact on the microbiota. Indeed, there is now a focus on associating IBD implicated genes
with variants in the gut microbiota to identify possible mechanisms by which host–gut
microbial interactions influence human disease [49–51].

Like the oxazolone model, variation in responses to TNBS necessitates optimisation
and the need to use large experimental mouse numbers per treatment group [31,52]. Varia-
tion in responses can arise due to the differing colitogenic activity of TNBS lots, TNBS dose,
mouse strain, and the microbial status of the animal facility [17]. In addition, the high rates
of mortality that can occur in susceptible strains [31], or following repeated administrations
of TNBS [53], raise ethical implications over the use of this pre-clinical model of disease.

2.3. Dextran-Sulphate-Sodium-Induced Colitis

Dextran sulphate sodium (DSS) colitis is the most widely used experimental murine
model of colitis, established by Okayasu in 1990 through the administration of DSS with a
molecular weight of 40–50 kDa in drinking water [8]. DSS is thought to form nano-lipid
vesicles with medium-chain fatty acids (MCFAs) in the colon, which fuse with colonocyte
membranes and increase inflammatory cytokine levels [54]. A high-fat diet rich in MC-
FAs exacerbated weight loss, inflammatory cytokine expression, and colon shortening in
this model, with dodecanoic acid favouring disruption of intestinal barrier function and
increased vesicle formation in vitro [54]. One day after administration, DSS particles were
present systemically in Kupffer cells of the liver, in macrophages of the mesenteric lymph
node, and in the lamina propria of the large intestine [55]. DSS administration was also
characterised by erosion of the intestinal epithelium, inflammatory infiltration of the large
intestine, and dysbiosis of the intestinal microbiome [8]. While these features are similar to
those found in human disease, the transmural inflammation apparent in TNBS-colitis is
absent in this model [56]. Although repeated rounds of DSS can be administered to provide
the pattern of remitting, relapsing inflammation in human IBD, some of the limitations of
this model include inter-batch variability of DSS and the need to optimise DSS dose, given
the impact of the intestinal microbiome on disease [56,57].

The acute inflammatory response in DSS-colitis was typified by increased expression
of IL-1β, IL-6, and tumour necrosis factor (TNF)-α in the colon (Figure 2) [58].

Although prototypical Th2-type biased BALB/c mice did not develop chronic colitis,
disease was characterised by Th1 and Th2 cytokines [59] and was absent in prototypical
Th1-type C57BL/6 mice lacking the Th2 cytokine IL-4 [60]. Using this model, plasma levels
of haptoglobin were found to correlate well with human clinical symptoms of IBD [61].
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gesting the dispensability of the adaptive immune system in initiating disease [62,63]. Alt-
hough Kim et al. demonstrated colitis induction in RAG-1-deficient mice, the resultant 
mild colitis in these mice compared to their wild-type counterparts insinuates that lym-
phocytes may be necessary for subsequent colitis progression [63]. Histological assess-
ment of biopsy specimens from IBD patients correlated UC and CD with severe mononu-
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the DSS-colitis model, this infiltrate consisted of innate macrophage, neutrophil, and eo-
sinophil populations recruited following increased cytokine and chemokine expression 
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Elevated expression of IL-17 and IL-23 was reported in IBD patients and in DSS-coli-
tis, where expression of the two cytokines was intertwined (Figure 2) [37,65–69]. The use 
of the DSS-colitis model to test the role of these cytokines in disease has revolutionised 
not only the possible interventions available for patients but has also developed our un-
derstanding of mucosal immunology. At steady state, the p19 subunit of IL-23 is highly 
expressed within Peyer’s patches and the thymus, as well as in polarised Th1 cells, acti-
vated macrophages, and dendritic cell populations derived from peripheral blood [70]. 

Figure 2. Immune response to DSS administration. DSS administration results in epithelial release
of IL-1β, activation of ILC3, and release of IL-23. IL-23 release results in the influx of neutrophils
and CD4+ T cells, which further respond through enhanced IL-17 signalling. The resulting chronic
inflammatory responses result in goblet cell depletion, increased intestinal permeability, and increased
adhesion of commensal intestinal microbiota to the epithelium. Key: Inflamed epithelial cells (Infl.EC),
healthy epithelial cells (HEC), damaged epithelial cell (dam.EC), macrophages (MΦ), neutrophils
(NΦ). Created with BioRender.com, accessed on 18 August 2022.

