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Stacked antiaromatic porphyrins
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Tim Kowalczyk5, Stephan Irle6, Dongho Kim2 & Hiroshi Shinokubo1

Aromaticity is a key concept in organic chemistry. Even though this concept has already been

theoretically extrapolated to three dimensions, it usually still remains restricted to planar

molecules in organic chemistry textbooks. Stacking of antiaromatic p-systems has been

proposed to induce three-dimensional aromaticity as a result of strong frontier orbital

interactions. However, experimental evidence to support this prediction still remains elusive

so far. Here we report that close stacking of antiaromatic porphyrins diminishes their inherent

antiaromaticity in the solid state as well as in solution. The antiaromatic stacking furthermore

allows a delocalization of the p-electrons, which enhances the two-photon absorption cross-

section values of the antiaromatic porphyrins. This feature enables the dynamic switching of

the non-linear optical properties by controlling the arrangement of antiaromatic p-systems on

the basis of intermolecular orbital interactions.
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T
he parallel orientation of two or more planar p-conjugated
molecules is usually referred to as p–p-stacking1–4, which
often controls the structures of supramolecules and liquid

crystalline materials. It is also important in biological systems,
where it controls in many cases the structure and functionality
of DNA and proteins (tertiary structure)5. Stacked aromatic
p-systems are also key components in optoelectronic organic
devices, as the close contact of p-systems with a large orbital
overlap offers an effective conduction pathway for charge carriers,
which affords high-performance conducting materials6.

In the solid state, large planar p-conjugated molecules often
adopt p–p stacked structures with interplanar distances that
typically range from 3.4 to 3.6 Å, that is, the sum of van der Waals
radii for sp2-hybridized carbon atoms. However, a complete
overlap of two p-systems (face-centred stacking) would be
difficult on account of the resulting severe electrostatic repulsion
between the p-electrons. Consequently, a slipped stacked
structure (offset stacking) is more commonly observed, where
dispersion forces between p-electrons and peripheral protons
dominate the attractive interaction between two p-systems7.
However, the orbital interactions between the p-systems are
substantially reduced in the offset stacking. To achieve more
effective intermolecular electronic communication via a closer
stacking of p-conjugated molecules, a new approach is required.

The stacking of antiaromatic compounds represents one
promising strategy. Corminboeuf et al.8 have proposed that
stacking of two antiaromatic systems in methano-bridged
superphanes such as cyclobutadiene dimer 1 (Fig. 1) can
eliminate their antiaromaticity due to the resulting three-
dimensional aromaticity, which results from mutual interactions
between frontier orbitals of each p-system. This intriguing
proposal was further supported by a theoretical study of Bean
and Fowler9 on the ring current effect in antiaromatic
cyclophanes with a very short interplanar distance between
the two p-systems (B2.2 Å). In such systems, intermolecular
electronic delocalization should be significantly increased.
However, experimental support to substantiate this prediction
still remains elusive on account of the synthetic difficulties
associated with constructing superphanes from unstable
antiaromatic compounds10.

We have recently developed an efficient synthesis of stable
antiaromatic porphyrins such as dimesitylnorcorrole Ni(II) (3a),
which can be obtained on a gram scale11. Norcorrole is a
ring-contracted porphyrin that contains two meso-carbons fewer
than a regular porphyrin12. According to the Hückel rule,
norcorrole Ni(II) complexes should be characterized as distinctly
antiaromatic, given their 16 p-electronic circuit and the
planar structure. Subsequently, we attempted the synthesis of
norcorroles with less bulky peripheral substituents in order to
facilitate p–p stacking in the solid state. We discovered that
diphenylnorcorrole Ni(II) (3b) adopts a triple-decker p–p stacked
structure in the solid state with a very short interplanar
distance (3.149 Å). Most importantly, a significant reduction of

antiaromaticity of the norcorrole skeleton was observed for 3b in
the solid state. Following that discovery, we constructed the
tethered norcorrole dimers 5a and 5b to confirm the substantially
diminished antiaromaticity of the stacked antiaromatic systems in
solution. These stacked norcorroles represent the experimental
evidence for the emergence of aromaticity in antiaromatic
p-systems upon stacking.

