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Abstract

Cancer Stem Cells (CSC), a subset of cancer cells resembling normal stem cells with self-

renewal and asymmetric division capabilities, are present at various but low proportions in

many tumors and are thought to be responsible for tumor relapses following conventional

cancer therapies. In vitro, most intriguingly, isolated CSCs rapidly regenerate the original

population of stem and non-stem cells (non-CSCs) as shown by various investigators. This

phenomenon still remains to be explained. We propose a mathematical model of cancer cell

population dynamics, based on the main parameters of cell population growth, including the

proliferation rates, the rates of cell death and the frequency of symmetric and asymmetric

cell divisions both in CSCs and non-CSCs sub-populations, and taking into account the sta-

bilization phenomenon. The analysis of the model allows determination of time-varying corri-

dors of probabilities for different cell fates, given the particular dynamics of cancer cells

populations; and determination of a cell-cell communication factors influencing these time-

varying probabilities of cell behavior (division, transition) scenarios. Though the results of

the model have to be experimentally confirmed, we can anticipate the development of sev-

eral fundamental and practical applications based on the theoretical results of the model.

Introduction

Stem cells are undifferentiated cells present in very low numbers in most tissues. Stem cells are

responsible for tissue renewal and homeostasis, by giving rise to non-stem cells that proliferate

and further differentiate in specialized cells. Stem cells show very specific features, notably

regarding cell division: they are able to undergo asymmetrical division, dividing into a stem

cell and non-stem cell; moreover, the rate of stem cells division is very low as compared to that

of non-stem cells [1–3].

It has been demonstrated that in most malignant tumors, cancer cell populations appear to

include a rare stem cell-like subpopulation suspected to be responsible for the initiation and
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maintenance of tumors in animals [4–14]. This subpopulation can be detected and purified

using specific cellular probes or cell surface markers. In vitro, purified cancer stem cells (CSCs)

are able to reconstitute the population heterogeneity whereas, in contrast, purified non-stem

cells cannot. Also, CSCs were shown to be highly tumorigenic in xenografts experiments, and

to be responsible for cancer metastasis, i. e. colonization of various tissues by the primary

tumor. Because of these features, cancer stem cells are also called tumor-initiating cells [7].

However, not all cancer stem cells appear to have all the features of normal stem cells. For

example, CSCs may have a diminished capacity to undergo asymmetrical division compared

to normal stem cells [6,12,15–17].

CSCs have been demonstrated in most solid and hematologic tumors [8,10,16,18–28], with

very well described common functional features, i. e. an indefinite self-renewal capability and

the ability to undergo some asymmetric divisions. Importantly, CSCs are resistant to chemo-

and radio- therapies [4,5,9,10,29–31], suggesting that they may be responsible for tumor

relapses following chemo- or radio-therapy. This has important implications in therapeutic, as

most of the current treatments target a regression of the tumors mass without accounting for

the tumor functional heterogeneity.

Various mathematical models have been proposed for describing the dynamics of both nor-

mal [32–36] and cancer [30,31,37–47] stem cell populations behavior. These works suggest

two different concepts for description of stem cells population behavior. One concept is based

on the principle that stem cells act according to their intrinsic program, which may be deter-

ministic or stochastic [30,31,35,39–41,45,48]. Alternatively, a concept of self-organization of

stem cells suggests modeling of the entire system of cell-cell and cell-environment interactions,

for which some authors also consider a stochastic behavior [35,36,49–51]. Modeling of cancer

cell population behavior provides very important inferences as for understanding the nature of

cancer growth so for clinical prognosis and treatment strategies. In many cases it allows to

have evidence about factors that cannot be measured directly in clinical or in experimental

investigations. For example, due to the mathematical model it was shown that the role of leu-

kemia stem-like cells population on the course of disease is much greater than the one of leuke-

mia blast cells [42,43,47]. The model-based estimation of prognostic factors in clinical data

may help in designing treatment strategies [42–47]. Moreover, the quantitative information

about the cancer stem cells (CSC) or tumor-initiating cells (TIC) fraction dynamics can be

inferred by methods based on mathematical models. The method described in [44] identifies

two characteristic equilibrium TIC regimes during expansion and regression of chronic mye-

loid leukemia.

However, the possibility of dedifferentiation of non-stem cancer cell to stem cell is one of

the most important and yet unsolved question about CSC behavior, which has been, so far,

addressed in only few of these works [30,38,52]. These (stochastic) models base their principle

on the assumption that all possible transitions in subpopulations can occur spontaneously,

with some probabilities.

Also, only few modeling approaches were proposed to gain insight into the intriguing phe-
nomena of cancer stem cells population stability [38,44,53,54]. This phenomena detected in

many cancer cell lines harboring measurable levels of cells with CSC features, is that over sev-

eral years of cell passage the relative number of cancer stem cells fluctuates around a basal

level, characteristic for each specific cell line (as illustrated in Fig 1, dotted red curve). More-

over, it has been shown that isolated cancer stem cells can rapidly regenerate in culture the het-

erogeneity of the parental cell line with the characteristic relative percentage of cancer stem

cells (as illustrated in Fig 1, dark blue curve).

Cancer stem cells stabilization
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One work discussing this phenomenon models the CSC behavior as a Markov process [38].

The model is based on stochasticity of single-cell behaviors and does not consider cell-to-cell

communications.

In our previous work [53,54] we constructed and analyzed a mathematical model that takes

into account this intriguing characteristic of CSC population behavior. We suggested an

instructive role of cell-to-cell signaling influencing the cell parameters and leading to CSC

population equilibrium. The mathematical model accounts for all possible cancer stem and

non-stem cell behaviors, i. e. type of division (symmetric or asymmetric), direct transition (dif-

ferentiation or dedifferentiation) and cell death. The analysis of the model helped to elucidate

some important characteristics of cancer stem cells evolution, in particular, a set of parameters

of cell growth implying the necessity of non-stem to stem cell transition.

