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• An effective feature-set has been obtained 
in determining the prognosis of COVID-19.

• ML methods can be used to reduce the 
pressure on COVID-19 intensive care units.

• The LWL, K*, NB, and KNN models were 
the most successful in detecting patients.
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Objectives: When the prognosis of COVID-19 disease can be detected early, the intense-pressure and 
loss of workforce in health-services can be partially reduced. The primary-purpose of this article is to 
determine the feature-dataset consisting of the routine-blood-values (RBV) and demographic-data that 
affect the prognosis of COVID-19. Second, by applying the feature-dataset to the supervised machine-
learning (ML) models, it is to identify severely and mildly infected COVID-19 patients at the time of 
admission.
Material and methods: The sample of this study consists of severely (n = 192) and mildly (n = 4010) 
infected-patients hospitalized with the diagnosis of COVID-19 between March-September, 2021. The 
RBV-data measured at the time of admission and age-gender characteristics of these patients were 
analyzed retrospectively. For the selection of the features, the minimum-redundancy-maximum-relevance 
(MRMR) method, principal-components-analysis and forward-multiple-logistics-regression analyzes were 
used. The features set were statistically compared between mild and severe infected-patients. Then, 
the performances of various supervised-ML-models were compared in identifying severely and mildly 
infected-patients using the feature set.
Results: In this study, 28 RBV-parameters and age-variable were found as the feature-dataset. The 
effect of features on the prognosis of the disease has been clinically proven. The ML-models with 
the highest overall-accuracy in identifying patient-groups were found respectively, as follows: local-
weighted-learning (LWL)-97.86%, K-star (K*)-96.31%, Naive-Bayes (NB)-95.36% and k-nearest-neighbor 
(KNN)-94.05%. Also, the most successful models with the highest area-under-the-receiver-operating-
characteristic-curve (AUC) values in identifying patient groups were found respectively, as follows: LWL-
0.95%, K*-0.91%, NB-0.85% and KNN-0.75%.
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Conclusion: The findings in this article have significant a motivation for the healthcare professionals to 
detect at admission severely and mildly infected COVID-19 patients.

© 2022 AGBM. Published by Elsevier Masson SAS. All rights reserved.
1. Introduction

COVID-19 that called severe acute respiratory syndrome con-
tinues to pose a threat as a global epidemic [1]. The symptoms 
of COVID-19 induced by the new pathogen SARS-CoV-2 are diffi-
cult to distinguish from other common infections in the majority 
of those infected [2]. As in many other diseases, it was stated that 
the total white blood cell count of COVID-19 patients was slightly 
decreased, but the lymphocyte count of these patients decreased 
significantly [3–5]. However, information on early prediction fac-
tors for severe cases is relatively limited and more research is 
needed [6].

While developing specific tests for the diagnosis of SARS-CoV-
2, these applications require specialized equipment and the re-
sources. In addition, the technological resources needed may be 
limited in many cases. Also, the less affluent regions are more 
affected by these impossibilities [2]. Therefore, predicting the di-
agnosis and prognosis of the disease without the use of advanced 
equipment and resources may help this global problem. For this 
purpose, more economical and faster alternative methods to assist 
clinical procedures are being developed rapidly [7,8].

Uncertainties in the routine blood values of COVID-19 patients, 
the difficulties in diagnosis and treatment have increased the in-
terest in the machine learning (ML) and artificial intelligence (AI) 
approaches from these alternative methods [9]. The most impor-
tant reason for this is the power of ML models to reveal hidden 
relationships between [9]. In this context, ML approaches are fre-
quently used in real-time decision making to reduce drug costs, 
improve patient health, and improve healthcare quality [9,10].

When the literature is reviewed, there are many attempts us-
ing the ML methods to predict the diagnosis and mortality of 
COVID-19 [7–13]. While most of these studies were based on the 
computed tomography (CT) scans and the chest X-rays [14], a few 
were based on the routine blood values (RBV) [10,13,14]. However, 
solutions based on the CT imaging are costly, and time consuming 
and require specialized equipment [14].

In addition, it is known that the RBV parameters, which are 
cheaper and can be measured quickly, are used in the diagnosis 
and prognosis of many viral diseases [10,13–16]. In this context, 
several clinical studies [10,14–17] have highlighted that diagnosis 
based on the routine blood testing can provide an effective and 
cost-effective alternative for the early detection and prognosis of 
COVID-19 cases. However, previous ML studies did not use many 
of the routine blood parameters and compared the performance 
of relatively few classifier models. Moreover, these studies gener-
ally focused on the early detection of COVID-19 disease. Further-
more, ML studies for the prediction of prognosis or the detection 
of severely/mildly infected patients in the early phase of COVID-19 
disease are relatively inadequate. Therefore, the early detection of 
severe and mild COVID-19 infected patients can reduce the pres-
sure on intensive care units (ICU) and help the crisis in healthcare 
[9–11,18].

The aim of this study is to detect severely and mildly in-
fected COVID-19 patients at admission with a fast and economical 
method and to determine infection risk classes. For this purpose, a 
three-stage process was applied.

✓ First, determine the routine blood parameters and demo-
graphic characteristics which affects the prognosis of the dis-
2

ease at the admission time (i.e. determine the features that 
affects the prognosis of the disease).

✓ Second, the determined features are fed into various super-
vised ML models in order to detect the mild and severe 
COVID-19 infected patients.

✓ Third, compare the performance of the supervised ML mod-
els based on several evaluation measures such as accuracy, 
positive predictive value, negative predictive value, specificity, 
sensitivity, and F-measure.

2. Materials and methods

This retrospective case study was conducted in accordance with 
the 1989 Helsinki Declaration and was approved by the Repub-
lic of Turkey Ministry of Health and Erzincan University Faculty of 
Medicine Clinical Research Ethics Committee. Between March and 
September 2021, data suitable for our criteria were collected from 
the information system of the Republic of Turkey Erzincan Binali 
Yıldırım University Mengücek Gazi Training and Research Hospital 
and included in the study.