Results
Synthesis and properties of diphenylnorcorrole Ni(II). The
synthetic route from dibromodipyrrin Ni(II) complex 2b
to diphenylnorcorrole Ni(II) (3b) is shown in Fig. 2a.
A Ni(0)-mediated intramolecular cyclization of 2b afforded 3b in
28% yield. Compound 3b was characterized by multinuclear
NMR spectroscopy and high-resolution mass spectrometric
analyses. The 1H NMR spectrum of 3b displayed two sets of
pyrrole protons in the far upfield region (d¼ 1.7–2.2 p.p.m.),
owing to a strong paratropic ring current effect, which clearly
demonstrates distinct antiaromaticity for 3b in solution. Even
though 3b is relatively stable in the solid state, slow oxidation
was observed in solution; no such oxidation was observed for
dimesitylnorcorrole 3a.

A single-crystal X-ray diffraction analysis unambiguously
confirmed that 3b adopts a triple-decker stacking structure in
the solid state (Fig. 2b), which is in stark contrast to the
herringbone packing structure that 3a adopts. In the triple-decker
structure, the Ni atom of the central molecule lies on a centre of
symmetry. The distance between the two nickel centres is 2.998 Å,
while the distance between the two mean planes of the four
nitrogen atoms of each macrocycle is 3.149 Å (Supplementary
Fig. 13), which is much shorter than typical p–p stacking
distances for aromatic compounds (3.4–3.6 Å)1,6. The central
norcorrole molecule is relatively planar, while the two outer ones
are distorted into a bowl-shaped conformation. As shown in
Fig. 2c, both outer molecules are perfectly eclipsed with respect to
each other, whereas the central macrocycle is offset by 72�.

The bond length alternation (BLA) in cyclic compounds is a
good indicator of aromaticity, as it allows an evaluation of the
degree of effective p-electron delocalization. Interestingly, the
BLA in triple-decker norcorrole 3b is significantly smaller than
that in 3a, which does not adopt any p–p stacking in the crystal.
For example, the C–C bond lengths around the meso-carbon
atom are 1.447 and 1.403 Å in 3a, which is a characteristic feature
of antiaromatic porphyrinoids. In contrast, the C–C bond lengths
around the meso-carbon atom in 3b are 1.441 and 1.422 Å
(central molecule), as well as 1.438 and 1.419 Å (outer molecules).
The BLA is often quantified on the basis of the harmonic
oscillator model of aromaticity (HOMA) values, which are
close to 1 in aromatic molecules13. For antiaromatic
dimesitylnorcorrole 3a, a HOMA value of 0.45 was obtained,
while for stacked norcorrole 3b values of 0.58 (outer molecules)
and 0.56 (central molecule) were observed (Supplementary
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Figure 1 | Structures of antiaromatic superphane 1 and norcorroles. The bold lines in 3a and 3b indicate one of their 16 p-electronic circuits.
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Fig. 15). These values are quite substantial, considering that
aromatic tetramesitylporphyrin exhibits a HOMA value of 0.77.
Accordingly, the attenuated BLA in 3b strongly supports an
increase in aromaticity through stacking of antiaromatic
p-systems, as predicted by Corminboeuf et al.8 and Bean and
Fowler9.

Synthesis and properties of a stacked norcorrole dimer. To
elucidate the properties of the stacked norcorrole Ni(II) complex
in solution, we synthesized and investigated tethered dimer 5b.
The synthesis of 5b started with the introduction of allylthiol to
3b to provide allylthionorcorrole 4b (Fig. 3a)14. Subsequently, 4b
was dimerized using a second-generation Hoveyda–Grubbs
complex to afford 5b in 58% yield15. For comparison with non-
stacked analogues, mesityl-substituted dimer 5a was prepared in a
similar manner. A single-crystal X-ray diffraction analysis of 5b

revealed a closely stacked structure with very short interplanar
(3.050 Å) and Ni–Ni distances (2.849 Å) (Fig. 3b and
Supplementary Fig. 14). For the norcorrole cores in 5b, HOMA
values of 0.56 and 0.54 were observed, which corroborates the
significant decrease of the inherent antiaromaticity of the
norcorrole unit in the solid state (Supplementary Fig. 15).

