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Abstract

Lentinus tigrinus is a species of wood-decaying fungi (Polyporales) that has an agaricoid form (a gilled mushroom) and a

secotioid form (puffball-like, with enclosed spore-bearing structures). Previous studies suggested that the secotioid form is

conferred by a recessive allele of a single locus. We sequenced the genomes of one agaricoid (Aga) strain and one secotioid

(Sec) strain (39.53–39.88 Mb, with 15,581–15,380 genes, respectively). We mated the Sec and Aga monokaryons, geno-

typed the progeny, and performed bulked segregant analysis (BSA). We also fruited three Sec/Sec and three Aga/Aga

dikaryons, and sampled transcriptomes at four developmental stages. Using BSA, we identified 105 top candidate genes

with nonsynonymous SNPs that cosegregate with fruiting body phenotype. Transcriptome analyses of Sec/Sec versus Aga/

Aga dikaryons identified 907 differentially expressed genes (DEGs) along four developmental stages. On the basis of BSA and

DEGs, the top 25 candidate genes related to fruiting body development span 1.5 Mb (4% of the genome), possibly on a

single chromosome, although the precise locus that controls the secotioid phenotype is unresolved. The top candidates

include genes encoding a cytochrome P450 and an ATP-dependent RNA helicase, which may play a role in development,

based on studies in other fungi.
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Introduction

Mushrooms, the fruiting bodies of Agaricomycetes (Fungi,

Basidiomycota), can be divided into two artificial groups

based on morphology: hymenomycetes, which produce

spores on the surface of the fruiting body, and gasteromy-

cetes, which produce spores internally. Hymenomycetes in-

clude gilled mushrooms (“agarics”), toothed fungi, polypores,

coral fungi, and crust fungi, whereas gasteromycetes include

puffballs, truffles, stinkhorns, earthstars, and bird’s nest fungi.

Gasteromycetes have evolved at least 120 times from hyme-

nomycete ancestors (Hibbett et al. 2007; S�anchez-Garc�ıa M,

Ryberg M, Hibbett D, unpublished data). Evolution of gaster-

omycetes involves enclosure of the hymenophore (comprising

the spore-bearing structures), and loss of a complex mecha-

nism of spore discharge, called ballistospory, which is presum-

ably irreversible (Hibbett 2004; Liu et al. 2017).

Most gasteromycetes bear scant resemblance to their clos-

est hymenomycete relatives, and their phylogenetic place-

ments have only been resolved with molecular data.

Exceptions include the so-called “secotioid” fungi, which

are gasteromycetes that retain gross morphological similarities

to certain hymenomycetes (Thiers 1984; Bruns et al. 1989).

Some secotioid fungi resemble mushrooms in which the cap

fails to open (interpreted as a “developmental arrest”), and a

few have retained ballistospory (Desjardin et al. 1995).

Secotioid fungi may provide clues to the early stages of mor-

phological transformations from hymenomycetes to gastero-

mycetes, but the genetic bases of such transformations are

obscure (Nagy et al. 2018).

Lentinus tigrinus is a white-rot wood-decaying mushroom

that has both an agaricoid form, with exposed gills, and a

secotioid form (fig. 1). In both forms, the gills originate as

ridges of tissue on the surface of the young fruiting body,

but in the secotioid form a layer of hyphae later proliferates

from the margins of the developing gills and eventually enc-

loses the hymenophore (Hibbett et al. 1994). Both forms are

ballistosporic, but only the agaricoid form releases spores into

the air; in the secotioid form the spores are trapped within the

fruiting body.

Analyses of heritability have suggested that the secotioid

phenotype is conferred by a recessive allele of a single gene

(Rosinski and Faro 1968; Hibbett et al. 1994), but the identity

of the locus is unknown. Lentinus tigrinus is widely reported in

North America, Eurasia, and North Africa, but the secotioid

form only occurs in North America (Pegler 1983). A phyloge-

netic study of Lentinus with broad geographic sampling sug-

gested that the North American populations of L. tigrinus

form a monophyletic group, separate from Eurasian popula-

tions (Grand et al. 2011), which is consistent with the view

that evolution of the secotioid form is a recent innovation,

perhaps the consequence of a single mutation.