Between the specified dates, the data of all patients whose rou-
tine blood tests were measured in our hospital were analyzed. The 
RBV data of the patients were the values measured at the time 
of admission. In addition, the treatment units (ICU and non-ICU), 
age and gender data of these patients were recorded. In the data 
preprocessing stage, firstly the data was converted to “csv” format 
and the string data was converted to the numerical data. Categor-
ical data were coded, the repeated measurements were averaged, 
the duplicate data were removed and quantitative data were nor-
malized. Missing blood data were complemented by the mean of 
the distribution of the relevant parameter. Then, patients with a 
diagnosis of COVID-19 were selected from all patients. A total of 
4202 patients with COVID-19 were given class labels by treatment 
unit (ICU and non-ICI). Then, feature selection was used to extract 
features from the dataset consisting of the 68 RBV tests and gen-
der and age variables [19]. In addition, the features were extracted 
by forward-stepwise multivariate logistic regression analysis and 
principal components analysis and the results were compared. The 
features (28 RBV tests and age variables) determined in common in 
all three methods and the class labels of the patients are presented 
in Table 1. In addition, the features in Table 1 were statistically 
compared between classes so that they could be evaluated clini-
cally. Accordingly, it was determined whether the selected features 
were effective in the prognosis of the disease (the difference be-
tween ICU and non-ICU).

Regarding the model training and evaluation, a two-step pro-
cedure was applied to minimize the risk of overfitting. First, the 
dataset was split into a training set (80% of samples) and a test set 
(20% of samples) using the stratified procedure. Second, the hyper-
parameters of the classifier models were optimized by grid search 
and the models were trained on the training set with 10-fold cross 
validation [9,20,21]. Finally, the performance of the models was 
evaluated on the test set for positive predictive value, negative pre-
dictive value, accuracy, sensitivity, specificity, and area under the 
receiver operating characteristic curve (AUC) [22]. In addition, in 
this study, classes represent whether the disease is severe or mild. 
Accordingly, as a result of the procedures, any patients’ COVID-19 
infection status (severe or mildly infected) is determined by esti-
mating that patient’s class label. At all stages of the model evalu-
ations, randomization was controlled to ensure the reproducibility 
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Table 1
Descriptive statistics of the feature dataset and comparison of these data between severely and mildly infected COVID-19 patients.

mildly infected patients severely infected patients p

Sex
Male n (%) 2015 (50.2) 105 (54.7) .45
Female n (%) 1995 (49.8) 87 (45.3)

Mean Median IQR Mean Median IQR

Age 55 57 30 69 71 24 <.001

Category Parameters Unit of measure

Biochemical
(Cobas 6000 
roche/serum 
sample)

ALT U/L 34.34 23.0 23.0 58.68 32.00 42.0 <.001
AST U/L 33.50 26.0 17.0 93.86 44.00 44.0 <.001
Albumin g/L 38.02 37.9 7.7 29.27 29.25 7.2 <.001
Alkaline phosphatase U/L 153.88 75.0 44.0 171.6 87.00 62.0 <.001
Iron (Fe) μmol/L 48.18 46.0 38.0 18.50 11.50 34.0 .01
Glucose mmol/L 133.28 107.0 49.0 191.6 163.00 122.0 <.001
Creatine kinase U/L 106.19 70.0 64.0 210.1 98.00 130.5 <.001
LDH U/L 262.94 237.0 102.00 452.2 351.00 369.0 <.001
Total bilirubin mg/dL .55 .46 .29 .81 .62 .45 <.001
Total protein g/L 68.19 68.26 9.1 59.12 58.50 10.4 <.001

Hematological
(Sysmex XE 
2100/whole 
blood)

Eosinophils count 109/L .11 .07 .12 .09 .04 .1 <.001
Hematocrit % 39.41 39.40 7.00 36.82 36.50 8.0 <.001
Hemoglobin g/L 13.25 13.30 2.50 12.05 11.90 2.9 <.001
Lymphocytes count 109/L 1.61 1.47 1.00 1.91 .73 .74 <.001
Monocytes count 109/L .53 .50 .28 .52 .44 .36 .01
Neutrophils count 109/L 4.44 3.76 2.85 9.99 8.58 7.09 <.001
Red blood cells 1012/L 4.70 4.70 0.78 4.31 4.30 1.03 <.001
RDW % 13.51 13.10 1.50 15.10 14.40 2.7 <.001
White blood cells 109/L 6.70 6.10 3.10 12.52 10.20 8.1 <.001

Inflammatory
cardiac and 
coagulation 
biomarkers
(STA–R 
MAX/Plasma 
Sample)

D-dimer μg/mL 1120.04 541.83 634.0 3659.2 1365.0 2992.9 <.001
C-reactive protein mg/L 28.08 10.20 30.86 88.92 79.0 107.9 <.001
Ferritin mg/L 242.59 142.45 256.1 549.7 433.4 680.5 <.001
Fibrinogen mg/L 336.63 327.79 76.7 357.9 359.70 71.4 <.001
INR 1.31 1.10 .13 2.21 1.20 0.26 <.001
Prothrombin time Sec 13.98 13.10 1.4 16.46 14.3 2.8 <.001
Procalcitonin mg/L 1.76 .12 .09 8.17 .39 6.4 <.001
ESR mm/h 27.99 20.00 31.0 47.38 45.50 50.0 <.001
Troponin ng/L 20.87 10.00 1.0 153.5 10.0 58.0 <.001

ALT: alanin aminotransferaz; AST: aspartat aminotransferaz; LDH: lactate dehydrogenase; MCVC: mean corpuscolar hemoglobin concentration; RDW: erythrocyte distribution 
width; INR: international normalized ratio; ESR: erythrocyte sedimentation rate; IQR: inter quartile range; p values indicated the comparison of severe and mild patients 
groups and they are bold when p < 0.05.
of the experiments. All processes in this study are summarized in 
Fig. 1.