In this work we expand this mathematical model and address the question of “instructive

signal(s)” underlying the phenomena of cancer cell population stability, aiming to provide

meaningful predictions on its dynamics and nature. In the presented work we continue analy-

sis of the model aiming to solve the following problems:

Fig 1. Stabilization of Cancer Stem Cells population in cell culture. Schematic curves showing a percentage of CSC over time (summarized from numerous

published and unpublished data). Dotted red curve: a basal level of CSC percentage, constant over years of cell passages; dark blue curve: dynamics of isolated

cancer stem cell population up to stabilization at characteristic level of CSC percentage.

https://doi.org/10.1371/journal.pone.0224787.g001
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- determination of time-varying corridors of probabilities of different cell fates, given the

dynamics of cancer cells populations;

- determination of a cell-to-cell communication factors, influencing time-varying probabili-

ties of cell behavior (division, direct transition) scenarios.

We demonstrate that using data measured in the context of CSC population stabilization,

our model is able to infer corridors of time-varying probabilities of cancer cell fates that pro-

vide significant insights into the cellular dynamics of heterogeneous tumors. Next we show

how the set of curves of probabilities can help identifying a set and kinetics of secreted factors

responsible for cell population behavior.

Methods

1. Algorithm for the solution of the system of Eqs (14–17).

The system can be rewritten in the form:

dp
1

dt
¼

2l1ðs � 1Þððl2q2
ð2þ ðs � 2ÞsÞ � 2_sÞ_s þ sðsððg2 � g1 þ l1 � l2 þ ðp1

þ 2p
2
Þl1Þ_s� __sÞ þ 2ð_s2 þ __sÞÞÞ

ðs � 2Þð4l
2

2
ð1 � sÞ2 þ 2l

2

1
s2ð11þ 3sðs � 2ÞÞÞ

; ðA1Þ

dp
2

dt
¼

2l1ðsþ 3Þððl2q2
ð2þ ðs � 2ÞsÞ � 2_sÞ_s þ sðsððg2 � g1 þ l1 � l2 þ ðp1

þ 2p
2
Þl1Þ_s � __sÞ þ 2ð_s2 þ __sÞÞÞ

ðs � 2Þð4l
2

2
ð1 � sÞ2 þ 2l

2

1
s2ð11þ 3sðs � 2ÞÞÞ

; ðA2Þ

p
3
¼

_s � l2q2
þ ðg1 � g2 þ l1 þ l2 � l1p1

þ l2q2
þ ðg2 � g1 � l2 þ l1ðp1

þ p
2
ÞÞsÞs

l1sð2 � sÞ
ðA3Þ

p4 ¼ 1 � p1 � p2 � p3; ðA4Þ

q1 ¼ 1 � q2; ðA5Þ

dq
2

dt
¼

4l2ðs � 1Þððl2q2
ð2þ ðs � 2ÞsÞ � 2_sÞ_s þ sðsððg2 � g1 þ l1 � l2 þ ðp1

þ 2p
2
Þl1Þ_s � __sÞ þ 2ð_s2 þ __sÞÞÞ

sðs � 2Þð4l
2

2
ð1 � sÞ2 þ 2l

2

1
s2ð11þ 3sðs � 2ÞÞÞ

; ðA6Þ

where s� s(t), _s � dsðtÞ
dt , and __s � d2sðtÞ

dt2 , are known functions, pi,qj (i = 1. . .4,j = 1,2), are unknown

variables.

A system (A1-A6) was approximated by a second order finite difference scheme

pnþ1
1
� pn

1

Dt
¼

2l1ðs � 1Þððl2q
nþ1=2

2 ð2þ ðs � 2ÞsÞ � 2_sÞ_s þ sðsððg2 � g1 þ l1 � l2 þ ðp
nþ1=2

1 þ 2pnþ1=2

2 Þl1Þ_s � __sÞ þ 2ð_s2 þ __sÞÞÞ
ðs � 2Þð4l

2

2
ð1 � sÞ2 þ 2l

2

1
s2ð11þ 3sðs � 2ÞÞÞ

; ðA7Þ

pnþ1
2
� pn

2

Dt
¼

2l1ðsþ 3Þððl2q
nþ1=2

2 ð2þ ðs � 2ÞsÞ � 2_sÞ_s þ sðsððg2 � g1 þ l1 � l2 þ ðp
nþ1=2

1 þ 2pnþ1=2

2 Þl1Þ_s � __sÞ þ 2ð_s2 þ __sÞÞÞ
ðs � 2Þð4l

2

2
ð1 � sÞ2 þ 2l

2

1
s2ð11þ 3sðs � 2ÞÞÞ

; ðA8Þ

pnþ1

3
¼

_s � l2qnþ1
2
þ ðg1 � g2 þ l1 þ l2 � l1pnþ1

1
þ l2qnþ1

2
þ ðg2 � g1 � l2 þ l1ðpnþ1

1
þ pnþ1

2
ÞÞsÞs

l1sð2 � sÞ
; ðA9Þ

pnþ1

4
¼ 1 � pnþ1

1
� pnþ1

2
� pnþ1

3
; ðA10Þ

qnþ1

1
¼ 1 � qnþ1

2
; ðA11Þ
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qnþ1
2
� qn

2

Dt
¼

4l2ðs � 1Þððl2q
nþ1=2

2 ð2þ ðs � 2ÞsÞ � 2_sÞ_s þ sðsððg2 � g1 þ l1 � l2 þ ðp
nþ1=2

1 þ 2pnþ1=2

2 Þl1Þ_s � __sÞ þ 2ð_s2 þ __sÞÞÞ
sðs � 2Þð4l

2

2
ð1 � sÞ2 þ 2l

2

1
s2ð11þ 3sðs � 2ÞÞÞ

; ðA12Þ

where pnþ1=2

i ¼
pnþ1
i þpni

2
; ði ¼ 1 . . . 4Þ, qnþ1=2

j ¼
qnþ1
j þqnj

2
; ðj ¼ 1; 2Þ, Δt is a time step, n is a time

step number.