We sequenced two strains of L. tigrinus with agaricoid and

secotioid forms, and identified genomic regions associated

with phenotypes using bulked segregant analysis (BSA). We

also examined gene expression between the two phenotypes

across four developmental stages. We thus identified 25 top

candidate genes, based on both BSA and gene expression

criteria, which are likely to be on the same chromosome.

Materials and Methods

Culturing and genetic crosses used methods previously de-

scribed for L. tigrinus (Hibbett et al. 1993, 1994) and DNA

and RNA were obtained from mycelia of Lenti6 (Aga) and

Lenti7 (Sec) cultured on liquid malt extract media or from

fruiting bodies. Library construction, DNA sequencing, and

genome assembly and annotation were conducted at the

JGI. Detailed methods including SNP, BSA, and transcriptome

analyses are described in Supplementary Material.

Strain Development, Genome Sequencing,
Assembly, and Annotation

We obtained three wild dikaryons of L. tigrinus from the

USDA Forest Products Laboratory, Madison WI, including

two derived from secotioid specimens, DAOM-54158

(Michigan) and FP-102501-T (Illinois), and one from an agari-

coid specimen, RLG-9953-Sp (Arizona). DAOM-54158 and

FP-102501-T produced secotioid fruiting bodies on sawdust-

wheat bran medium, and RLG-9953-Sp produced agaricoid

fruiting bodies (fig. 1). An F1 cross between single spore iso-

lates (SSIs) derived from DAOM-54158 and RLG-9953-Sp

yielded a dikaryon with an agaricoid fruiting body, from which

10 SSIs were obtained, self-crossed to determine mating com-

patibility, and then mated to a tester strain from FP-102501-T

(fig. 2, steps 1–7). Six of the resulting dikaryons produced

secotioid fruiting bodies and four produced agaricoid fruiting

bodies, which is consistent with prior results suggesting that

the secotioid form is conferred by a recessive allele of a single

locus. Two additional rounds of self-crossing were performed

(intended to purge heterozygosity outside of the mating type

and fruiting body morphology loci), yielding monokaryons

Lenti6, carrying the genotype of the agaricoid form (Aga),

and Lenti7, with the genotype of the secotioid form (Sec)

(fig. 2, steps 8–13). A dikaryon obtained by mating Lenti6

and Lenti7 produced an agaricoid fruiting body (fig. 1C).

We isolated genomic DNA from cultures in liquid media,

conducted Illumina sequencing, and obtained assemblies of

39.88 Mb distributed among 286 scaffolds (97.8� average

coverage) for Lenti6, and 39.53 Mb on 207 scaffolds

(96.2� average coverage) for Lenti7, containing 15,581 and

15,380 protein-coding genes, respectively (supplementary ta-

ble S1, Supplementary Material online). Subsequent descrip-

tions of genome contents refer to Lenti7 owing to its superior

assembly (except as noted).

To assess synteny between genomes we used nucmer

(Kurtz et al. 2004) to map all scaffolds >0.5 Mb, which
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comprise 22 Mb (56%) of Lenti6 (23 scaffolds) and 25 Mb

(64%) of Lenti7 (19 scaffolds). Lenti6 and Lenti7 share a

high degree of conservation, with only a few blocks rear-

ranged, notably a rearrangement between scaffold 1 of

Lenti7 and a combination of scaffolds 4 and 8 from Lenti6

(fig. 3A). Because of the length cutoff, some scaffolds do not

show their synteny blocks in the plot. The high similarity

extends to the whole genome level. Between the two

genomes, only 86 rearrangements and 50 inversions were

found among 1,404 conserved synteny blocks (96% of the

total genome length), with as high as 99% average identity.

We focused on genes encoding decay enzymes (see sup-

plementary text, figs. S1 and S2, and table S2, Supplementary

Material online) and homologs of genes that have previously

been suggested to play roles in fruiting body development in

Agaricomycetes, including genes encoding transcription fac-

tors (TFs) (fst3, fst4, bri1, gat1, hom1, hom2, and c2h2;

Ohmet al. 2010), hydrophobins (hypA and sc14; Wessels

et al. 1991; Lugones et al. 1998; Santos and Labarere 1999;

Banerjeeet al. 2008), and components of light-signaling path-

ways (wc1, wc2, dst2, and cryA; Terashima et al. 2005;

Corrochano 2007; Kuratani et al. 2010; fig. 4). Lenti7 pos-

sesses 286 genes encoding TFs, including four copies of fst3,

eight copies of fst4, and one copy each of bri1, gat1, and

hom1 (supplementary table S3, Supplementary Material on-

line), based on BLAST searches using queries from Coprinopsis

cinerea and Schizophyllum commune. Lentinus tigrinus also

has one copy each of wc1, wc2, dst2, and cryA, 35 genes

homologous to hypA of Agaricus bisporus and five genes

homologous to sc14 of S. commune (fig. 4). The complement

of putative developmental genes in L. tigrinus is typical for

Agaricomycetes, based on a comparison of 118 genomes

from across all Fungi (fig. 4; for further details, see

Supplementary Material).