2.1. Selection of patients and raw database

The results of 68 different routine blood tests measured at ad-
mission of 66000 thousand patients between the specified dates 
were obtained from the information system of the Republic of 
Turkey Erzincan Binali Yıldırım University Mengücek Gazi Training 
and Research Hospital. Routine blood tests of the patients consisted 
of biochemical, hematological and immunological tests.

In the recorded raw data, in addition to RBV data, patients’ 
diagnosis (COVID-19, heart disease, asthma, etc.), treatment units 
(ICU or non-ICU), age and gender were also included. The whole 
recording process took 20 hours. In the raw data consisting of 
66000 rows and 72 columns (66000x72 dimensions), the RBV and 
age variables were at quantitative scale, the diagnostic datas were 
at multinomial scale, the treatment unit and gender variable were 
at binomial scale level. Missing areas appeared as dots in the quan-
titative scale data. There were no missing fields in the nominal-
scale data. Also, some patients had more than one measurement 
result of some routine blood tests, and these results appeared in 
the same row and column. Besides, decimals or percentages of 
some quantitative data were appearing as strings. Among all pa-
tients, patients diagnosed with COVID-19 were filtered out. Then, 
individuals over the age of 18 were selected among the patients 
diagnosed with COVID-19. The diagnosis of COVID-19 was defined 
3

only in cases detected as the SARS-CoV-2 by rRT-PCR in the na-
sopharyngeal or oropharyngeal swabs at the dates covered by this 
study in our hospital.

Treatment units (ICU and non-ICU) were set as class labels. In 
this article, ICU patients (n = 192) were defined as “heavily in-
fected” and non-ICU patients (n = 4010) as “mildly infected”. Of 
the ICU patients, 105 (54.7%) were male and 87 (45.3%) were fe-
male. Of the non-ICU patients, 2015 (50.2%) were male and 1995 
(49.8%) female (Table 1). In this study, the dataset was unevenly 
distributed by class nature, as the number of patients with ICU la-
bels accounted for approximately 4.6% of all patients in the dataset.

2.2. Features extraction

When performing analysis with the complex and multidimen-
sional data, one of the biggest problems is the number of variables 
involved. Analysis with a large number of variables often requires 
large amounts of memory and computational power. Moreover, 
such data make require classification algorithms that can gener-
alize to new examples using the teaching example [19]. Feature 
extraction is the process of reducing sizes and identifying optimal 
features that can adequately separate the various classes to deal 
with high input features [22]. The concept of feature extraction is a 
general term for methods for generating a combination of variables 
to solve high precision problems [19]. In addition, determining and 
removing unnecessary variables in the data reduces the data size, 
reduces the computational load, and provides better performance 
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Fig. 1. Work flow diagram of this manuscript.
by enabling ML methods to work with a more meaningful feature 
set [22].

In this study, the Minimum Redundancy Maximum Relevance 
(MRMR) method in the enveloping method category was used for 
the selection of attributes [19,22]. The reason why this method is 
preferred is that the method aims not only to select an attribute 
according to its suitability for prediction, but also to reduce data 
redundancy by evaluating its correlation with other selected fea-
tures.

While MRMR aims to find the attributes that are maximum 
relevant to the target classes, it also tries to ensure that these se-
lected attributes are maximally different from each other. Given 
the above two conditions, MRMR simultaneously optimizes them 
by combining them into a single criterion function [23].

The first condition (minimum redundancy condition), which 
aims to find a set of features that are mutually maximally dissimi-
lar from each other, can be denoted as:

Min W I , W I = 1

|S|2
∑
i, jεS

I(i, j) (1)

where S is the subset of selected features, i and j represent variable 
i and variable j in the subset respectively, and I (i, j) is the mutual 
information function between variable i and variable j.

The second condition (the maximum relevance condition) is 
given by:

Max V I , V I = 1

|S|
∑
iεS

I(i, j) (2)

where h is the target variable.
The mutual knowledge (I) of the two variables x and y is de-

fined on the basis of their joint probability distributions p(x, y) and 
their respective marginal probabilities p(x) and p(y) as follows:
4

I(x, y) =
∑
i, j

p (xi, yi) log
p (xi, yi)

p (xi)p(yi)
(3)

As a result, the MRMR algorithm selects the features that are 
most related to the target variable but “least” correlated with each 
other [23].

In this study, the features selected by the MRMR method are 
presented in Table 1 along with the class label. In addition, the 
principal components analysis [24], which is popular in size reduc-
tion methods, and the forward-stepwise multiple logistic regres-
sion analysis [18], which is frequently used in the calculation of 
independent variables affecting the two-category dependent vari-
able, were used to validate the features. As a result of principal 
component analysis applied to the data set, the features presented 
in Table 1 formed the independent principal components. As a re-
sult of the forward-stepwise multiple logistic regression analysis 
applied to the data set, the odds-ratios of the features presented 
in Table 1 were significant.

Twenty-nine (29) features that were presented in Table 1 con-
sisted of features selected in common in all three approaches. 
Of the selected features, 10 were biochemical, 9 were hemato-
logical, 9 were immunological routine blood tests and 1 was age 
variable. The size of the data to be fed to the ML models after fea-
ture selection consisted of 4202 rows and 29 columns (4202x29 
dimensions). The 29 features given in Table 1 were set as the in-
dependent variable and the class label was set as the dependent 
variable.

2.3. Routıne blood laboratory testıng

Sysmex XN-1000 Hematology System (Sysmex Corporation, 
Kobe, Japan) was used to carry out cell blood count. Biochemi-
cal tests were analyzed by the spectrophotometric method using 
Beckman Coulter Olympus AU2700 Plus Chemistry Analyzer (Beck-
man Coulter, Tokyo, Japan) from serum. Ferritin was assessed 
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Fig. 2. A confusion matrix.

by an immunoassay of chemiluminescence (Centaur XP, Siemens 
Healthcare, Germany). Prothrombin time (PT) and fibrinogen were 
determined with a completely digital coagulation instrument of 
Ceveron-Alpha (Diapharma Group Inc., West Chester, Canada). 
C-reactive protein (CRP) was measured with the nephelometric 
method on BNTM II System (Siemens, Munich, Almanya). Procalci-
tonin (PCT), D-dimer and Troponin were analyzed from the whole 
blood on the AQT90 flex RadiometerVR (Bronshoj, Denmark). The 
erythrocyte sedimentation rate (ESR) was measured using TEST 1 
BCL device (Alifax, Padova, Italy) based on the principle of photo-
metric capillary flow kinetic analysis.