With stacked dimer 5b in hand, we went on to explore its
solution properties. Interestingly, the 1H NMR spectrum of 5b
exhibited considerably down-field shifted resonances for the
pyrrole protons relative to those of monomeric norcorroles 3 or
non-stacked dimer 5a. The pyrrole protons of 5b were observed
at 3.5–4.7 p.p.m., while those of 3a appeared at 1.57 and
1.47 p.p.m. Upon lowering the temperature, the pyrrole protons
of 5b experienced a further down-field shift in the 1H NMR
spectrum (Supplementary Fig. 11). This change indicates the
presence of an equilibrium between stacked and non-stacked
conformers of 5b, in which the former predominates at lower
temperatures. The chemical shift change was analysed using the
van’t Hoff equation (Supplementary Fig. 12). The extrapolated
chemical shifts for entirely stacked 5b should be expected at
3.8–5.1 p.p.m. Such down-field shifts were not observed for
non-stacked dimer 5a.

The drastic down-field shifts of the proton signals in stacked 5b
could either be ascribed to the weakened antiaromaticity of
the individual norcorrole unit or to the paratropic ring current
effect of the other norcorrole unit. To clarify the origin of the
down-field shift, the ring currents in 3a and 5b were visualized
using anisotropy of the induced current density (ACID)16 plots
(Supplementary Fig. 18). These clearly demonstrated an
attenuated current density in 5b and thus refute the latter
possibility. The nucleus-independent chemical shift (NICS)17

(Fig. 3c) as well as two-dimensional NICS plot (Supplementary
Fig. 19) of 5b revealed a considerably smaller magnetic effect of
each norcorrole macrocycle compared with monomer 3a, thus
supporting the weakened antiaromaticity in 5b. Taking also the
bond length equalization observed in the crystal structure of 5b
into account, we thus conclude that a close stacking of two
antiaromatic p-systems results in a substantial decrease of their
individual antiaromaticity.

Generally, aromaticity in molecules should provide energetic
stabilization by electronic delocalization. Indeed, we found that
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the dimer 5b is certainly more stable than monomer 4b (Fig. 4).
While heating 4b in toluene-d6 to 80 �C under an atmosphere of
air resulted in virtually quantitative decomposition (97%), stacked
dimer 5b could be recovered in 92% under identical conditions,
thus demonstrating enhanced chemical stability relative to 5b.

Antiaromatic porphyrinoids typically exhibit weak and broad
absorption bands in the near infrared region (4800 nm). This is
also the case for monomer 4b (Fig. 5a, bottom). In contrast, the
absorption spectrum of dimer 5b does not display this
characteristic feature of antiaromatic porphyrinoids (Fig. 5b,
bottom). Interestingly, 5b showed a distinct absorption band at
B860 nm. This low-energy absorption band increased at 77 K,
which supports a shift of the equilibrium between the stacked and
the non-stacked conformer towards the former at low tempera-
tures (Supplementary Fig. 16). In contrast, 5a, in which p–p
stacking is not possible on account of the bulky mesityl
substituents, did not exhibit any such absorption band but only
weak, broad absorption bands in the near infrared region, similar
to the monomers. Time-dependent density functional theory
calculations revealed that this peak should contain significant
contributions of the transition from the highest occupied
molecular orbital (HOMO) to the lowest unoccupied molecular
orbital (LUMO) and from the HOMO� 1 to the LUMOþ 1; the
HOMO and HOMO� 1, as well as the LUMO and LUMOþ 1,
are virtually degenerate (Supplementary Fig. 20). Such degenerate
frontier orbitals are typical for aromatic porphyrins. In addition,
the molecular absorption extinction coefficient of 5b is less than
half of those of 3a and 3b. This feature is intriguing, as the dimer

of a chromophore should usually exhibit an almost doubled
molecular absorption extinction coefficient in the absence of
inter-chromophore interaction. This result thus indicates that the
electronic structure of 5b should be significantly different from
that of the monomer on account of the substantial spatial
electronic interactions between the two norcorrole p-systems.

In order to obtain further experimental insight into the
electronic structure, we measured the magnetic circular dichroism
(MCD) spectrum of 5b (Fig. 5b, top). The MCD spectrum of 5b
showed a weak but nevertheless distinct Faraday B term at
B850 nm. Based on the perimeter model18–21, the lowest-energy
band of norcorrole monomers should be forbidden owing to the
intrashell nature. Accordingly, the absorption and MCD band
observed for 5b at B850 nm should be ascribed to transitions
between the molecular orbitals of the stacked two norcorrole
units. It is reasonable to assume that the overlap between these
orbitals should increase the probability of the otherwise forbidden
HOMO–LUMO transition in the norcorrole monomers.