DSS-colitis can be induced in immunodeficient mice including recombination-activating
gene (RAG)-1-deficient and severe combined immune deficient (SCID) mice, suggesting
the dispensability of the adaptive immune system in initiating disease [62,63]. Although
Kim et al. demonstrated colitis induction in RAG-1-deficient mice, the resultant mild colitis
in these mice compared to their wild-type counterparts insinuates that lymphocytes may
be necessary for subsequent colitis progression [63]. Histological assessment of biopsy spec-
imens from IBD patients correlated UC and CD with severe mononuclear cell infiltration
and basal plasmacytosis (plasma B cells) [64]. In the acute phase of the DSS-colitis model,
this infiltrate consisted of innate macrophage, neutrophil, and eosinophil populations
recruited following increased cytokine and chemokine expression [60].

Elevated expression of IL-17 and IL-23 was reported in IBD patients and in DSS-colitis,
where expression of the two cytokines was intertwined (Figure 2) [37,65–69]. The use
of the DSS-colitis model to test the role of these cytokines in disease has revolutionised
not only the possible interventions available for patients but has also developed our un-
derstanding of mucosal immunology. At steady state, the p19 subunit of IL-23 is highly
expressed within Peyer’s patches and the thymus, as well as in polarised Th1 cells, activated
macrophages, and dendritic cell populations derived from peripheral blood [70]. IL-23
induced proliferation of memory T cells and elevated secretion of IL-17 in vitro [71]. Subse-
quently, IL-23 signalling within intestinal epithelial cells was found to play an important
role in protection against DSS colitis by regulating regenerating-islet-derived protein 3-beta
(Reg3β)-dependent control of flagellated intestinal bacterial abundance and promoting
IL-22 production [72]. Indeed DSS-colitis was exacerbated in IL-22-deficient mice [73] and
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blockade of IL-22 expression delayed recovery from DSS-colitis and exacerbated disease
scores [74].

Interestingly, the IL-23 receptor was upregulated in lamina propria CD4+ T cells from
both UC and CD patients [75]. While upregulated IL-23p19 mRNA expression correlated
with increased IL-17 mRNA expression in UC patients, it correlated with increased IFN-γ
mRNA expression in CD patients [75]. Both the IL-17 family members IL-17A and IL-17F co-
ordinate local tissue inflammation by regulating the release of proinflammatory cytokines
and the recruitment of neutrophils [76]. Thus, activation of the transcription factor retinoid-
acid-related orphan nuclear receptor gamma (RORγt) in CD4+ T helper 17 (Th17) cells led
to the production of IL-17, IL-12, IL-21, and IL-23 as well as the upregulation of IL-23R
(reviewed in [77]) (Figure 2). In vitro culture of CD and UC mucosal tissue demonstrated
enhanced production of IL-21, with IL-21 inhibition attenuating intestinal inflammation as
well as the Th17 response in DSS-exposed mice [78].

However, DSS-colitis was shown to be independent of the production of IL-17 within
lamina propria CD4+ T cells [79], where neutralisation of IL-17A in prototypical Th2 biased
BALB/c mice aggravated disease [80]. Subsequent studies demonstrated that production
of IL-17A by specialised γδ+CD4+ T cells was shown to regulate intestinal permeability and
injury in the DSS model, independently of IL-23 signalling [81]. Paradoxically, although
one study had demonstrated that IL-17A-deficiency in prototypical Th1-type C57BL/6
mice reduced DSS colitis [82], a separate study using IL-17A- and IL-17F-deficient mice
demonstrated a deleterious role for IL-17F in the development of disease [83]. In this
latter study, both T-cell-derived IL-17F and colonic-resident-cell-derived IL-17F controlled
antimicrobial-protein-dependant changes to the commensal microbiota, as well as the
expansion of anti-inflammatory regulatory T cell populations in the colon [83].