2.4. Model performance measures

The confusion matrix (Fig. 2) allows us to visualize the perfor-
mance of ML algorithms. The name of the confusion matrix comes 
from the fact that it makes it easy to determine whether the sys-
tem confuses the two classes. Each row and each column of the 
matrix represents the instances in a predicted/output class (the 
class that is predicted by the classifier), and the instances in an 
actual class (the class that is given in the data set), respectively (or 
vice versa) [25].

The performance of each supervised ML classifier in this study 
was expressed in terms of the AUC, F1 score, sensitivity, specificity, 
positive predictive value, negative predictive value, and accuracy. 
In addition, the mean square error (RMSE) and the mean abso-
lute error (MAE) values were calculated for the performance of the 
supervised ML models in the classification of severe and mild pa-
tients. In addition, the AUC value is a frequently preferred criterion 
for interpreting the results of studies with unbalanced data [22,26]. 
Therefore, the comparison of the success of the classifier models 
used in this study on the test data set was based on the AUC value 
(Table 3).

2.5. Classification models

The supervised ML models used in this study for the detection 
of COVID-19 patients according to the class labels are presented 
in Table 2 as three different categories. These classifier models are 
described below, respectively.

Logistic Regression (LR): In the LR method, not only a class la-
bel but also a class membership probability is given for a data 
item with the sigmoid function tool. Since the parameters can be 
interpreted in this classifier, the method is known as a parametric 
method [27].

Support Vector Machine (SVM): The SVM method is algorith-
mic applications of ideas from statistical learning theory that deal 
with the problem of generating consistent estimators from data. 
The SVM create optimal separation boundaries between datasets 
by solving a constrained quadratic optimization problem. Also, by 
using different kernel functions, varying degrees of nonlinearity 
and flexibility can be included in the model. In addition, the SVM 
5

Table 2
The supervised ML methods utilized in this manuscript.

Categories Method Abbreviation

Functions Logistic Regression LR
Support Vector Machines SVM
Voted Perceptron VP

Lazy-learning algorithms K Nearest Neighbor KNN
K star K*
Locally Weighted Learning LWL
Naive Bayes NB
Stochastic Gradient Descent SGD

Tree-based learning algorithms Decision Trees DT
Hoeffding Decision Trees HDT
Random Forest RF

is increasingly used because it can be derived by advanced sta-
tistical methods and the limits of the generalization error of the 
method can be calculated [27].

Voted Perceptron (VP): The VP method is an improvement ap-
proach of the perceptron algorithm. It is a preferred method for 
classifying noisy or undifferentiated data. The training phase of the 
algorithm does not change, the change is in how the method is ap-
plied to the test samples. The VP algorithm can be implemented 
with the same number of kernel calculations as the original per-
ceptron [28].

K Nearest Neighbor (KNN): The KNN classification method uses 
data directly for classification without creating a model. Therefore, 
the detail of the model structure is not taken into account and the 
only adjustable parameter in the model is k, the number of nearest 
neighbors to include in the class membership estimation [27].

K Star (K*): The K* method is a sample-based classifier devel-
oped for regression with a generalized distance function based on 
transformations. This algorithm uses an entropic measure based on 
the probability of transforming one sample into another by ran-
domly choosing among all possible transformations [29,30].

Locally Weighted Learning (LWL): The LWL method uses a 
sample-based algorithm, which can do both classification and re-
gression. The basic idea behind LWL is that any nonlinearity can be 
predicted by a linear model if the output surface is smooth. There-
fore, it is easy to approach nonlinear functions using simple local 
models instead of looking for a complex global model [31].

Naive Bayes (NB): The NB classifier method is a simple proba-
bilistic classification method based on the bayes theorem. It is an 
approach that calculates the probability that a new data belongs 
to any of the existing classes using sample data in the classified 
state. In this classifier, attributes are considered independent of 
each other. The all examples are equally important. The value of 
one property does not contain information about the value of an-
other property [32].

Stochastic Gradient Descent (SGD): The concept of stochastic 
means a system or process connected with random probability. 
The SGD method is a serious simplification algorithm. Instead of 
calculating the empirical risk gradient exactly, the SGD method es-
timates this gradient based on a single randomly selected sample 
at each iteration. The empirical risk gradient measures the train-
ing set performance. The sample is randomly mixed and selected 
to perform the iteration. In calculating algorithm parameters, SGD 
uses one or more training examples. Since this method does not 
need to examine the entire training set to update the weights, it is 
increasingly used in the classification of large data sets [33].

Decision Trees (DT): The DT method repeatedly splits the 
dataset according to a criterion that maximizes the separation of 
the data, resulting in a tree-like structure. The most common cri-
terion used is knowledge acquisition. This concept means that at 
each split, the entropy reduction resulting from that split is maxi-
mized [34].
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Table 3
Performance results of supervised ML models in detecting severely and mildly infected patients.