Two-photon absorption (TPA) properties of the stacked dimer.
In porphyrinoids, the TPA cross-section values usually correlate
with the degree of aromaticity. The TPA process is a third-order
nonlinear optical phenomenon and its occurrence is largely
related to p-electron delocalization, that is, TPA cross-section
values can be employed to evaluate the aromaticity of
porphyrinoids22–24. In general, aromatic porphyrinoids exhibit
substantially larger TPA cross-section values than their
antiaromatic counterparts, mostly owing to a more effective
p-electron delocalization. The TPA cross-section value of stacked
dimer 5b in toluene (1,000 GM at 1,700 nm) is significantly
higher than those of monomer 3a (180 GM at 1,700 nm) and
non-stacked dimer 5a (220 GM at 1,800 nm) (Supplementary
Fig. 17). This result suggests effective p-electron delocalization
through three-dimensionally extended p-orbital overlap, which is
consistent with HOMA and NICS values, as well as with the
ACID analysis. These results also demonstrate that nonlinear
optical properties of antiaromatic p-systems can be dynamically
tuned by controlling their supramolecular alignment.

Electronic origins of the stabilization in the stacked dimer. We
observed that the antiaromatic p-system of the norcorroles easily
forms close face-to-face stacking structures in order to diminish
their antiaromatic nature. This phenomenon is not generally
observed in aromatic compounds, for which close face-to-face
p-stacking typically leads to large repulsive forces between the
stacked p-electrons. To explain the difference in intermolecular
interactions underlying this contrasting feature, we carried out
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natural bond orbital (NBO) analyses25 on antiaromatic Ni(II)
norcorrole dimer 3b and on a comparable aromatic Ni(II)
porphyrin dimer. In 3b, much stronger intermolecular orbital
interactions were observed than in the corresponding stacked
porphyrin dimer. On the basis of an NBO analysis, we thus
conclude that the chemical origin of the stacking should be
attributed to significantly stronger donor–acceptor interactions
between the occupied orbitals on the carbon atoms of one
monomer and the p* orbitals of the other monomer
(Supplementary Table 2). Furthermore, a Wiberg bond order26

of o0.2 was observed for the Ni–Ni interaction in 3b at a Ni–Ni
separation of 3.0 Å (Supplementary Fig. 21). These results
indicate that the intermolecular orbital interactions between the
norcorrole units outweigh the Ni–Ni bonding in the stacked
dimer. Consequently, our results on the increased aromaticity of
norcorroles upon dimerization are consistent with previous
theoretical predictions for antiaromatic superphanes.

Discussion
In summary, we have presented an experimental example of closely
stacked antiaromatic p-conjugated systems using norcorrole Ni(II)
complexes. In the stacked norcorroles, significantly diminished
antiaromaticity was observed, as well as the emergence of aromatic
features such as enhanced stability, bond length equalization and
effective electronic delocalization. As stacked antiaromatic com-
pounds allow an exceptionally close alignment of p-conjugated
systems and accordingly large intermolecular orbital interactions,
they constitute a design principle for materials with potential
applications in organic electronics. Furthermore, this study
demonstrates the possibility to tune the non-linear optical proper-
ties of such antiaromatic p-systems dynamically by controlling their
spatial arrangement through supramolecular interactions. Although
antiaromatic compounds currently still lack practical applications,
this study should provide the conceptual basis for a multitude of
applications in nonlinear optical materials.

Methods
Materials and characterization. 1H NMR (500 MHz) and 13C NMR (126 MHz)
spectra of the compounds were recorded on a Bruker AVANCE III HD
spectrometer. Chemical shifts were reported as the delta scale in p.p.m. relative to
CDCl3 (d¼ 7.26 p.p.m.) for 1H NMR and CDCl3 (d¼ 77.16 p.p.m.) for 13C NMR. 1H
and 13C NMR spectra are provided for compounds; see Supplementary
Figs 1–10. Ultraviolet/Vis/near-infrared spectroscopy (NIR) absorption spectra were
recorded on a Shimadzu UV-2550 or JASCO V670 spectrometer. Mass spectra were
recorded on a Bruker microTOF using electrospray ionization (ESI)-time-of-flight
method for acetonitrile solutions. Unless otherwise noted, materials obtained from
commercial suppliers were used without further purification.