We consider that the initial conditions:

p1ðt ¼ 0Þ ¼ p10; p2ðt ¼ 0Þ¼ p20; q2ðt ¼ 0Þ ¼ q20 ðA13Þ

are given.

Then, the initial values for p0
i ; q

0
j ; ði ¼ 1 . . . 4; j ¼ 1; 2Þ are set by (A13) and the calcula-

tions from (A3-A5), using (A13). By that, from numerical solution of the system (A7-A12) we

can obtain pnþ1
i ; qnþ1

j ði ¼ 1 . . . 4; j ¼ 1; 2Þ for any time step n = 1,2,. . .. Accuracy of numerical

simulations is controlled by decreasing time step.

Thus a triple of parameters p10, p20, q20 allows obtaining pn
i ; q

n
j for any time step. If at some

time step the conditions

0 � pn
i � 1; i ¼ 1 . . . 4; 0 � qn

j � 1; j ¼ 1; 2; ðA14Þ

were violated, the corresponding triple of parameters p10, p20, q20 was discarded and a new

one was selected from the interval [0,1]. The consequent repeating of this simulation for all

possible combinations of parameters p10, p20, q20, starting from the triple (0,0,0) up to the tri-

ple (1,1,1) with a step 0,01 for each parameter p10, p20, q20 allowed detecting the intervals of

initial conditions:

pmin
10
� p

10
� pmax

10
; pmin

20
� p

20
� pmax

20
; qmin

20
� q

20
� qmax

20
;

which satisfy (A14) for all time period T and thus provide a desired corridors of all

probabilities.

A user interface is developed allowing to input the parameters of the model and to output

the results in the graphical form and in the form of numerical files.

The corresponding program code can be found at:

https://github.com/nickbessonov/CSC-article/blob/master/CSC%20(17.05.18).rar)

2. Algorithm for the solution of the system of Eq (25).

The system of Eq (25) was solved numerically by well known trick when the system of

steady equations was replaced by a system of simplest non-steady equations and the solution

of a steady problem is sought by solving the non-steady problem and finding its steady

solution.

Cancer stem cells stabilization
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In our case, for determining bik,ak,ck, k = 1. . .K, i = 1. . .6, the system Eq (25) was replaced

by a system of the next non-steady equations

ajþ1
q � ajq
Dtq

¼ � 2
XN

n¼1

 

e� a
j
qðtn � c

j
qÞ

m
ðtn � cjqÞ

m
X6

i¼1
bj
iqð
XK

k
ðbj

ike
� ajkðtn � c

j
kÞ

m
Þ � yinÞ

!

cjþ1
q � cjq
Dtc

¼ 2aqm
XN

n¼1

 

e� a
j
qðtn � c

j
qÞ

m
ðtn � cjqÞ

ðm� 1Þ
X6

i¼1
bj
iqð
XK

k¼1
ðbj

ike
� ajkðtn � c

j
kÞ

m
Þ � yinÞ

!

;

bjþ1

iq � bj
iq

Dtb
¼ 2

XN

n¼1

 

e� a
j
qðtn � c

j
qÞ

m
ð
XK

k¼1
ðbj

ike
� ajkðtn � c

j
kÞ

m
Þ � yinÞ

!

ðB1Þ

8
>>>>>>>>>>><

>>>>>>>>>>>:

where Δtq, Δtc, Δtb are pseudo time step, j is number of pseudo time step.

The system (B1) was solved with the help of iterations. Trial initial values a0
q; c

0
q, and b0

iq

q = 1. . .K, i = 1. . .6 were set. Substituting these values into the right-hand side of the Eq (B1),

we determined the values of unknown parameters in the next pseudo time step a1
q; c

1
q, and b1

iq.

Then this process was repeated until the required accuracy of the solution was reached. The

only one difficulty arises at the beginning of application of this trick when it is necessary to

determine the signs of time steps. This problem was solved easy by several numerical experi-

ments. The sign minus in right part of (B1) is a result of these computational experiments. The

corresponding program code can be found at:

https://github.com/nickbessonov/CSC-article/blob/master/CSC%20(17.05.18).rar)

3. Experimental part

The measurements of cell division rates were performed on several human cancer cell lines,

namely five NSCLC (non-small cell lung cancer) cell lines (A549,HCC827, H1299, H1650, H1975),

four ovarian cancer cell lines (A2780, HEY, OV2008, TOV-112D cells) and colon carcinoma HCT

116 cell line. The detected proliferation rates of non-stem cells were similar or considerably close in

all investigated cell lines, thus its averaged value was taken for the numerical simulations.

The percentage of cell death rates was measured by Fluorescence Activated Cell Sorting

(FACS) analysis in A549 cell line at every day during 10 days after passage. The dead cells were

stained by 7 AAD (7-AminoActinomycin D) and sorted accordingly. The analysis have shown

the rate of cell death around 0.1 (10% of all cells) for all days during the period of cultivation.

The second variant of death rate (0.5) was added to the numerical simulations to explore

another possibility of death rate, close to a critical one, which was noticed in another investi-

gated cell lines (see above), but without precise measurements.

Results and discussion

Mathematical model

Following our previous work [53] we suggest a model accounting for 4 scenarios of cell behav-

iors (different types of cell divisions and direct transition) for stem and non-stem cells, and

assumed that each scenario can occur with some probability (Table 1):

Though we include the scenarios D!S+S and D!S for daughter cells in Table 1 as theoret-

ically possible, for a time being we will consider in a model only two scenarios for daughter

cells, which discriminates two principal modes of their behavior: the regular one (D!D+D)

and the de-differentiation of daughter cells into S cells, which requires the activation of differ-

ent genetic program. For the representation of the last case we consider only one scenario

D!S+D (for which we assume the transition D!S as a part of it, meaning that D cell should

Cancer stem cells stabilization
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undergo a transition D!S before the next asymmetric division). Thus, for the current model

the probabilities q3 and q4 are taken to be equal to 0.