Using stringent search criteria not only relying on the an-

notation and assembly (see Materials and Methods), we iden-

tified 177 (43 expressed: fragments per kilobase of transcript

per million mapped reads [FPKM]� 1) and 199 (74 expressed)

strain-specific “orphan” genes (vs. “shared” genes) that are

unique to Lenti6 and Lenti7, respectively (supplementary table

S4, Supplementary Material online). Orphan genes are con-

centrated on scaffolds 5, 7, and 14 of Lenti7 (fig. 5), and are

associated with high average substitution rates of their scaf-

folds (rho¼ 0.89, P< 0.0001 based on the 19 largest scaf-

folds). Over 60% of the orphan genes occur in clusters of two

or more genes (supplementary fig. S3, Supplementary

Material online). In addition, orphan genes encode signifi-

cantly shorter proteins than shared genes and are more likely

to lack functional domains (supplementary fig. S4,

Supplementary Material online).

To determine the evolutionary origin of the orphan genes,

we performed BLASTP searches against 19 other species, in-

cluding 17 Polyporales and two other Agaricomycetes, using

the orphan genes as queries. Only seven putative orphan

genes in Lenti6 and eleven in Lenti7 have significant hits in

at least one of the other species (supplementary fig. S5,

Supplementary Material online), suggesting that they may

have been lost in one of the two L. tigrinus strains. Thus,

95% of the orphan genes (170 genes in Lenti6 and 188 genes

in Lenti7) have probably arisen in the lineage leading to L.

tigrinus.

SNP and BSA

To assess the distribution of SNPs between Lenti6 and Lenti7,

we performed a genetic diversity scan using a read-mapping

approach. Briefly, Illumina reads from Lenti6 were mapped

onto the Lenti7 assembly using BWA (Li and Durbin 2009),

and then SNPs were called and filtered using SAMtools (Li

et al. 2009) and bcftools (Li et al. 2009), respectively (for fur-

ther details, see the Supplementary Material). The density of

132,014 SNPs among the 19 largest scaffolds of Lenti7 ranges

from 0.007/kb (scaffold 13) to 17.8/kb (scaffold 7) (supple-

mentary table S5, Supplementary Material online), which

FIG. 1.—Lentinus tigrinus fruiting bodies produced in culture. (A) RLG-9953 (agaricoid); (B) FP-102501 (secotioid); (C) Lenti6/Lenti7.
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FIG. 2.—Strain development for genome sequencing (steps 1–13), BSA (steps 14–18), and developmental transcriptomics (steps 19–20). Mating alleles

of single-spore isolates derived from the parental and tester dikaryons were arbitrarily numbered A1, B1 (RLG-9953), A3, B3 (DAOM 54158), and A5, B5 (FP

102501-T). Mating type alleles of single-spore progeny were not determined after step 2. Accordingly, mating types are designated An, An*, Bn, and Bn*,

where An 6¼An* and Bn 6¼Bn*. Because Lentinus tigrinus is heterothallic and tetrapolar, all dikaryons produced after step 2 must be A1, B1/A3, B3. See text

for further details.
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reflects the inbred nature of the strains and possibly the strin-

gency of our SNP detection protocol (only SNPs supported by

90% of the reads were scored) (fig. 5A). SNPs occurred in

intergenic regions, introns, exons, and UTRs (fig. 5B). SNPs in

exons account for 40% of total SNPs, and occur in 3,073

genes. Among these 3,073 genes, 2,585 genes have diverse

essential functions, such as cell wall modification

(supplementary fig. S6, Supplementary Material online), and

bear nonsynonymous SNPs.