In UC patients and the DSS model, high levels of IL-17F were associated with an
abundance of Fusobacterium nucleatum, an opportunistic bacterium that enhanced pro-
inflammatory cytokine production and disrupted the mucosal barrier via the nuclear
factor kappa-light-chain-enhancer of activated B cells (NF-kB) pathway [84]. These studies
explained the poor efficacy of anti-IL-17A monoclonal antibody and anti-IL-17 receptor
monoclonal antibody treatment of CD patients, both of which worsened disease [85,86].
Although neutralisation of IL-17A and IL-17F with bimekizumab appeared efficacious in
alleviating tissue inflammation in patients with mild or moderate-to-severe psoriasis [87,88],
it is yet to be tested in clinical trials with IBD patients.

A potent pro-inflammatory cytokine, TNF-α, was highly upregulated during DSS-
colitis and was elevated in intestinal biopsies from CD patients [89]. Mice engineered to
express elevated TNF-α levels (TNFDARE mice) developed spontaneous intestinal inflamma-
tion resembling human CD [90]. Although neutralisation of TNF-α had detrimental effects
on inflammation during acute DSS-induced colitis, it significantly improved histological
scores in chronic DSS-induced colitis [91]. TNF-α was later proposed to regulate epithelial
cell apoptosis, neutrophil infiltration, pro-inflammatory cytokine production, and systemic
inflammation in response to the intestinal microbiota through TNF-α receptor 1 [92]. Since
the approval of the anti-TNFα drug infliximab for treatment of CD in 1998 and subsequent
approval for use in UC in 2006, anti-TNF-α therapy has become the cornerstone of treat-
ment strategies for IBD. One single administration of infliximab induced clinical remission
in 48% of CD patients, compared to 4% in the placebo group [93]. However, treatment
failures with anti-TNF-α are common [94], and there have been concerns with potential
complications from therapy, including an increased risk of malignancies [95]. Interestingly,
a recent study correlated the responsiveness of IBD patients to TNF-α therapy with bacteria
diversity, but not fungal diversity, in the faecal microbiome [96].

3. Spontaneous Colitis

Several murine models of spontaneous colitis have also been used to model IBD
triggered by dysbiosis in the gut microbiota and specific IBD-related genes, reviewed in
brief below.
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3.1. Iκκ-γ (NEMO) Deficiency Colitis

Conditional ablation of the NF-kB essential modulator (NEMO), also known as I-
kappa-B kinase gamma (Iκκ-γ), within the intestinal epithelium, resulted in spontaneous
colitis in mice [6]. Chronic disease in intestinal-epithelial-cell-specific NEMO-deficient
mice was associated with TNFR1-dependent colonic epithelial cell death, compromised
epithelial integrity, bacterial translocation in the colon, immune cell infiltration, and in-
creased expression of pro-inflammatory cytokines including TNF-α [6]. Absence of disease
in double-deficient (NEMOIEC−KO + MYD88−/−) mice, lacking NEMO and the important
bacterial sensor myeloid differentiation primary response 88 (MYD88), supported a role for
the gut microbiota in driving colitis [6]. Indeed NEMOIEC−KO mice raised under germ-free
conditions did not develop spontaneous colitis, whereas co-housing of these mice with
specific pathogen-free animals restored disease [97]. Two-week-old NEMOIEC−KO depleted
of beta-defensin-3, an antimicrobial peptide (AMP) produced by intestinal Paneth cells
following bacterial sensing [6], developed spontaneous colitis. These findings supported
genome-wide DNA copy number profiling studies, which associated a lower copy number
of the human homologue of this murine defensin, human beta defensin-2, with a higher
risk of colonic CD [98].

Ablation of the NF-κB p65 subunit, encoded by the RELA gene, resulted in a loss of
Paneth cells but an absence of spontaneous colitis, suggesting that the epithelial protective
effects of NEMO signalling may be NF-κβ independent [99]. These authors suggested a
therapeutic potential for receptor-interacting serine/threonine-protein kinase 1 (RIPK1)
inhibition in IBD patients, after demonstrating that RIPK1 prevented epithelial cell death
and colitis development in NEMOIEC−KO mice [99]. Although this pre-clinical model is of
use to study the interactions between the intestinal microbiome and spontaneous colitis,
NEMO-deficient patients exhibit a variety of mucocutaneous diseases, and it is feasible that
they may also carry concomitant mutations in IBD-associated genes [100].