Classifier model PPV NPV Sensitivity Specificity F1 skore ACC AUC (%)
(95% CI) (95% CI) (95% CI) (95% CI) (95% CI) (95% CI)

LR 95.18 72.60 97.33 58.89 96.24 93.21 0.75
(95.91-98.36) (62.46-80.85) (95.91-98.36) (48.02-69.16) (91.30-94.82) (0.62-0.78)

SVM 93.44 46.43 92.00 57.78 92.71 88.33 0.64
(99.44-95.86) (39.10-53.92) (89.82-93.84) (46.91-68.12) (85.97-90.43) (0.52-0.71)

VP 94.86 44.17 91.07 58.89 92.92 87.62 0.61
(93.51-95.95) (37.27-51.30) (88.79-93.01) (48.02-69.16) (85.20-89.77) (0.51-0.68)

KNN 96.92 71.28 96.40 74.44 96.66 94.05 0.80
(95.67-97.81) (62.70-78.56) (94.81-97.61) (64.16-83.06) (92.23-95.55) (0.77-0.88)

K* 97.62 84.71 98.27 80.00 97.94 96.31 0.91
(96.44-98.41) (76.19-90.55) (97.05-99.07) (70.25-87.69) (94.80-97.48) (0.75-0.93)

LWL 98.41 92.86 99.20 86.67 98.80 97.86 0.95
(97.34-99.06) (85.37-96.66) (98.27-99.71) (77.87-92.92) (96.63-98.73) (0.85-0.96)

NB 97.34 78.65 97.47 77.78 97.40 95.36 0.85
(96.13-98.18) (69.99-85.34) (96.07-98.47) (67.79-85.87) (93.71-96.68) (0.80-0.88)

SGD 95.01 45.76 91.47 60.00 93.21 88.10 0.63
(93.66-96.09) (38.73-52.97) (89.23-93.37) (49.13-70.19) (85.71-90.21) (80.51-0.67)

DT 94.77 45.61 91.73 57.78 93.23 88.10 0.62
(93.42-95.85) (38.40-53.02) (89.53-93.60) (46.91-68.12) (85.71-90.21) 0.54-0.66

HDT 95.28 70.13 96.93 60.00 96.10 92.98 0.74
(94.00-96.30) (60.28-78.41) (95.43-98.05) (49.13-70.19) (91.03-94.61) 0.71-0.82

RF 95.40 55.45 94.00 62.22 94.70 90.60 0.67
(94.08-96.43) (47.32-63.29) (92.05-95.59) (51.38-72.23) (88.42-92.48) 0.58-0.71

CI: confidence ınterval; LR: Logistic Regression; SVM: Support Vektör Machine; VP: Voted Perceptron; KNN: K Nearest Neighbor; K*: K Star; LWL: Locally Weighted Learning; 
NB: Naive Bayes; SGD: Stochastic Gradient Descent; DT: Decision Tables; HDT: Hoeffding Decision Trees; RF: Random Forest.
Hoeffding Decision Trees (HDT): The HDT method is a deci-
sion tree classifier that is used effectively on the large data sets 
by reading and processing each sample at most once. This algo-
rithm eliminates the storage problems of traditional decision tree 
algorithms such as ID3 and C4.5 and creates even very complex de-
cision trees with an affordable computational cost. The algorithm 
uses the Hoeffding boundary value to decide how to split the node 
at each node of the decision tree [34].

Random Forest: The RF method that is a classification algorithm 
is based on the several decision trees. To classify a new object, 
each decision tree provides a classification for the input data and 
RF uses this classification mode to decide on the class [35].

2.6. Statistical analysis

The categorical variables were presented as frequency, and the 
continuous variables as mean, median and interquartile range (IQR) 
(Table 1). The normality of the data was checked with the shapiro-
wilk test and the homogeneity of the variances was examined with 
the Levene test. When comparing quantitative variables between 
severe and mild patient groups, the mann-whitney U test was used 
if the data did not show normal distribution, and the t test was 
used if it was normally distributed. The categorical variables were 
analyzed with χ2 test. P value < 0.05 was considered significant.

3. Experiments and results

In this study, Python (version: 3.8) programming language and 
the numpy (version 1.19), pandas (version 1.1) and scikit-learn 
(version 0.23) libraries were used for data preprocessing stages, 
feature selection, parameter optimization and evaluation of perfor-
mance results of the ML models. Also, 80% of the feature dataset 
was used for training the ML models and 20% for testing. SPSS 
(version 20.0, SPSS Inc, Chicago) package program was used for 
statistical calculations and p < 0.05 was considered significant. All 
experiments were run on a PC (Windows 10) with a Core i5, 16 GB 
RAM, 500 GB SSD and 3.20 GHz and taking a total of 86 hours.
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The gender and age distributions of 192 “severe” and 4010 
“mildly” infected COVID-19 patients included in this study are pre-
sented in Fig. 3. As a result of the chi-square (χ2) analysis per-
formed between the patient groups, it was seen that the “gender” 
variable did not affect the severity of the disease (p = 0.45, Fig. 2, 
Table 1). Accordingly, male or female gender did not affect the 
severity of the disease.

In this study, the clinical significance of the effect of the fea-
ture set (28 routine blood tests and age variable) extracted from 
the data set on the prognosis of the disease was examined via 
mann-whitney U analysis (Table 1). When the ages of severely and 
mildly infected patients were compared, the age of severe patients 
was significantly higher (p = 0.00, Fig. 2, Table 1). Accordingly, ad-
vanced age was found to increase the severity of the disease in 
COVID-19. In addition, all the biochemical, hematological and im-
munological routine blood tests in feature set were significantly 
different between severely and mildly infected COVID-19 patients 
(p < 0.05). Accordingly, the entire feature set was found to be pre-
dictors of disease prognosis or severity.

As seen in Table 1, the alanin aminotransferaz (ALT), aspartat 
aminotransferaz (AST), lactate dehydrogenase (LDH), creatine ki-
nase myocardial band (CK-MB), gamma glutamyl transferase (GGT), 
alkaline phosphatase, direct bilirubin, glucose, creatine kinase, 
magnesium, sodium, total bilirubin and urea biochemical values 
were higher in severe patients when compared to mild patients. 
However, the albümin, ıron (Fe), calcium and total protein bio-
chemical values were lower in severe patients when compared to 
mild patients.