To identify SNPs associated with fruiting body phenotypes,

we performed BSA using 101 SSIs that we obtained by fruit-

ing a Lenti6-Lenti7 (Aga/Sec) dikaryon (fig. 2). SSIs were gen-

otyped by mating with an FP-102501-T tester strain (Sec) to

screen for Aga and Sec genotypes, and divided into Sec and

A

B

FIG. 3.—Synteny blocks between Lenti6 and Lenti7 (scaffolds >0.5Mb). The length of each block is relative to its size. Colored bands and lines linking

scaffolds represent syntenic blocks (minimum 1 kb) shared by the two strains. Numbers to the inside of Lenti7 scaffold 1 and Lenti6 scaffolds 4 and

8 represent major rearrangements. (A) Scaffold locations of MAT-A HD (homeodomain) and MAT-B PR (pheromone/receptor) loci are indicated on Lenti7. (B)

Distribution of genes in the MAT-A HD and MAT-B PR loci of Lenti6 and Lenti7.
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FIG. 4.—Phylogenetic distribution of light-signaling proteins (highlighted in yellow), transcription factors (green), and hydrophobins (blue) implicated in

fruiting body morphogenesis, in 118 fungal genomes. Highlighted taxon names indicate species with previously published transcriptomes from fruiting

bodies.
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Aga pools, with 49 and 52 individuals, respectively (fig. 2). We

identified 231,797 SNPs (0.5% of the whole genome) be-

tween the two phenotype pools, of which 99,993 SNPs

(“BSA sites”) have significantly different allele frequencies

(FDR< 0.01).

Surprisingly, none of the BSA sites had fixed allelic variants

in the two pools, so we repeated the test crosses. Nine of the

SSIs that had been scored as Sec produced agaricoid fruiting

bodies in the second test crosses, and four putative Aga SSIs

produced secotioid fruiting bodies (all test cross progeny are

shown in supplementary figs. S7 and S8, Supplementary

Material online). On basis of these repeated crosses, the Sec

pool contains �18.4% Aga SSIs, whereas the Aga pool con-

tains �9.2% Sec SSIs. The mixed phenotypes to some extent

impair identification of fixed BSA sites. In addition, each pool

included “intermediate” forms with varying degrees of fusion

in the margins of the gills, which were ultimately coded as

agaricoid (9 in the Sec pool and 13 in the Aga pool; e.g.,

supplementary fig. S7, panels JJ, UU, Supplementary

Material online and supplementary fig. S8, panels QQ, UU,

Supplementary Material online). It is possible that the inter-

mediate forms are caused by environmental conditions, such

as high CO2 concentrations (Moore et al. 2008), although a

genetic basis for the intermediate forms cannot be excluded.

We selected the 1,312 BSA sites from 99,993 BSA sites

using the overlap of the top 5% lowest P-values based on the

Cochran–Mantel–Haenszel test and the top 5% highest dif-

ferent allele frequencies as parameters. Among the selected

BSA sites, the median difference in allele frequencies between

pools is 0.80 (0.79–0.87), which may reflect the mixture of

phenotypes that were inadvertently included in each pool

(supplementary fig. S10, Supplementary Material online).

The BSA sites are located in coding regions, introns, UTR,

and intergenic regions (supplementary table S6,

Supplementary Material online). In the coding regions, we

found eight start codon gains, one start codon loss, and

one stop codon gain (supplementary table S6,

Supplementary Material online). BSA sites from exonic regions

yield 212 “BSA candidate genes,” of which 105 carry non-

synonymous SNPs and 169 have synonymous SNPs (62 BSA

candidate genes have both synonymous and nonsynonymous

SNPs; supplementary table S6 and fig. S9, Supplementary

Material online).

The BSA candidate genes are concentrated on scaffolds 5,

14, and 16 of Lenti7 (corresponding to scaffolds [6, 31], [19,

51], and [62, 63, and 70] of Lenti6), which also have high

densities of orphan genes (figs. 5 and 6, supplementary table

S4, Supplementary Material online). To assess whether scaf-

folds 5, 14, and 16 of Lenti7 could be linked, we compared

them to the genomes of Polyporus brumalis and Ganoderma

lucidum, which are closely related species of Polyporaceae

(Justo et al. 2017). Scaffold 5 from P. brumalis and scaffold

3 from Ganoderma sp. contained significant hits to Lenti7

scaffolds 5, 14, and 16, suggesting that they may represent

parts of a single chromosome (supplementary fig. S11,

Supplementary Material online). Scaffold 59 (which is only

134 kb) shows a similar pattern of differences in allele fre-

quencies as scaffolds 5, 14, and 16 (fig. 6), and it is also likely

to be part of the same hypothetical chromosome (supplemen-

tary fig. S11, Supplementary Material online).