Synthesis of compounds. Meso-phenyl-a,a0-dibromodipyrrin Ni(II) complex 2b.
To a mixture of meso-phenyl-a,a0-dibromodipyrrin (2.43 g, 6.43 mmol) and
Ni(OAc)2�4H2O (808 mg, 3.23 mmol), CH2Cl2 (58 ml) and methanol (20 ml) were
added. After 1 h of stirring at room temperature, the mixture was evaporated under
reduced pressure and the solid residue was recrystallized from CH2Cl2/MeOH to
afford meso-phenyl-a,a0-dibromodipyrrin Ni(II) complex 2b as a green solid
(2.54 g, 3.15 mmol, 98%). The NMR spectra of this compound could not be
observed owing to its paramagnetic nature. High-resolution mass spectrometry
(HR-MS) ESI-MS): m/z¼ 809.7650, calcd for (C30H18Br4N4Ni)þ ¼ 809.7613 [(M)þ ].

Ni(II) meso-diphenylnorcorrole 3b. To a mixture of meso-phenyl-a,a0-
dibromodipyrrin Ni(II) complex (2b, 327.8 mg, 0.40 mmol), Ni(cod)2 (277.52 mg,
10.0 mmol), and 2,20-bipyridine (155.8 mg, 10.0 mmol), dry tetrahydrofuran
(22.5 ml) was added under argon atmosphere. The solution was stirred at room
temperature for 3 h in a glovebox. The solution was passed through alumina pad
and evaporated under reduced pressure to provide solid residue. The residue was
purified by silica gel column chromatography (hexane/CH2Cl2¼ 3/1 as an eluent)
to afford Ni(II) meso-diphenylnorcorrole 3b as a green solid (54.13 mg, 0.11 mmol,
28%). 1H NMR (500 MHz, CDCl3, 1.3 mM): d 6.89 (t, 2H, J¼ 7.5 Hz, Ph), 6.67 (t,
4H, J¼ 8.0 Hz, Ph), 5.98 (dd, 4H, J¼ 8.0, J¼ 1.0 Hz, Ph), 2.14 (d, 4H, J¼ 4.5 Hz, b-
H), 1.78 (d, 4H, J¼ 4.5 Hz, b-H); 13C NMR (126 MHz, CDCl3, 1.3 mM): d 168.08,
158.93, 147.60, 131.98, 131.16, 131.02, 127.89, 120.32, 114.79; Ultraviolet-Vis-NIR
(CH2Cl2): lmax (e(M� 1 cm� 1)) 431 (46,000), 525 (17,000) nm; HR-MS (ESI-MS):
m/z¼ 492.0855, calcd for (C30H18N4Ni)þ ¼ 492.0879 [(M)þ ].