3.2. Interleukin-10 (IL-10) Deficiency Colitis

Although IBD is common among adults, childhood IBD constitutes about a quarter
of all patients with IBD [101]. Approximately 15% of childhood IBD occurs in children
<6 years old and is termed very early onset IBD (VEO-IBD) [102]. While most childhood
IBD cases are polygenic in nature, many children with VEO-IBD have an underlying mono-
genetic disorder that results in severe enterocolitis, including mutations in IL-10 and/or
IL-10R (reviewed in [103]). Mice deficient in IL-10 develop spontaneous enterocolitis, char-
acterised by progressive cellular infiltration of the cecum, colon, rectum, and small intestine,
with transmural lesions and a high incidence of colorectal adenocarcinomas observed in
6-month-old mice [5,104]. Mice lacking IL-10 receptor β also developed spontaneous ente-
rocolitis [105,106]. However, this receptor is shared with other type II cytokine receptors
including those specific for IL-22, IL-26, and lambda interferons, in addition to IL-10 [107].

Interestingly, IL-23 deficiency (IL-12p19−/−), but not IL-12 deficiency (IL-12p35−/−),
abrogated spontaneous colitis in IL-10−/− mice [108]. These findings demonstrate the
importance of IL-23 instead of IL-12 in the development of experimental IL-10−/− colitis.
As previously discussed (under DSS colitis), IL-23 synergises with IL-17, IL-21, and IL-22
to drive colon inflammation in the event of defective immune regulation mechanisms.
Work from this group suggested a role for IL-23-dependent production of IL-17 and IL-6
in accelerating IBD in a T cell transfer model (reviewed below) [108]. Subsequently, IL-22
was found to be frequently co-expressed with IL-17A, with the cellular source of IL-22
playing an important role in determining a role in host defence, or disease pathogenesis
(reviewed in [109]). IL-10 inhibited IL-22 secretion by macrophages and T cells [110], and
spontaneous colitis was prevented in mice lacking IL-10 and IL-22 [111]. In the latter
study, IL-22 was expressed in the lamina propria by CD4+ T cells and populations of innate
lymphoid cells [111].
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An important role for the gut microbiota in influencing the general enterocolitis seen
in IL-10-deficient mice was implicated by a lack of disease in mice housed in specific
pathogen-free conditions, or in germ-free conditions [5,112]. Treatment of IL-10-deficient
mice with two different antibiotics, both shown to improve scores in patients with Crohn’s
disease [113,114], attenuated the development of spontaneous colitis [115]. Similar to IBD
patients, colitic IL-10-deficient mice exhibited a markedly reduced species diversity in
their faecal microbiome when compared to disease-free controls [111,112,116]. In addition,
IL-10/IL-22 double-deficient mice lacking colitis exhibited higher microbial diversity when
compared to IL-10-deficient mice [111].

Although infection with Helicobacter species was found to drive enterocolitis in IL-10-
deficient mice [117,118], adult germfree IL-10-deficient mice in a specific pathogen-free (SPF)
environment lacking Helicobacter developed more severe colitis when compared to IL-10-
deficient mice colonised at weaning [112]. Similarly, taxon-based analysis of the microbiota
revealed that levels of the Helicobacter genus inversely correlated with severe colitis in
IL-10-deficient mice, demonstrating disease is not dependent on co-colonisation with this
pathobiont [111]. Mono-colonisation of germfree IL-10-deficient mice with Enterococcus
faecalis triggered enterocolitis [119], with subsequent studies showing distal colitis in
Enterococcus faecalis mono-colonised IL-10-deficient mice and a mild cecal inflammation
in Escherichia coli mono-colonised animals [120]. Administration of Lactobacillus species
from birth prevented the development of enterocolitis in IL-10-deficient mice [121] and
administration of an 8-strain probiotic to IL-10-deficient mice with established inflammation
improved disease by normalising the epithelial barrier [122]. Although antibiotic treatment
provides an attractive candidate for the treatment of colitis in patients with IL-10 deficiency,
a recent study in IL-10-deficient animals demonstrated that intermittent antibiotic exposure
accelerated the development of severe colitis in male mice [123].