Lentinus tigrinus is heterothallic and tetrapolar (Hibbett

et al. 1994) (i.e., mating compatibility among monokaryons

requires heteroallelism at each of two MAT loci; Jameset al.

2013). Scaffolds 1 and 7 of Lenti7, which contain the MAT-A

HD and MAT-B P/R mating loci (fig. 3B), also carry large num-

bers of SNPs and orphan genes, but do not contain any of the

BSA candidate genes (figs. 5 and 6). The high density of SNPs,

but absence of BSA candidate genes on these scaffolds

A B

FIG. 5.—Genome-wide distribution of SNPs, BSA, DEGs, and orphan genes across the 19 largest scaffolds of Lenti7. (A) Circos-plot of genomic features

between Lenti6 and Lenti7. Outer track (red): 605 DEGs; second track (orange): 117 Lenti7-specific orphan genes; third track (peach): 221 BSA candidate

genes; inner track (green): SNP density. (B) Distribution of SNPs across intergenic regions, exons, introns, and 30 and 50 UTRs in Lenti7.
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presumably reflects selection in our strain development strat-

egy (fig. 2) for polymorphism at the mating loci, which are

unlinked from the regions responsible for the secotioid

phenotype.

Differential Gene Expression between
Secotioid and Agaricoid Forms

We created three Aga/Aga dikaryons (producing agaricoid

fruiting bodies) and three Sec/Sec dikaryons (secotioid) by

mating unique combinations of SSIs that were used in BSA,

yielding three biological replicates for each phenotype (six

samples total) (fig. 2, steps 17–20). We cultured the dikaryons

on sawdust-bran medium and sampled RNA at four develop-

mental stages: Vegetative mycelium, fruiting body primordia,

young fruiting bodies, and mature fruiting bodies (supple-

mentary fig. S12, Supplementary Material online). 13,584

predicted genes were expressed (FPKM� 1), representing

88% of the total annotated genes from Lenti7 (which was

used as the reference genome). Hierarchical clustering of

FIG. 6.—Differences in allele frequencies between Sec and Aga pools in bulked segregant analyses across the 19 largest scaffolds and scaffold 59 of the

Lenti7 genome. Allele frequencies in each pool were averaged over two replicates and plotted relative to their position. Alleles that segregate with fruiting

body phenotype are concentrated on scaffolds 5, 14, 16, and 59.
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RNA-seq samples from two strains indicates high overall sim-

ilarity of expression patterns at the same stages between

phenotypes (supplementary fig. S13, Supplementary

Material online).

We detected 907 differentially expressed genes (DEGs)

that were significantly up or downregulated between seco-

tioid and agaricoid forms (FDR< 0.05 and logFC> 2), with

643, 188, 254, and 232 genes differentially expressed at the

mycelium, primordium, young fruiting body, and mature

fruiting body stages, respectively (fig. 7A, supplementary ta-

ble S7, Supplementary Material online). Among the four

stages, the DEGs are enriched at the mycelium stage (70%

of total DEGs occurred at this stage). Eighty one genes had

significantly altered expression during all four stages, and 706

genes were differentially expressed at only one stage (fig. 7B).

We compared the distribution of BSA sites in regions up-

stream of differentially expressed versus nondifferentially

expressed genes. 6% (56) of the 907 DEGs and 1% (189)

of the 12677 nonDEGs have BSA sites in their upstream 1 kb

regions (supplementary fig. S14, Supplementary Material on-

line). Genes that are differentially expressed between pheno-

types are significantly more likely to have upstream BSA sites

than nonDEGs (Fisher’s exact test P< 0.001), which is consis-

tent with the view that divergence in TF binding sites may

alter expression levels. Moreover, we found 12 DEGs having

BSA sites in their annotated UTRs (supplementary table S6,

Supplementary Material online).

We examined co-expression patterns of the 907 DEGs over

all four stages, and grouped them into nine clusters (using a

cut-off of 40% of the tree height to delimit clusters; fig. 7A).