The probabilities should satisfy the usual restrictions on probabilities:

0 � pi � 1; i ¼ 1 . . . 4; 0� qi � 1; i ¼ 1; 2; ð1Þ

p
1
þ p

2
þ p

3
þ p

4
¼ 1; ð2Þ

q
1
þ q

2
¼ 1: ð3Þ

We considered that cell divisions/transition occur with the rate λ1 in stem cells (S) and with

the rate λ2 in daughter cells (D), and that death rates are γ1 and γ2 in S and D cells respectively.

We need to comment that though it seems more plausible to consider that each mode of cell

divisions or transition occurs with its own rate (e.g., like in models [42,43], we will consider in

our model one constant rate of cell divisions (or direct transition) for stem cells, and another

constant rate of cell divisions for non-stem cells, independently from a scenario. Also, though

it was shown that in general cell division rates may change in time, for example, due to regula-

tion by signaling factors [55–57], we assume the possibility to consider them to be constant

during the short period of stabilization of cell population. The same assumption is made in

many mathematical models addressing the cancer cells population behavior [42–47].

The proposition (Table 1) gives a system of differential equations for the dynamics of S and

D cancer cells:

dSðtÞ=dt ¼ aSSðtÞ þ bDDðtÞ

dDðtÞ=dt ¼ bSSðtÞþaDDðtÞ
ð4Þ

(

with coefficients, depending on probabilities of scenarios pi and qi, and on parameters λ1, λ2,

γ1, γ2 (growth and death rates):

aS ¼ ððp1 þ 2p3 � 1Þl1 � g1Þ; bD ¼ q2l2;

bS ¼ ðp1 þ 2p2 þ p4Þl1SðtÞ; aD ¼ ðq1l2 � g2Þ:
ð5Þ

Using (5), the system (4) can be re-written as:

dSðtÞ=dt ¼ ððp1 þ 2p3 � 1Þl1 � g1ÞSðtÞ þ q2l2DðtÞ

dDðtÞ=dt ¼ ðp1 þ 2p2 þ p4Þl1SðtÞ þ ðq1l2 � g2ÞDðtÞ
: ð6Þ

(

In our previous work, using the system (6), we have analyzed the time-dependent evolution

and the asymptotic behavior of the percentage of cancer stem cells s(t) in a cancer cell popula-

tion with the initial conditions:

Sðt ¼ 0Þ ¼ S0; Dðt ¼ 0Þ ¼ 0 ð7Þ

Table 1. Possible scenarios of cell behavior. S = Stem cell; D = Daughter cell.

Stem cell(S) Daughter cell (D)

scenario probability scenario probability

S!S+D p1 D!D+D q1

S!D+D p2 D!S+D q2

S!S+S p3 D!S+S q3

S!D p4 D!S q4

https://doi.org/10.1371/journal.pone.0224787.t001
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corresponding to the dynamics of isolated cancer stem cells population up to stabilization, as

illustrated in Fig 1.

The fraction (percentage) of stem cells is calculated as:

sðtÞ ¼ SðtÞ=ðSðtÞ þ DðtÞÞ: ð8Þ

Corridors of probabilities of cell fate scenarios

Here we continue analysis of the model aiming to determine the time-varying corridors of

probabilities of different cell fates, given the dynamics of cancer cells populations. We assume

that a curve s(t) of the percentage of CSC over time displaying a CSC stabilization after pertur-

bation (as shown at Fig 1), and proliferation and death rates of cells are given as a result of

experimental measurements in a particular cell line.

First, our numerical simulations show that a good fitting of model (6) to any reference

curve s(t) (determined by the least squares method, with an average deviation equal ~ 5% or

less) can be achieved in admission that the set of parameters λi,γi,pi,qi changes over time. As

discussed in Section 1, we may admit for the following analysis that the parameters changing

with time should be the probabilities of scenarios pi(t),qi(t), while parameters λi, γi, may be

considered as constant.

This led us to Question 1:

Given the dynamics of percentage of CSC s(t), is it possible to find functions pi(t), i = 1,2,3,4,

qi(t), i = 1,2 for a given constant set of λi and γi?

In order to solve this problem we first considered the following hypothesis: all changes in
cell behavior scenarios up to stabilization should be minimized (the sum of all changes of pi(t)
and qi(t) should be the minimal possible ones). The underlying biological logic of this hypothe-

sis is that each type of scenario is implemented by different sets of biological mechanisms,

which require specific proteins and other compounds to be prepared in a cell. This means that

each time-step of cell population behavior towards stabilization should be more plausibly

achieved by minimal change in each scenario existing at the previous time-step than by inter-

mittent pattern of each of them.

This means that the function v:

v ¼ ð _p1Þ
2
þ ð _p2Þ

2
þ ð _p3Þ

2
þ ð _p4Þ

2
þ ð _q1Þ

2
þ ð _q2Þ

2
; ð9Þ

where _pi ¼ dpiðtÞ=dt; _q i ¼ dqiðtÞ=dt, should be minimized, i.e.:

v ¼ ð _p1Þ
2
þ ð _p2Þ

2
þ ð _p3Þ

2
þ ð _p4Þ

2
þ ð _q1Þ

2
þ ð _q2Þ

2
! min: ð10Þ

Next we rewrite the system (6) and the conditions (2) and (3) as:

_sðtÞ ¼ q2ðtÞl2 þ ððp3ðtÞ � p2ðtÞ � p4ðtÞÞl1 � ð1þ q2ðtÞÞl2 þ g2 � g1ÞsðtÞ

þðl2 � ð1 � p
4
ðtÞÞl1 � g2 þ g1Þs2ðtÞ;