Repeated intravenous or subcutaneous administration of recombinant human IL-10
(rhIL-10) to patients with active steroid-resistant Crohn’s disease [124] or mild to moder-
ately active Crohn’s disease [125] was well tolerated and resulted in an improvement in
disease scores, while subcutaneous administration of rhIL-10 to healthy patients and those
with CD resulted in a reversible decline in haemoglobin and thrombocyte counts, or an
increased production of IFN-γ [126–129]. Due to these undesirable side effects, researchers
engineered L. lactis bacteria [130,131] and targeted the transcytosis pathway activated by
the intestinal pathogen Vibrio cholerae with a novel fusion protein [132] to deliver IL-10 to
the gastrointestinal tract. Daily intragastric delivery of L. lactis modified to contain the
murine IL-10 prevented the onset of colitis in IL-10-deficient mice more efficiently than
systemic delivery of recombinant murine IL-10 [130]. An absence of systemic side effects in
a small phase 1 clinical trial of CD patients with L. lactis, modified to contain the human
IL-10 sequence, demonstrated the safety of this approach [133]. Although the IL-10 fusion
protein and an invasive L. lactis strain carrying the IL-10 plasmid both alleviated colitis in
a range of colitis models, including IL-10-deficient mice [131,132], IBD patients can have
raised levels of IL-10 in serum [134] and may not benefit from IL-10 therapy [129,135].

4. Immune Cell Induced Colitis
T-Cell Adoptive Transfer Model

The transfer of murine CD45RBhighCD4+ T cells from healthy donors to severe com-
bined immunodeficiency (SCID) (Figure 3) mice resulted in the development of a lethal
wasting disease, an influx of inflammatory cells, and increased inflammatory cytokine
production in the colon of the recipient [9].

The resulting chronic colitis that developed within 5–8 weeks was T cell dose-dependent,
and despite the presence of transferred T cells in several organs, significant pathology was
limited to the large intestine [9]. Interestingly, the transfer of naïve CD45RBhighCD4+ cells
into SCID mice with a reduced microbiota significantly reduced colitis when compared to
SCID mice housed in SPF conditions [136]. Restoration of T-cell proliferation in germ-free
RAG-deficient mice following reconstitution with cecal bacterial lysate-pulsed dendritic
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cells and induction of colitis in SPF RAG-deficient mice following the transfer of T cells
specific for a microbiota flagellin antigen cemented the role of the commensal microbiota in
driving disease in this model [137].
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Although both CD45RBlow and CD45RBhighCD4+ T cells homed to the intraepithelial
and lamina propria compartments of both the small and large intestine [136], CD45RBlow or
total unfractionated CD4+ T-cells were incapable of inducing colitis [9]. Following the dis-
covery that the CD45RBlow population comprised a population of CD4+CD25+ regulatory
T cells that could cure colitis in SCID or RAG1-deficient recipients of CD4+CD45RBhigh T
cells [138], the T-cell transfer model of colitis was further refined by reconstitution of SCID
mice with CD25-depleted CD4+ cells [139]. Although colitis in this model was accredited
to the production of the Th1 cytokine IFN-γ [9,140], enhanced emergence of IL-17A+IFN-γ
population of T cells and suppression of populations of Foxp3+ and IL-10-producing reg-
ulatory T cells was attributed to IL-23R signalling in T cells [141]. Similarly, an absence
of IL-23 in IL-12p19-deficient RAG-deficient recipients resulted in significantly decreased
levels of proinflammatory cytokine production in the intestine [142]. While intestinal
inflammation was significantly reduced in the RAG-deficient recipients of IL-23R-deficient
CD45RBhighCD4+ T cells, or p19−/−RAG−/− recipients of CD4+CD25−CD45RBhigh T cells,
these mice still exhibited systemic inflammation and weight loss [141,142], suggesting a
tissue-restricted activity of IL-23.