GO enrichment analysis revealed DEGs from each cluster in-

volved in various biological processes. In one cluster there is an

overrepresented function associated with “reproductive fruit-

ing body development” (GO: 0030582), including three

genes (523,664, 523,675, and 571,802) encoding

aegerolysin-like proteins, which have been suggested to be

expressed preferentially in the primordia, and in the early

stages of fruiting body development in Pleurotus ostreatus

and Agrocybe aegerita (Berne 2002; Vidic et al. 2005; Berne

et al. 2009). However, all three aegerolysin genes show dif-

ferential expression in the mycelium stage, not during fruiting

body formation, suggesting that there is greater functional

diversity of the aegerolysin family than previously recognized

(Nayak et al. 2013).

61 of the 212 BSA candidate genes are differentially

expressed between secotioid and agaricoid phenotypes (sup-

plementary fig. S9B, Supplementary Material online). Of these

61 genes, 25 have nonsynonymous BSA sites, and were dif-

ferentially expressed at the young or mature fruiting body

stages. Therefore, these 25 genes, from scaffolds 5 and 14,

represent the top candidates for genes that are likely to influ-

ence fruiting body form. 21 of these 25 genes (excluding

Lenti7_1_546183, Lenti7_1_551037, Lenti7_1_568005,

Lenti7_1_610076) are upregulated in secotioid phenotypes

A B

FIG. 7.—Hierarchical clustering and functional classification of 907 genes that are differentially expressed between secotioid (Sec) and agaricoid (Aga)

forms. (A) Hierarchical clustering of differentially expressed genes (fold change >4 and FDR<0.05) in in mycelia (M), primordia (P), young fruiting bodies

(YF), and mature fruiting bodies (MF). Enriched GO categories are shown by each cluster. Values of the color key refer to the log base 2 of fragments per

kilobase of transcript per million mapped reads (FPKM). (B) Venn diagram of phenotype-related differential expressed genes in four stages.
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relative to agaricoid phenotypes (supplementary fig. S9B,

Supplementary Material online, table 1). Two of these genes,

one encoding a cytochrome P450 and the other an ATP-

dependent RNA helicase, are members of families which

include genes that have previously been shown to affect mor-

phology of fruiting bodies in the basidiomycete C. cinerea

(Muraguchi and Kamada, 2000) or the ascomycete

Cordyceps militaris (Zheng et al. 2015), respectively.

Seven TF genes were found to show differential expression

between phenotypes, mainly at the young fruiting body stage

(table 2). One of the differentially expressed TF genes

(Lenti7_1_567867) contains a HOX domain similar to that

Table 1

25 Top Candidate Genes Identified with BSA (nonsynonymous) and DEG

Protein ID (Lenti7/6) Location Stages Gene Description

85195/ND scaffold_14: 369055-370013 YF —

86465/526915 scaffold_14: 443879-446907 YF/MF ATP-dependent RNA helicase

87620/ND scaffold_14: 563749-564340 YF/MF —

283939/ND scaffold_5: 195155-196111 YF —

456840/496367 scaffold_5: 918091-920336 YF/MF Tripeptidyl-peptidase

457171/556809 scaffold_5: 1321131-1322690 YF/MF —

464033/535943 scaffold_14: 357810-359372 YF/MF Tyrosinase

531647/572283 scaffold_5: 669180-671138 YF/MF Aldo/keto reductase

531677/650807 scaffold_5: 738255-739089 YF/MF —

531846/542591 scaffold_5: 1163998-1167020 YF/MF Sodium/hydrogen exchanger

535696/548680 scaffold_14: 430337-432896 YF Cytochrome P450

543568/502902 scaffold_5: 40571-41704 YF/MF Protein phosphorylation

543726/650805 scaffold_5: 747877-749069 YF/MF Aldo/keto reductase

546139/118234 scaffold_14: 424410-425504 YF/MF Chromatin assembly factor-I

546183/611691 scaffold_14: 608506-611139 MF Flavin-containing monooxygenase

551037/658517 scaffold_5: 424249-427854 YF Methylase containing SET domain

567942/572310 scaffold_5: 615457-616764 YF —

568005/496312 scaffold_5: 789648-791747 MF Tripeptidyl-peptidase

568067/608283 scaffold_5: 987789-989330 MF —

568092/608272 scaffold_5: 1055550-1057038 YF Leucine Rich Repeat

568118/358653 scaffold_5: 1122189-1123261 YF —

610076/586341 scaffold_5: 84608-89187 YF Triphosphate hydrolase protein

610453/604269 scaffold_5: 1327281-1329825 YF/MF —

610475/581275 scaffold_5: 1423453-1424456 YF —

613650/653772 scaffold_14: 612169-614204 MF Microtubule-associated proteins

NOTE.—ND: ortholog of lenti7 gene is not among the annoated genes from lenti6 due to poor assembly or bad annotation.