As seen in Table 1, the lymphocytes count (LYM), neutrophils 
count (NEU), white blood cells (WBC), mean corpuscular volume 
(MCV), mean platelet volume (MPV) and erythrocyte distribution 
width (RDW) hematological values were higher in severe patients 
when compared to mild patients. However, the eosinophils count 
(EOS), monocytes count (MONO), red blood cells count (RBC), 
hematocrit, hemoglobin and (mean corpuscolar hemoglobin con-
centration (MCVC) hematological values were lower in severe pa-
tients when compared to mild patients.
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Fig. 3. Comparison of the distributions of gender and age of mild and severe COVID-19 infected patients.
As seen in Table 1, the D-dimer, C-reactive protein (CRP), fer-
ritin, fibrinogen, international normalized ratio (INR), prothrom-
bin time (PT), procalcitonin, erythrocyte sedimentation rate (ESR) 
and troponin immunological values were higher in severe patients 
when compared to mild patients.

The classification performances and 95% confidence intervals on 
the test dataset of the supervised ML models trained to detect 
severely and mildly infected COVID-19 patients are presented in 
Table 3. The performance criteria used in the evaluation of the 
classifier models are defined as follows for this study: the con-
cept of sensitivity accurately describes the mildly infected patients, 
while specificity accurately describes the severely infected patients. 
Here, the sensitivity value can be increased at the expense of the 
specificity value by lowering the detection threshold of the pa-
tients. For this reason, the AUC values which have commonly used 
in model evaluations were also examined. This AUC concept is 
the area under the receiver operating characteristic curve (ROC), 
and the curve is plotted against sensitivity versus “1-specificity”. 
The higher AUC value generally means a better performing model. 
The concept of accuracy (ACC) defines what percentage of all the 
patients are correctly classified by the ML model (Fig. 5). The dis-
advantage of using the concept of accuracy alone in an unstable 
dataset is that accuracy can be high even against zero precision. 
The concept of the F1-score value shows the harmonic mean of the 
precision and recall values. The reason why harmonic averaging is 
taken instead of a simple average is that extreme values are not 
ignored. The concept of positive predictive value (PPV) indicates 
the probability of a patient in the sample being mildly infected, 
while the negative predictive value (NPV) indicates the probability 
of being severely infected. The confusion matrices of the highest 
accuracy result on the test set of the ML models used in this study 
are presented in Fig. 4. The classification performances of the mod-
els were calculated with the following equations (4)–(11) [36–38], 
run on the matrices presented in Fig. 4 (Table 3).

PPV(precision) = tp

tp + f p
(4)

NPV = tn

tn + f n
(5)

Specificity = tn
(6)
tn + f p
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Accuracy = tp + tn

tp + tn + f n + f p
(7)

Sensitivity(recall) = tp

tp + f n
(8)

F − measure = (2 × precision × recall)

(precision + recall)
(9)

In addition, the RMSE and MAE error metrics of the models 
were calculated to evaluate the success of the supervised ML mod-
els used in this study in detecting severely and mildly infected 
patients (Table 4). The MAE shows the average amount of errors 
in the set of model predictions [39,40]. In other words, the MAE 
is the average result of the test data between the model estimates 
and the actual data, where all individual differences are equally 
weighted.

The RMSE can be defined as the standard deviation of the fore-
cast errors. Prediction errors, also known as residuals, are a mea-
sure of the distance from the actual data points. Therefore, the 
RMSE is an indication of how dense the actual data points are 
around the line of best fit [39,40]. The MAE and RMSE metrics 
measure the rate of error in classification of any ML model as a 
percentage. The fact that these error rates are less than 10% indi-
cates that the classification success of the models is high [41,42]. 
The error metrics of the classifier models used in this study were 
calculated with the following equations (10) and (11) [39,40].

M AE = 1

n

n∑
j=1

∣∣yi − ŷi
∣∣ (10)

RM S E =
√√√√1

n

n∑
i=1

(yi − ŷi)
2 (11)

When Table 3 is examined, the overall accuracy of all super-
vised ML models used in this paper in detecting severe and mildly 
infected patients with COVID-19 was over 87%. The supervised ML 
models with the highest sensitivity in detecting the mild patients 
were the LWL (99.20%, 95% CI: 98.27-99.71), the K∗ (98.27%, 95% 
CI: 97.05-99.07), the NB (97.47%, 95% CI: 96.07-98.47) and the 
KNN (96.40%, 95% CI: 94.81-97.61), respectively. The supervised 
ML models with the lowest sensitivity were the DT (91.73%, 95% 
CI: 89.53-93.60), the SGD (91.47%, 95% CI: 89.23-93.37) and the 
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Fig. 4. Confusion matrix results of the ML models used in this study on the test dataset. LR: Logistic Regression; SVM: Support Vektör Machine; VP: Voted Perceptron; KNN: 
K Nearest Neighbor; K*: K Star; LWL: Locally Weighted Learning; NB: Naive Bayes; SGD: Stochastic Gradient Descent; DT: Decision Tables; HDT: Hoeffding Decision Trees; RF: 
Random Forest.
Table 4
Error metric results of supervised ML models in detecting mild and severe COVID-19 
patients.

Classifier model MAE (%) RMSE (%)

LR 6.05 24.02
SVM 2.96 17.22
VP 3.71 19.25
KNN 5.31 20.29
K* 5.5 19.53
LWL 6.58 19.88
NB 7.6 25.30
SGD 3.65 19.11
DT 8.23 20.00
HDT 11.14 23.82
RF 6.21 18.35

CI: Confidence Interval; LR: Logistic Regression; NB: Naive Bayes; SGD: Stochas-
tic Gradient Descent; SVM: Support Vector Machine; VP: Voted Perceptron; KNN: 
K Nearest Neighbor; LWL: Locally Weighted Learning; MC: Multi Classifier; DT: 
Decision Tables; HDT: Hoeffding Decision Trees; RF: Random Forest; MAE: Mean 
Absolute Error; RMSE: Root Mean Squared Error.

VP (91.07%, 95% CI: 88.79-93.01), respectively. The supervised ML 
models with the highest specificity in detecting the severe COVID-
19 patients were the LWL (86.67%, 95% CI: 77.87-92.92), the K∗
(80.00%, 95% CI: 70.25-87.69), the NB (77.78%, 95% CI: 67.79-85.87) 
and KNN (74.44%, 95% CI: 64.16-83.06), respectively. In addition, 
LWL, K*, NB and KNN models had the highest NPV rate (92.86%, 
84.71%, 78.65%, 71.28%), respectively. According to these results, 
8

it can be said that the LWL, K∗ , NB and KNN models detect the 
severely infected patients more accurately than the other models.