Synthesis of 4a. To a mixture of Ni(II) meso-dimesitylnorcorrole 3a (22.92 mg,
0.04 mmol) and dry 1,3-dimethyl-2-imidazolidinone (2.0 ml) was added. Then
allylthiol (16.6ml, 0.2 mmol) under nitrogen atmosphere, triethylamine (84.0 ml, 0.6
mmol) was added to the solution slowly. The solution was stirred at room
temperature for 6 h. Water and EtOAc were then added. The organic layer was
separated, washed with brine and evaporated under reduced pressure to leave a
solid residue. The residue was purified by silica gel column chromatography
(hexane/CH2Cl2¼ 3/1 as an eluent) to afford 3-allylthiodimesitylnorcorrole 4a as a
green solid (5.99 mg, 9.2 mmol, 23%). 1H NMR (500 MHz, CDCl3): d 6.31
(s, 2H, Mes), 6.30 (s, 2H, Mes), 5.05–5.01 (m, 1H, vinyl), 4.79 (dd, 1H, J¼ 10 Hz,
J¼ 1.0 Hz, vinyl), 4.58 (dd, 1H, J ¼ 17 Hz, J¼ 1.0 Hz, vinyl), 2.84 (s, 6H,
ortho-Me), 2.83 (s, 6H, ortho-Me), 2.15 (d, 2H, J¼ 6.0 Hz, CH2), 2.13 (d, 1H,
J¼ 5.0 Hz, b-H), 1.97 (d, 1H, J¼ 4.5 Hz, b-H), 1.89 (d, 1H, J¼ 4.0 Hz, b-H),
1.87–1.86 (m, 7H, para-Me, b-H), 1.78–1.76 (m, 2H, b-H), 1.73 (s, 1H, b-H);
13C NMR (126 MHz, CDCl3): d 172.64, 171.38, 161.83, 159.72, 157.24, 153.97,
148.64, 147.67, 147.43, 147.16, 145.03, 137.52, 136.95, 133.85, 133.79, 132.69,
131.90, 128.30, 128.15, 126.36, 126.19, 125.54, 124.43, 117.80, 116.51. 113.94,
113.27, 109.60, 34.99, 20.89, 20.72, 17.90, 17.79; Ultraviolet-Vis-NIR (CH2Cl2):
lmax (e(M� 1 cm� 1)) 428 (28,000), 515 (24,000) nm; HR-MS (ESI-MS):
m/z¼ 648.1849, calcd for (C39H34N4NiS)þ ¼ 648.1852 [(M)þ ].

Synthesis of 5a. To a mixture of 3-allylthiodimesitylnorcorrole 4a (7.40 mg,
11.4 mmol) and second-generation Hoveyda–Grubbs catalyst (7.25 mg, 11.6 mmol),
dry dichloromethane (1.0 ml) was added under argon atmosphere in a glovebox.
The solution was stirred at room temperature for 4 h. The reaction mixture was
filtered through a pad of Celite and concentrated. The residue was purified by silica
gel column chromatography (hexane/CH2Cl2¼ 3/1 as an eluent) to afford
dimesitylnorcorrole dimer 5a as a green solid (2.25 mg, 1.77 mmol, 31%). 1H NMR
(500 MHz, CDCl3): d 6.50 (s, 4H, Mes), 6.31 (s, 4H, Mes), 4.20–4.19 (br, 2H, vinyl),
3.07 (s, 12H, ortho-Me), 2.92 (s, 12H, ortho-Me), 2.56 (d, 2H, J¼ 4.0 Hz, b-H), 2.20
(d, 2H, J¼ 4.5 Hz, b-H), 2.12 (d, 2H, J¼ 4.5 Hz, b-H), 2.08 (s, 6H, para-Me),
1.94–1.93 (m, 6H, CH2, b-H), 1.91 (d, 2H, J¼ 4.0 Hz, b-H), 1.86 (d, 2H, J¼ 4.5 Hz,
b-H), 1.85 (s, 6H, para-Me), 1.25 (s, 2H, b-H); 13C NMR (126 MHz, CDCl3):
d 172.40, 171.18, 162.49, 160.23, 157.58, 154.22, 147.76, 147.49, 144.98, 137.68,
136.94, 133.99, 133.86, 132.55, 128.44, 128.17, 126.89, 126.43, 126.34, 126.22,
124.82, 116.39, 114.04, 109.45, 33.42, 21.21, 20.71, 18.01, 17.97. (Three sp2-carbon
signals were not observed owing to the overlap); Ultraviolet-Vis-NIR (CH2Cl2):
lmax (e(M� 1 cm� 1)) 428 (43,000) and 516 (36,000) nm; HR-MS (ESI-MS):
m/z¼ 1268.3417, calcd for (C76H64N8Ni2)þ ¼ 1268.3397 [(M)þ ].