ð11Þ

p
1
ðtÞ þ p

2
ðtÞ þ p

3
ðtÞ þ p

4
ðtÞ ¼ 1; ð12Þ

q1ðtÞ þ q2ðtÞ ¼ 1; ð13Þ

where _sðtÞ ¼ dsðtÞ=dt.
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This gives us a system:

p
3
ðtÞ ¼ f_sðtÞ � l2q2

ðtÞ þ ½g1 � g2 þ l1 þ l2 � l1p1
ðtÞ þ l2q2

ðtÞ

þðg2 � g1 � l2 þ l1ðp1
ðtÞ þ p

2
ðtÞÞÞsðtÞ�sðtÞg=½l1sðtÞð2 � sðtÞÞ�;

p4ðtÞ ¼ 1 � p1ðtÞ � p2ðtÞ � p3ðtÞ; ð14Þ

q1ðtÞ ¼ 1 � q2ðtÞ

from which we can conclude that the function v depends only upon three variables, which are

(for example) p1(t),p2(t),q2(t). Thus, for minimizing it, we need to solve 3 equations:

@v
@ _p1

¼ 0; ð15Þ

@v
@ _p2

¼ 0; ð16Þ

@v
@ _q2

¼ 0: ð17Þ

Thus, for six variables pi(t) and qi(t) we have a system of 6 Eqs (14–17). For the solution of

that system we have to add three initial conditions:

p
1
ðt ¼ 0Þ ¼ p10; p2

ðt ¼ 0Þ¼ p20; q2
ðt ¼ 0Þ ¼ q20: ð18Þ

All solutions for each pi(t), qi(t) corresponding to all possible sets of initial conditions (18),

which satisfy the condition (1) for all time period T will provide a set of six corridors (ranges)

of probabilities of scenarios pi(t), qi(t) of cell behavior in a given experimental case.

This means that, given the measured s(t) and a constant set of λi,γi, we can determine corri-
dors of all possible probabilities of scenarios pi(t), qi(t) varying with time.

The results of the calculations of all possible corridors of probabilities for the reference curve

s(t) (taken as the one in Fig 1), and different sets of biologically relevant parameters λ1,λ2,γ1,γ2

are presented in Fig 2; the corresponding algorithm and the program code are provided in

Methods section. The considered rates of non-stem cell division (λ2) were taken from experi-

mental measurements in different cancer cell lines, while the rate of stem cell division (λ1),

which is difficult to measure, was chosen in order to vary the ratio of stem/non-stem division

rates (1:1; 1:5; 1:10), corresponding to a statement about slower rate of stem cells divisions. The

considered variants of cell death rates (0.1; 0.5) were taken from experimental measurements.

It is important to note, that the boundaries of each corridor can be (and usually are) com-

prised from the parts of different possible functions pi(t) (or qi(t)) existing inside a particular

corridor. However, these boundaries can help to evaluate the possibility or impossibility of a

scenario(s) in particular experimental systems.

For example, this simulation gives an answer to the question of the necessity of non-stem to
stem cell transition scenario in the course of CSC stabilization toward equilibrium. As it can be

seen from the Fig 2, for all considered biologically relevant sets of cell division and cell death

rates λ1,λ2,γ1,γ2, the lowest boundary of the corridor of probability q2(t) (corresponding to non-

stem to stem cell transition) appears to be higher than zero, at all or at least at some time points.
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Another important question is the existence of other types of stem cell behavior scenarios

in addition to asymmetrical division, which is postulated to be predominant at least in normal

stem cells. Results showed that for biologically relevant sets of parameters λ1,λ2,γ1,γ2, the high-

est level of possible probability pi(t) (the upper corridor boundary) is around 60%, being much

lower for some cases (Fig 2).

For many practical applications it is very important to be able to find a unique solution for

each probability pi(t), qi(t). To this end, we addressed Question 2:

Given a measured curve s(t), and parameters λi,γi, what additional data are necessary and
sufficient to get a unique solution for each pi(t) and qi(t)?

From the analysis done for the Question 1 it is clear that these additional data should be a

set of three initial conditions (18).

We have explored this possibility and present two examples of the determination of such a

set of unique functions pi(t) and qi(t) in Figs 3 and 4, considering two important biological

questions, mentioned above. In the first simulation (Fig 3) we chose the initial conditions (18)

Fig 2. The ranges (corridors) of all possible solutions for probabilities pi, qi for the reference curve of CSC sub–population dynamics (s(t), black curve).

The boundaries of corridors are determined by satisfying the condition (1). Left panels: each “corridor of probability” is shown in sheeted color. The reference

curve of CSC sub–population dynamics s(t) is shown in light green color. Right panels: “corridor of probability” is marked by max and min colored lines for

the following sets of λ1,λ2,γ1,γ2.

https://doi.org/10.1371/journal.pone.0224787.g002

Cancer stem cells stabilization

PLOS ONE | https://doi.org/10.1371/journal.pone.0224787 November 11, 2019 10 / 24

https://doi.org/10.1371/journal.pone.0224787.g002
https://doi.org/10.1371/journal.pone.0224787


such that q20 be the minimal one, thus exploring the possibility of an absence of D to S cell

transition the scenario for each particular case (six different cases (sets of parameters λi,γi,as in

Fig 2) are considered). As we can see from our results, this possibility does not occur in any of

these cases. In the second simulation (Fig 4) we search for the maximal probability of asym-

metric division of stem cells in each particular case, by setting the initial conditions to maxi-

mize p10. The results show that for all six cases the probability p1 can not exceed 63%.

Determination of underlying field factors involved in cancer cell

population dynamics

In our previous work [53] we have suggested that the coordinated dynamical change of the

parameters of cell behavior, resulting in cancer stem cells subpopulation stabilization, occurs in

response to a multiparametric biochemical signal produced in a system. In the simplest case, it

may be a set of secreted factors influencing cell behavior; although it can also be induced by cell-

to-cell contact, a hypothesis that is not taken into account here for the sake of simplification.