As seen in Table 3, the sensitivity and PPV values of the models 
were close to each other, showing that the methods gave accu-
rate and reliable results in identifying the mildly infected patients. 
However, the difference between specificity and negative predic-
tive values was greater. Accordingly, it can be said that this classi-
fier models are less reliable in detecting severely infected patients 
than the detection of mild patients.

The performance of ML models can sometimes increase in fa-
vor of sensitivity and sometimes specificity [41,42]. Therefore, the 
AUC value is an important criterion in evaluating the classifica-
tion performance of models in the ML studies [11]. In this paper, 
the ROC curve represents the ratio of patients identified as truly 
mild through any ML model to patients mistakenly identified as 
mildly infected. In this manuscript, among the supervised ML mod-
els used to detect severe and mild patients, those with the highest 
AUC values were as follows, respectively: LWL with 0.95 (95% CI: 
0.85-0.96), K* with 0.91 (95% CI: 0.75-0.93, NB with 0.85 (95% CI: 
0.80-0.88) and KNN with 0.80 (95% CI: 0.77-0.88) (Table 3, Fig. 5).

Also, the F1-score, which measures the agreement between pre-
cision and sensitivity, was over 92.00% in all supervised ML models 
used in this manuscript. This result shows that the performances 
of the ML models used in the manuscript, especially in the detec-
tion of mild patients, is high and their results are reproducible. In 
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Fig. 5. Receiver operating characteristic curves (ROC) and AUC results of ML models for detecting severely and mildly COVID-19 infected patients.
this study, the models with the highest F1 scores were as follows: 
LWL with 0.98%, K* with 0.97%, NB with 0.97% and KNN with 96%.

Moreover, the MAE and RMSE error rates of the supervised ML 
models used to detect severely and mildly infected patients in this 
manuscript were calculated (Table 4). The MAE error rate of the 
all models was below 10% (except the HDT model) and the RMSE 
error rate was 20% on average. In this manuscript, the amount of 
error rate of the supervised ML models used in the detection of 
mild and severe patients is at an acceptable level according to the 
literature [13,41].

4. Discussion

COVID-19 spread rapidly around the world and infected mil-
lions of people. Despite the abundance of publications, many are 
contradictory and many pathological aspects of this disease remain 
unclear [43]. During the course of the disease, changes are ob-
served in many biochemical parameters as well as hematological 
abnormalities [43,44]. Due to the high death rates of this pan-
demic, a serious struggle against the disease continues all over the 
world [45,46].

In addition, the indication that complications may occur during 
the treatment process of COVID-19 efforts has made to predict the 
prognosis of the disease at an early stage important [9,46–51]. In 
this context, it is important for the patients and health services to 
determine the severe or mildly infected status of individuals with 
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COVID-19 at the first application. While this paper has some lim-
itations, the findings may provide a strong motivation to identify 
severe and mild COVID-19 patients at admission.

In this article, RBV results at admission, and age and gender 
data of 4202 patients (n = 4010 mild and n = 192 severe pa-
tients) hospitalized with the diagnosis of COVID-19 were recorded 
(see section 2). After a series of data preprocessing (Fig. 1) was 
applied on the data set, the features were selected. In order to 
clinically evaluate the impact of selected features on the prognosis 
of the disease, these features were statistically compared between 
the severely and mildly covid-19 infected patients (Table 1). Then, 
80% of the feature dataset was used as training and 20% as test 
dataset to detect severe and mild COVID-19 infected patients with 
ML models. Then, the performances of the ML models in detect-
ing the severe and mild patients were compared. In this study, it 
was seen that the selected feature dataset (Table 1) can be used 
in the prognosis of COVID-19. In addition, it was found that super-
vised ML models trained with the selected feature dataset could 
successfully detect the severely and mildly infected COVID-19 pa-
tients.

The fact that the ML models provide fast and reliable results in 
the diagnosis and prognosis of many diseases has increased its use 
in this concept. However, some problems are discussed with their 
use in this context. For example, with the progression of the dis-
ease, different complications may occur and accordingly, it may be 
difficult to determine the severity of the disease. Indeed, Tharwat 
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has addressed this situation in several perspectives: 1) He stated 
that differences in the laboratory test results between infected and 
uninfected patients in the early phase of the disease may be un-
clear. 2) He emphasized that practically not all the patients can be 
measured with the comprehensive laboratory tests, so there may 
be missing values in the data set [38].

Despite these complications, in this study, the supervised ML 
models using the feature set (Table 1) extracted from the dataset of 
a large patient population performed strongly in detecting patient 
groups and provided accurate predictions. Also, the feature set that 
is effective in the prognosis of the disease was evaluated between 
the severe and mild patients, and its clinical reliability was proven.

In this article, it was seen that the gender variable did not affect 
whether the COVID-19 infection was mild or severe (Table 1 and 
Fig. 2). However, the age of severely infected COVID-19 patients 
was significantly higher than the age of mildly infected COVID-19 
patients (Table 1 and Fig. 2). This result was found to be compati-
ble with the literature [52,53].

In this study, ALT, AST, LDH, CK-MB, GGT, alkaline phosphatase, 
direct bilirubin, glucose, creatine kinase, magnesium, sodium, total 
bilirubin, and urea biochemical test results in the feature dataset 
were higher in severely infected COVID-19 patients when com-
pared to mildly infected patients. In addition, the iron (Fe) value 
was lower in the severe patients in this manuscript. Similarly, in 
many studies, it was stated that the ALT, AST, LDH, total biliru-
bin, direct bilirubin, creatine kinase values increased in the severe 
COVID-19 patients and the hemoglobin value decreased signifi-
cantly when compared to mildly infected patients [5,6,52–54].