Synthesis of 4b. To a mixture of Ni(II) meso-diphenylnorcorrole 3b (9.9 mg,
0.02 mmol) and dry 1,3-dimethyl-2-imidazolidinone (2.0 ml) under nitrogen
atmosphere, triethylamine (14.0 ml, 0.2 mmol) was added. The solution was
degassed through freeze–pump–thaw three times. Allylthiol (8.3 ml, 0.2 mmol) was
added to the solution. The solution was stirred at room temperature for 3 h. Water
and EtOAc were then added. The organic layer was separated, washed with brine
quickly and evaporated under reduced pressure to leave a solid residue. The residue
was purified by silica gel column chromatography (hexane/CH2Cl2¼ 3/1 as an
eluent) to afford 3-allylthiodiphenylnorcorrole 4b as a red-black solid (2.7 mg,
4.8 mmol, 24%). 1H NMR (500 MHz, CDCl3): d 6.93–6.83 (m, 4H, Ph), 6.72 (t, 2H,
J¼ 8.0 Hz, Ph), 6.21 (d, 2H, J¼ 8.0 Hz, Ph), 6.07–6.05 (d, 2H, J¼ 8.0 Hz, Ph),
5.13–5.06 (m, 1H, vinyl), 4.82 (dd, 1H, J¼ 10 Hz, J¼ 1.0 Hz, vinyl), 4.65 (dd, 1H,
J¼ 17 Hz, J¼ 1.0 Hz, vinyl), 2.60 (d, 1H, J¼ 4.5 Hz, b-H), 2.35 (d, 1H, J¼ 4.5 Hz,
b-H), 2.35 (d, 2H, J¼ 4.0 Hz, CH2), 2.19 (d, 1H, J¼ 4.5 Hz, b-H), 2.12 (d, 1H,
J¼ 4.0 Hz, b-H), 2.09–2.07 (m, 2H, b-H), 2.05 (s, 1H, b-H); 13C NMR
(126 MHz, CDCl3): d 171.13, 169.81, 162.41, 161.18, 157.69, 154.75, 148.56, 147.62,
147.18, 146.92, 144.45, 133.47, 131.92, 131.75, 131.50, 130.73, 130.30, 129.27,
128.02, 127.92, 126.84, 123.60, 121.09, 118.07, 116.20, 114.24, 113.72, 111.65,
36.06; Ultraviolet-Vis-NIR (CH2Cl2): lmax (e(M� 1 cm� 1)) 422 (30 000)
and 519 (19,000) nm; HR-MS (ESI-MS): m/z¼ 564.0866, calcd for
(C33H22N4NiS)þ ¼ 564.0913[(M)þ ].

Synthesis of 5b. A Schlenk tube containing 3-allylthiodiphenylnorcorrole 4b
(3.46 mg, 6.14 mmol) and second-generation Hoveyda–Grubbs catalyst (3.97 mg,
6.14 mmol) was filled with argon before dry dichloromethane (0.4 ml) was added in
a glovebox. The solution was stirred at room temperature for 15 min before the
reaction mixture was purified by column chromatography on silica gel (eluent:
hexane/CH2Cl2¼ 3/1, v/v) to afford bridged diphenylnorcorrole dimer 5b as a
black solid (1.97 mg, 3.58 mmol, 58%). 1H NMR (500 MHz, CDCl3): d 7.08–7.03
(m, 8H, Ph), 6.89–6.92 (t, 4H, J¼ 7.5 Hz, Ph), 6.83 (br, 8H, Ph), 4.65 (d, 2H,
J¼ 4.5 Hz, b-H), 4.50 (d, 2H, J¼ 4.0 Hz, b-H), 4.42 (d, 2H, J¼ 4.0 Hz, b-H),
4.00–4.02 (m, 2H, vinyl), 3.99 (d, 2H, J¼ 4.5 Hz, b-H), 3.88 (d, 2H, J¼ 4.0 Hz,
b-H), 3.84 (d, 2H, J¼ 4.0 Hz, b-H), 3.53 (s, 2H, b-H), 2.56–2.58 (d, 4H, J¼ 4.5 Hz,
CH2); 13C NMR (126 MHz, CDCl3): d 165.87, 165.00, 156.88, 155.08, 150.58,
148.89, 144.98, 144.42, 142.65, 142.10, 141.20, 134.97, 134.05, 132.50, 130.37,
129.28, 128.66, 127.54, 127.36, 127.24, 126.55, 125.94, 124.63, 117.28, 116.96,
115.69, 111.47, 34.59; Ultraviolet-Vis-NIR(CH2Cl2): lmax (e(M� 1 cm� 1)) 421
(12,000), 527 (5,500), 863 (2,200) nm; HR-MS (ESI-MS): m/z¼ 1100.1529, calcd
for (C64H40N8Ni2S2)þ ¼ 1100.1519 [(M)þ ].