We noted this signal as an underlying field u(t), where u(t) is a set of biochemical com-

pounds (factors) in a media, capable to influence cell fate. Generally, in can be presented as a

matrix of factors uij(t), where each factor i may be produced by S or D cell at some time point

t, and have an influence j on the behavior of S or/and D cell, possibly with some time delay t+r.

Here we further explore this idea, assuming that a field of secreted factors u(t) influences

probabilities of cell fate scenarios, and thus that the structure of corridors of probabilities pi

and qi depends on a changing set of concentrations of secreted biochemical compounds.

This means that in the Eq (10) all probabilities of division scenarios of S and D cells (pi(t)
and qi(t) are the functions of an underling field u(t), changing with time:

piðuðtÞÞ; i ¼ 1 . . . 4; qiðuðtÞÞ; i ¼ 1; 2: ð19Þ

The task of identification of molecular factors involved in the underlying field formation

raises the Question 3:

Given a set of unique functions of probabilities pi and qi, is it possible to find a set of factors u

(t) responsible for their dynamics?
First, for simplification, we will consider underlying field u(t) merely be a set of K biochemi-

cal compounds (factors) presenting in the media, i.e., as a set of functions uk(t), k = 1,. . .,K.

Later, we may consider the possible dependence of each factor uk(t) on the amount of S and/or

D cells, as these factors may be produced by one and/or the other type of cells.

Next, in order to determine the factors uk(t) which influence the evolution of probabilities

pi(t) and qi(t), we will perform decomposition of given functions pi(t) and qi(t) over the func-

tions uk(t). We will use the following form for the function u(t):

uðtÞ ¼ be� aðt� cÞm ; ð20Þ

where a is the coefficient reflecting the width of a particular curve u(t), b is its height, c is the

position of the curve on the time axes, m is the shape (sharpness) of the curve (Fig 5).

This form, by varying the coefficients a,b,c,m, allows modeling various kinetics of factors,

e.g., linear with different parameters, constant, exponential, trapezoid, etc.

According to formula (20), the dependence of probabilities pi,qi on factors uk(t) can be writ-

ten as:

yiðtnÞ ¼
XK

k¼1
ðbike

� akðtn � ckÞ
m
Þ; ð21Þ

where yi, i = 1. . .6, is the generalized variable for all six probabilities p1,p2,p3,p4,q1,q2;
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K is the number of uk(t) factors considered, n = 1,. . .N is the time-points. Coefficients ak,ck
reflect details of a nature of a particular factor k, while coefficients bik reflect also the possibility

of different influence of each factor k on the dynamics of each probability yi. Thus, by coeffi-

cients bik this variance of contribution of each factor uk(t) to each function of probability yi is

taken into account. We assume that the coefficient bk,

bk ¼ jmaxiðbikÞj; ð22Þ

may correspond to relative concentration of a biochemical compound (factor uk) in a media.

Therefore we may define function uk(t) as

ukðtÞ ¼ bke
� akðtn � ckÞ

m
ð23Þ

The test calculations and numerical simulation have shown that it is possible to set the

value of the coefficient m = 6 for all factors, while coefficients bik,ak,ck should be selected by

least-squares method. Thus, we will find such coefficients bik,ak,ck in the expression (21) that

provides a minimum of the total quadratic deviation:

f ¼
PN

n¼1

P6

i¼1
ðyiðtnÞ � yinÞ

2
! min; ð24Þ

where yi(tn) are taken as in (21), while yin correspond to a given set of unique functions of

probabilities pi(t) and qi(t), determined from biological experiment and subsequent computa-

tions; yin = pi(tn),i = 1. . .4, y5n = q1(tn),y6n = q2(tn).

For that it is necessary to ensure equality to zero of the expressions:

@f
@aq
¼ � 2

XN

n¼1
ðe� aqðtn � cqÞ

m
ðtn � cqÞ

m
X6

i¼1
biqð
XK

k¼1
ðbike

� akðtn � ckÞ
m
Þ � yinÞÞ ¼ 0

@f
@cq
¼ 2aqm

XN

n¼1
ðe� aqðtn � cqÞ

m
ðtn � cqÞ

ðm� 1Þ
X6

i¼1
biqð
XK

k¼1
ðbike

� akðtn � ckÞ
m
Þ � yinÞÞ ¼ 0;

@f
@biq
¼ 2

XN

n¼1
ðe� aqðtn � cqÞ

m
ð
XK

k¼1
ðbike

� akðtn � ckÞ
m
Þ � yinÞÞ ¼ 0

ð25Þ

8
>>>>>>>><

>>>>>>>>:

where q = 1. . .K.

By this we obtain a system of Eq (25) for determining bik,ak,ck,k = 1. . .K, i = 1. . .6, which

was solved by the gradient descent method, starting with test initial values and obtaining the

minimum of the function (24). The number of factors k is determined from the condition that

the mean deviation yi(tn) from yin should not exceed a given value of permissible variation εp:

ε �
PN

n¼1

P6

i¼1
jyiðtnÞ � yinj

6N
100% < εp: ð26Þ

The search starts from suggested initial number of factors K, and in the case when condi-

tion (26) is not fulfilled for a given εp, should be repeated for K+1, and further on until the sat-

isfaction of (26).

Next a corresponding computer program, automatically performing all necessary computa-

tions for a chosen εp, was developed and applied for the particular set of curves p1(t),p2(t),
p3(t),p4(t),q1(t),q2(t) presented on the Fig 3 (the corresponding algorithm and the program are

Fig 3. The unique solutions for each function pi(t) and qi(t) determined by the choice of initial conditions (18) requesting an absence

(maximal possible minimization) of D!S scenario (q20!min). Six different sets of parameters λi,γi, (as in Fig 2) are considered.

https://doi.org/10.1371/journal.pone.0224787.g003
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Fig 4. The unique solutions for each function pi(t) and qi(t) determined by the choice of initial conditions (18) requesting the

maximal probability of asymmetric division of stem cells (p10!max). Six different sets of parameters λi,γi, (as in Fig 2) are

considered.

https://doi.org/10.1371/journal.pone.0224787.g004
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provided in Methods section). The results of computations, determining the number and pat-

tern of uk(t) factors, providing the satisfaction of the condition ε� 1% for each experimental

case (the same sets of λi,γi considered before), are presented on Fig 6, where the height of each

factor bk.
The search started from suggested initial number of factors K = 4, and has elucidated the

most plausible number of major uk(t) factors for each experimental case (which varied from 3

to 6 factors depending on the case), together with their specific patterns (shape, height and

timing).