Also, in this manuscript, the LYM, NEU, WBC, MCV, MPV and 
RDW hematological values were higher in the severe patients. 
However, the EOS, MONO, RBC, hematocrit, hemoglobin and MCVC 
hematological values were lower in the severe patients when com-
pared to the mild patients. Similarly, in a study, it was stated that 
the LYM, EOS, MONO, RBC and RDW values were lower, while 
the NEU and WBC values were higher in the severe COVID-19 pa-
tients when compared to mild COVID-19 patients [11]. In another 
study, the leukocyte, NEU and LYM values were higher in the non-
surviving COVID-19 patients than in the surviving patients [54,55].

Moreover, in this manuscript, the CRP, ESR, INR, PT, D-dimer, 
ferritin, fibrinogen, procalcitonin and troponin immunological val-
ues were higher in the severe COVID-19 patients when com-
pared to the mild COVID-19 patients. Likewise, in many studies, 
significantly increases in the CRP, D-dimer, PT, INR, ferritin and 
procalcitonin levels were noted in the severe COVID-19 patients 
[5,6,18,55].

In one study, it was stated that the ML models run with the 
RBV parameters are based on the clinical features and can be used 
for processes such as diagnosis and prognosis of the disease [9]. In 
another study, the RBV were applied to ML models for rapid and 
cost-effective identification of COVID-19 patients [11]. Cabitza et 
al. reported that ML models in which RBV are applied can be both 
an adjunct and an alternative method to rRT-PCR [11]. In addition, 
Cabitza et al. stated that ML results can provide information about 
the level of infection risk and can be used in rapid triage and quar-
antine of high-risk patients [11].

Another study was proposed an ML model combining CT find-
ing, clinical symptoms, CRP, neutrophil and leukocyte counts, age, 
and gender to aid in the diagnosis of COVID-19 infection [15]. In 
another study, 27 RBV data and demographic characteristics (age, 
gender) of patients were applied to Logistic regression, Decision 
tree, Random forest, Gradient boosted decision tree models to be 
used in the diagnosis of COVID-19 [17]. Many other studies have 
reported the performance of the different ML and neural network 
models using the RBV for the diagnosis of COVID-19 [2,11,15,50]. 
However, previous studies using the ML models in the diagnosis 
of the disease relied on relatively less the RBV data and patient 
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samples were generally smaller than in this study. Also, the lack 
of adequate the ML studies to identify the severe and mild COVID-
19 patients at the first admission is an important aspect of this 
manuscript.

The overall accuracy rate of all the supervised ML models used 
in this study in detecting severe and mild COVID-19 patients was 
over 87%. In addition, the models with the highest overall accu-
racy were LWL with 97.86%, K* with 96.31%, Naive Bayes with 
95.36% and KNN with 94.05%, respectively. In this manuscript, 
the supervised ML models that was used to detect the severe 
and mild COVID-19 patients had high sensitivity (mean 96.00%) 
and a high positive predictive value (mean 97.00%). Accordingly, 
the supervised ML models that was used in the manuscript pre-
dicted the mildly infected patients with high accuracy and pre-
cision (high reproducibility). However, this supervised ML mod-
els were relatively less successful in detecting the severe pa-
tients. In addition, in this article, the models that best detected 
mildly and severely COVID-19 infected patients were as follows, 
respectively: the LWL (sensitivity-specificity: 99.20% - 86.20%), the 
K* (sensitivity-specificity: 98.27% - 80.00%), the NB (sensitivity-
specificity: 97.47% - 77.78%) and the KNN (sensitivity-specificity: 
96.40% - 74.44%).

On the other hand, considering the detection of all severely and 
mildly infected COVID-19 patients in the test dataset, the most 
successful supervised ML models with the highest AUC value were, 
respectively: LWL (0.95%), K* (0.91%), NB (0.85%) and KNN (0.80%) 
(Table 3 and Fig. 3). However, all the supervised ML models that 
was used in the manuscript had low MAE (mean 10%) and RMSE 
(mean 20%) error rates in the classifying patients. With this result, 
it can be said that these ML models are successful in detecting the 
mild and severe patients. As a matter of fact, it was stated that if 
the error rate in the estimation of any classification model is 0-
10%, the model is a very good classifier, and if it is 10-20%, the 
model is a good classifier [13,40,41].

5. Limitations of the study

The data set in this manuscript does not include the comor-
bidities of patients and inpatient/outpatient follow-up. However, in 
practice, it is seen that a training set collected within a certain pe-
riod of time cannot meet all these demands.

6. Conclusion

The determining mild or severe infection status of the COVID-
19 patients according to the various diagnostic tests and imaging 
results may be costly, take a long time and the different compli-
cations may occur in this process. Therefore, although this article 
has some limitations, this study can provide a quick motivation for 
the detection of severe and mildly infected patients with COVID-
19 according to only the RBV and age data measured at hospital 
admission.

In this manuscript, a feature dataset was obtained after a se-
ries of data preprocessing and clinically proven to be effective in 
the prognosis of the disease (Table 1). This dataset may have di-
agnostic significance in identifying the severe and mild COVID-19 
patients. Also, in this manuscript, the severe and mild COVID-19 
patients were largely correctly identified by the various super-
vised ML models using this feature dataset. The overall accuracy 
rate of the supervised ML models used was over 87%. In addi-
tion, the models with the highest overall accuracy rate were LWL 
with 97.86%, K* with 96.31%, Naive Bayes with 95.36% and KNN 
with 94.05%, respectively. The supervised ML models most suc-
cessful in detecting the severe and mild COVID-19 patients in this 
manuscript were ranked as follows, with the highest AUC value: 
LWL (0.95%), K* (0.91%), NB (0.85%) and KNN (0.80%).
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The findings in this manuscript have significantly predictive po-
tential for healthcare professionals in detecting the severely and 
mildly COVID-19 infected patients at admission. The most success-
ful the supervised ML models in the manuscript can also be used 
as an integrated practice to reduce the negative factors such as 
an excessive workload and poor service quality in the health care 
units.
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