X-ray diffraction analysis. X-ray diffraction data of 3b were taken on a Bruker
SMART APEX X-Ray diffractometer equipped with a large area CCD detector.
X-ray diffraction data of 5b were collected on CCD (MX225HE, Rayonix) with the
synchrotron radiation (l¼ 0.8000 Å) monochromated by the fixed exit Si (111)
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double crystal at the BL38B1 in the SPring-8 with approval of the Japan
Synchrotron Radiation Research Institute (JASRI) (proposal Nos. 2015B1397,
2016A1121). The oscillation angle, camera distance and exposure time per frame
were 1�, 75 mm and 1 s, respectively. Two data sets consisting of 180 frames were
integrated, scaled and merged with the programs HKL200027. The structure was
solved by SHELXT28 and refined by least-squares calculations (SHELXL)29 on F2

for all reflections using the crystallographic software packages CrystalStructure30.
All non-hydrogen atoms were refined with anisotropic displacement parameters
and hydrogen atoms were placed in idealized positions and refined as rigid atoms
with the relative isotropic displacement parameters. Crystallographic details are
given in CIF files (Supplementary Data 1 and 2). The detailed crystallographic data
for both the compounds are listed in Supplementary Table 1.

HOMA calculations. HOMA values of 3a, 3b, 5b and Ni(II) porphyrin were
calculated using C–C and C–N bond lengths of the X-ray crystallographic
structure, according to the following equations:

HOMA ¼ 1� a=n� Ropt � Ri
� �2 ð1Þ

where n is the number of bonds taken into summation, a is an empirical constant,
Ropt is an optimal bond length and Ri is a bond length of ith bond. Ropt¼ 1.388
(C–C) and 1.334 (C–N) Å and a¼ 257.7 (C–C) and 93.52 (C–N) were used.

TPA measurement. The TPA spectrum was measured in the NIR region using the
open-aperture Z-scan method with 130 fs pulses from an optical parametric
amplifier (Light Conversion, TOPAS) operating at a repetition rate of 1 kHz
generated from a Ti:sapphire regenerative amplifier system (Spectra-Physics,
Hurricane). After passing through a 10 cm focal length lens, the laser beam was
focused and passed through a 1 mm quartz cell. As the position of the sample
cell could be controlled along the laser beam direction (z axis) using the motor-
controlled delay stage, the local power density within the sample cell could be
simply controlled under constant laser intensity. The transmitted laser beam from
the sample cell was then detected by the same photodiode as used for reference
monitoring. The on-axis peak intensity of the incident pulses at the focal point,
I0, ranged from 40 to 60 GW cm� 2. For a Gaussian beam profile, the nonlinear
absorption coefficient can be obtained by curve fitting of the observed
open-aperture traces T(z) with the following equation:

T zð Þ¼1� bI0 1� e� a0 l
� �

2a0 1þ z=z0ð Þ2
� � ð2Þ

where a0 is the linear absorption coefficient, l is the sample length and z0 is the
diffraction length of the incident beam. After the nonlinear absorption coefficient
has been obtained, the TPA cross-section s2 of one solute molecule (in units of
GM, where 1 GM¼ 10� 50 cm4 s photon� 1 molecule� 1) can be determined by
using the following relationship:

b¼ s2NAC
hn

ð3Þ

where NA is the Avogadro constant, C is the concentration of the compound in
solution, h is the Planck constant and n is the frequency of the incident laser beam.

Theoretical calculations. All calculations were carried out using the Gaussian 09
program31. Geometries of 3a and 5b for NICS and ACID calculations were obtained
from their X-ray structures. All calculations were performed with Becke’s three-
parameter hybrid exchange functional and the Lee–Yang–Parr correlation functional
(B3LYP)32,33 and the 6-31G(d) basis set was used for all atoms. NBO calculations and
Wiberg bond order analysis were performed with the PBE0 hybrid functional34 and
LANL2DZ combination of basis set and effective core potentials35.

Data availability. Crystallographic data (CIF files) for 3b and 5b have been
deposited with the Cambridge Crystallographic Data Centre as supplementary
publications. CCDC 1484882 (3b) and CCDC 1484883 (5b) contain the supple-
mentary crystallographic data. These data can be obtained free of charge from the
Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.
All other data supporting the findings of this study are available within the article
and its Supplementary Information.
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