It was found that in 3 cases out of 6 explored, the starting number of factors K = 4 was

enough to determine a set of essential influencing field factors uk(t) with sufficiently good

value of variation ε.

Moreover, in two cases, namely, for the set λ1 = 1,λ2 = 1,γ1 = 0,1,γ2 = 0,1 (ε = 0,49%; Fig

6A) and for the set λ1 = 1,λ2 = 10,γ1 = 0,1,γ2 = 0,1 (ε = 1%; not shown), the program has

detected only 3 factors as essential, thus showing the capability to find the minimal possible set

of factors uk(t) for the best fitting, independent of the starting number of factors K. In one case

4 factors were determined: λ1 = 1,λ2 = 1,γ1 = 0,1,γ2 = 0,5 (ε = 0,47%, Fig 6B). For the other 3

cases, for which with K = 4 unsatisfactory ε value was obtained, the search was continued with

greater number of factors K up to optimal of fitting. Finally, for two cases the final number of

essential influencing factors was 5: λ1 = 1,λ2 = 5,γ1 = 0,1,γ2 = 0,1 (ε = 0, 82%; Fig 6C) and λ1 =

1,λ2 = 5,γ1 = 0,1,γ2 = 0,5 (ε = 1,0%; Fig 6D), while in one case, for which K = 5 gave ε = 1,2, the

final number of factors K appeared to be equal to 6: λ1 = 1,λ2 = 10,γ1 = 0,1,γ2 = 0,5 (ε = 0, 75%;

not shown).

We expect that this model can give insight into a search for biochemical factors involved in

controlling cell behavior. For example, if in a course of measurement of CSC population

Fig 5. The function u(t) used to approximate the dynamics of underlying field factors.

https://doi.org/10.1371/journal.pone.0224787.g005
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Fig 6. Underlying field uk(t) functions for four considered sets of λi,γi. The height of each factor uk(t) corresponds to bk.

https://doi.org/10.1371/journal.pone.0224787.g006
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kinetics, also the Metabolome (Secretome) profiles of the culture media can be obtained, the

secreted factors which appear, increase, decrease or disappear at each time point can be identi-

fied (Fig 7).

Next predictions on uk(t) factors obtained by mathematical model for a given case (s(t), λi,

γi) (Fig 6) should be compared with the results of the corresponding Secretome profile (Fig 7).

The biochemical factors having the kinetics and patterns coinciding with the predicted under-

lying field functions uk(t) could be the good candidates for being involved in controlling cell

behavior.

It is probable that out of possibly several hundreds metabolites in Secretome, several will fit

to predicted uk(t). In this case two variants may be envisioned: either a cumulative effect of all

(or several) indicated metabolites creates the uk(t) signal, or only one among them has this spe-

cial effect.

Important Remark. Though the system of Eq (25) cannot be solved uniquely, our computa-

tional experiments have shown that by requesting ε to be considerably small and by setting the

approximation time steps in the program to be 10−4 arbitrary units, we get minimizing of the

area of all uk(t) in such a way that the difference between the various solutions is negligible, as

it is below the sensitivity of experimental equipment used for monitoring the factors. For

example, for ε�1%, the maximal variation of coefficient b reflecting a concentration of a factor

in a media, is 3%, and maximal variations of coefficients a and c reflecting the time of existing

of the factor in media are 3%.

This means that the model suggests an approach to determine the secreted factors influenc-

ing the time-dependent cells behaviors leading to the stabilization of CSC population.

Predictions of putative production of secreted factors uk(t) by S or D cells

The identification of the cell type, stem or non-stem, producing the factor(s) influencing CSC

behavior might be important for basic research as well as for potential medical applications. In

order to provide a tool for such a prediction, we assumed that some factors uk(t) can be pro-

duced (completely or mostly) by S cells, others by D cells, while some factors may be without

explicit belonging to any type of these cells.

To account for this possibility, we have considered a set of functions Ukc(t) which provides

discriminatory dependence of a factor uk(t) on S or D cells kinetics:

UkcðtÞ ¼ ukðtÞMc; k ¼ 1 . . .K; c ¼ 1 . . . 3; ð27Þ

where Mc is a set of three functions: Mc = {s(t),d(t),1}.

This means that having an optimal set of factors uk(t), found at the previous step (Fig 6) for

a given set of parameters λi,γi and given kinetics pi(t), qi(t),we will consider all variants of mul-

tiplication of each function uk(t) on each of the functions s(t),d(t), and on the constant equal

to 1, with determining ε value for each Ukc(t) according to formula (26).

We can assume that the result of such a multiplication that gives the smallest ε value repre-

sents the possible dependence of the factors upon the types of cells (S or D cells). The variant

of multiplication on 1 means independence of a factor on S or D kinetic, which can reflect the

production of these factors evenly by both types of cells or their production by the

environment.

The results of the computation Ukc(t) for two selected cases are presented in the Table 2.