Using IFN-γ-deficient RAG−/− recipients, IFN-γ was subsequently shown to be
dispensable for the induction and progression of CD4+CD25−CD45RBhigh T cell transfer
colitis [143]. Inflammatory responses in these recipients favoured IL-17A production, where
neutralisation of IL-17A/F significantly reduced weight loss and histopathological score in
these animals [143]. A population of CD4+IL-17F+ T cells was sufficient to induce colitis in
RAG1-deficient recipients, where the transition of these precursors to Th1-like cells was an
absolute requirement for disease [144]. Interestingly, IL-21 signalling was recently proposed
to dampen T-cell transfer colitis by reducing IL-17A production and augmenting IL-22
production in populations of ILC3s [145].
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Intriguingly, RAG-deficient (RAG−/−) recipients lacking signalling through the type
1 interferon α/β receptor subunit 1 (RAG−/−IFNAR1−/−) developed severe accelerated
colitis following T-cell transfer of CD45RBhighCD4+ T cells from wild-type mice [146]. Co-
transfer of CD4+CD25+Foxp3GFP+ regulatory T cells (Treg) and CD45RBhighCD4+ T cells
to RAG−/−IFNAR1−/− recipients resulted in a loss of Treg expansion, Treg stability, and
suppressive function when compared to RAG−/− recipients [146]. Kole et al. revealed an
important role of IFNAR signalling on RAG−/− hematopoietic cells to suppress colitis in
this model [146]. Subsequently, NK cells were revealed as an important regulator of colitis
in this system through the action of perforin on Th1 immune responses [147]. Despite
this immune-regulatory role, intraepithelial NK cells were the cellular source of IFN-γ in
germ-free SCID colonised with altered Schaedler’s flora and were proposed to contribute
to the pathogenesis of colitis in these mice [148]. In addition, NKGD receptor signalling on
NK cells, activated macrophages, activated CD8+ αβ T cells, γδ+ T cells, and subsets of
NKT cells was proposed to play a role in initiating colitis [149]. Recent evidence suggests
that 6-mercaptopurine, a mainstay for IBD patients to maintain disease remission, mediated
apoptosis of NK cells and decreased NK cell activity and number in the intestinal biopsies
of CD patients [150].

An advantage to this model is the ability to examine early immunological events
associated with gut inflammation, including regulatory T cells responses. In addition, the
apparent inflammatory response in both the small bowel as well as the colon makes this
model ideal for the study of CD [140]. However, the SCID and RAG−/− recipients used in
this model spontaneously develop T and B cell populations as they age [151], while NK
cells from RAG−/− mice are reported to exhibit altered function and fitness [152]. The
lower prevalence of human SCID patients, estimated at 1 in 58,000 new-borns in the United
States (0.0017%) [153], compared to a higher incidence of CD (estimated at 10.7 cases per
100,000 individuals in the United States (0.0107%) [101], points to a factorial model of CD
induction/development, independent of primary immunodeficiencies in T and B cells. This
excludes this model as an exact model of CD, despite the many similarities.

5. Conclusions

Although several murine findings have contributed immensely to IBD research, the
translation of mouse work to human applications should be cautionary to all researchers
due to some reasons mentioned below:

i. Mice and humans differ in their immune responses due to different immune system
development, immune activation, and immune responses to similar antigens [154].

ii. Mouse experiments tend to not recapitulate the genetic and environmental diversity
inherent in human populations, although these can be closely modelled through
diet, microbiome, and environmental manipulations.

iii. To determine the importance of certain genes in disease pathology, researchers tend
to depend on transgenic knockout mice or antibody depletion, whereas human
disease risk is rarely associated with the complete loss of function of a single gene
or protein.

iv. Most pre-clinical murine experiments fail to account for variability in response to
a therapeutic intervention that may appear in human trials due to genetic poly-
morphisms. This may be addressed through the use of outbred mice but may have
ethical and economic implications, due to the likely need to use a large sample size
to achieve statistical significance between treatment groups [155].

Despite these limitations, murine pre-clinical models still present the opportunity to
discover potential mechanisms that drive IBD, if experimentation considers the different
caveats associated with each model.
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Abbreviations
IBD Inflammatory bowel disease
CD Crohn’s disease
UC Ulcerative colitis
TNBS Trinitrobenzene sulfonic acid
DSS Dextran sulphate sodium
OC Oxazolone colitis
NKT Natural killer T cell
IL- Interleukin
TGF Transforming growth factor
Infl.EC Inflamed epithelial cells
HEC Healthy epithelial cells
Dam.EC Damaged epithelial cell
CD Cluster of differentiation
ILC Innate lymphoid cell
NOD2 Nucleotide-binding and oligomerisation domain-containing 2
SCID Severe combined immunodeficiency
NF-κB Nuclear factor kappa B
NEMO NF-kB essential modulator (NEMO)
Iκκ-γ I-kappa-B kinase gamma
RAG Recombination-activating gene
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