Two chosen experimental cases (A) and (B) for different sets of parameters λ1,λ2,γ1,γ2 are

presented, with four secreted factors uk for each of them. In Table 2, “S” or “D” means consid-

ering the dependence of a factor on S or D cells kinetics, while “1” means considering an inde-

pendence of a factor on any specific type of cells.
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Fig 7. An example of suggested Metabolome (Secretome) time–dependent experimental data required to detect a set of

underlying field factors by using the proposed mathematical modeling. In the presented illustration, metabolites N4 and N6
have kinetics in agreement with the ones found for factors u3(t) and u4(t) in Fig 6A.

https://doi.org/10.1371/journal.pone.0224787.g007
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The variant (1,1,1,1) marked in bold corresponds to the independence of all factors upon

any specific type of cells. All variants with better results (ε is smaller than in (1,1,1,1)) and

some chosen variants for the worse results (ε is larger than in (1,1,1,1)) are shown.

It can be seen that for the case (A): λ1 = 1,λ2 = 5,γ1 = 0,1,γ2 = 0,1, for K = 4 and without dif-

ferentiating multiplication (corresponding to the variant 1,1,1,1) ε = 1.373% (Table 2A). The

computation has shown that all other variants of multiplication give worse results (some

selected ones are shown), except for only one variant (S,D,D,S), though decreasing the value of

ε not considerably (ε = 1.298%). However, it still can be an indication of differential produc-

tion of the factors (t) by S or D cells.

Much stronger dependence on S and D kinetics is demonstrated in the other case (B): (A)

λ1 = 1,λ2 = 10,γ1 = 0,1,γ2 = 0,5, where for K = 4 and without differentiating multiplication the

lowest ε value was found as ε = 1.435%, while in the best variant with differentiating multipli-

cation (S,D,1,S), it decreases up to 1.013 (Table 2B). Also, the fact that in this case 25 variants

with differentiating multiplication give better results than the variant without considering the

dependence on S or D kinetics (1,1,1,1), can indirectly point on the necessity of concluding

this additional calculation in this concrete case. On the other hand, this fact can be an indicator

of instability of the found best variant of multiplication (for this case, all variants with better

Table 2. Possible dependence of the factors uk upon the type of producing cells (S or D cells).

(A) λ1 = 1,λ2 = 5,γ1 = 0,1,γ2 = 0,1 (B) λ1 = 1,λ2 = 10,γ1 = 0,1,γ2 = 0,5

u1 u2 u3 u4 ε(%) u1 u2 u3 u4 ε(%)

S D D S 1.298 S D 1 S 1.013

1 1 1 1 1.373 S D D S 1.015

S D S D 2.013 S 1 S D 1.236

S S D D 2.036 S 1 D S 1.236

D D S S 2.644 S 1 1 S 1.274

D D D S 2.741 S 1 S 1 1.275

D D D D 4.249 S D S S 1.321

S S S S 4.91 1 1 S S 1.33

D 1 1 1 7.379 1 D S S 1.338

1 S 1 1 1.361

1 S 1 D 1.362

1 1 S 1 1.366

1 1 S D 1.368

1 S D 1 1.372

1 S D D 1.373

S S D D 1.373

S S D 1 1.376

1 1 1 S 1.38

1 1 D S 1.385

1 D S 1 1.388

1 D S D 1.39

1 D 1 S 1.398

S D S 1 1.398

S D S D 1.4

1 D D S 1.401

1 1 1 1 1.435

S S S S 5.211

D 1 D 1 6.516

https://doi.org/10.1371/journal.pone.0224787.t002
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results (ε is smaller than in (1,1,1,1)) and some chosen variants for the worse results (ε is larger

than in (1,1,1,1)) are shown in Table 2B).

It is important to note, that in order to show a larger difference in multiplicative and non-

multiplicative outcome, we present in Table 2 the results of a differentiating multiplication,

which was started from the optimal sets of non-multiplied factors uk(t) obtained with the

requirement ε�1.5% corresponding to K = 4. The program started from the best non-multipli-

cative set obtained in stricter requirement ε�1% (presented on Fig 6, and corresponding to

K = 5 factors in the case (A) and K = 6 in the case (B)), gives the same qualitative results, i.e.,

the same dependence of particular factors on S and D kinetics, but with less significant

decrease of ε value for the resultant best multiplication.

This means that in order to obtain reliable results about the dependence of the underlying

field factors on S or D cells, one should apply the suggested computational program starting

with the optimal sets of non-multiplied factors uk(t) obtained for possibly high level of εp.

Conclusions

Using a set of theoretical assumptions and basic knowledge of cancer cells population behav-

ior, we suggest a mathematical approach which may help experimentalists gain insight into a

broad array of cancer cell fates using a limited amount of experimental measurements. The

computational program based on our model allows determining several important characteris-

tics of CSC behavior in a cancer cell population.

First, on the basis of a minimal set of experimentally measured values (rates of cell division,

of cell death and CSC population kinetics s(t)), our model enables the prediction of probabili-

ties of cell-line specific modes of S and D cells divisions, including the unusual D!S transition.

Second, the model explores the dynamics of cell-cell interaction factors uk(t) influencing can-

cer cells behavior (namely, the time-dependent probability of cell division modes pi(t) and qi

(t)). Finally, the model allows to concern the likelihood of production of these factors uk(t) by

S (stem) or D (non-stem) cells in the cancer cell population.

A potential drawbacks of the proposed model is that the key assumptions of the model are

pure theoretical and that the model is rather simple. For example, we do not take into the

account the effects of deterministic-stochastic interplay which was first considered for CSC

modeling in [37] and next developed in [58]. Another obvious limitation of the model is that

the suggested applications of it still have to be confirmed by biological experiments.

However, we can anticipate the development of several epistemological and practical appli-

cations regarding cancer cell behavior, which cannot be accomplished by using biological

methods only. As an example, the proposed work may give insight into evaluation of the risks

of cancer to relapse upon radio- or chemotherapy, based on the experimental measurement of

its CSC kinetics. Also, it may help to find the treatment achieving the most efficient suppres-

sion of cancer subpopulations, as well as the schedule achieving the best therapeutic results by

considering the predicted underlying field behavior. An essential part of this schedule may

depend on identifying the treatment time points at which elimination of specific underlying

field factors will be predicted as crucial for cancer population abolishment.
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