Table 2

Transcription Factor Genes Identified with Bulked Segregant Analysis or with Differential Expression Levels between Phenotypes

Protein ID (Lenti7/6) Location BSAa Stagesb Domains

537478/229775 scaffold_25: 159517-160085 M Zn(2)-Cys(6)

535761/526822 scaffold_14: 632028-634037 YES (s) M, P, YF Transcription factor Tfb4

569405/572504 scaffold_7: 1195929-1196337 — M, YF Zn(2)-Cys(6)

215353/566174 scaffold_32: 341786-343826 — MF Zn(2)-Cys(6)

465877/613826 scaffold_19: 280471-283089 — YF Heat shock transcription factor

567867/543015 scaffold_5: 393051-396002 — YF HOX domain

573265/613178 scaffold_24: 126363-128314 — YF Serine/threonine protein kinase

464098/502691 scaffold_14: 412497-415601 YES (ns) — Zn(2)-Cys(6)

503037/584228 scaffold_5: 1223891-1229088 YES (s) — Zn(2)-Cys(6)

509362/557565 scaffold_14: 341275-343024 YES (s) — Zn(2)-Cys(6)

548499/586366 scaffold_59: 106797-116305 YES (ns) — Zinc finger, GATA-type

599750/113648 scaffold_59: 61101-62947 YES (s) — HOX domain (hom1)

an, nonsynonymous substitution; s, synonymous substitution.
bStages at which expression varies between phenotypes.
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of hom2, which has been shown to affect fruiting body de-

velopment in S. commune (Ohm et al. 2011). However, none

of the TFs previously implicated in fruiting body development

that are present in the L. tigrinus genome (fst3, fst4, bri1,

gat1, hom1, hom2) show differential expression between

phenotypes; they may play roles in development of both phe-

notypes, but are probably not responsible for the transition to

the secotioid form.

Six TF genes had significantly different allele frequencies

between Sec and Aga pools in BSA, and one of these TF

genes, Lenti7_1_535761, was also differentially expressed

at three stages (table 2). Among these six TF genes, one is a

homolog of hom1 (Lenti7_1_599750), which has also been

shown to play a role in development in S. commune (Ohm

et al. 2010, 2011). The hom1 alleles have only synonymous

substitutions in their coding regions, but synonymous substi-

tutions can have phenotypic consequences (Bailey et al.

2014). In addition, the occurrence of noncoding BSA sites

upstream (1 kb) of many DEGs also suggest that mutations

in TF binding sites could contribute to the secotioid

phenotype.

Eleven (32%) hydrophobin genes, another important class

of developmental genes, show differential expression be-

tween phenotypes, all at the mycelium stage, but none of

the genes encoding hydrophobins are among the BSA candi-

date genes (supplementary table S3, Supplementary Material

online).

Conclusions

Lentinus tigrinus provides a unique opportunity to study fruit-

ing body evolution in Agaricomycetes, because it has naturally

occurring agaricoid and secotioid forms. Results presented

here are consistent with the view that the secotioid pheno-

type is conferred by a recessive allele at a single locus, but the

precise identity of the locus is unresolved. The secotioid form

could result from a shift in transcription level without a change

in protein sequence, or a nonsynonymous mutation without a

change in expression. Our top candidate genes (table 1) were

identified with a combination of BSA and differential expres-

sion criteria, but it is possible that one of the many genes

identified with only one of the two criteria is responsible for

the secotioid form. Other potential mechanisms that could

underlie the secotioid phenotype include DNA methylation

(potentially affecting gene expression) and RNA editing

(which could cause amino acid replacements in proteins).

However, this study did not include genome-wide analyses

of such epigenetic modifications.

The top 25 candidate genes span almost 1.5 Mb (ca. 4% of

the genome) on two scaffolds (1,383,885 bp on scaffold 5,

and 256,394 bp on scaffold 14). Seven of the candidate TFs,

identified with both BSA or differential expression analyses,

also occur on scaffolds 5, 14, and 59, with the rest distributed

on scaffolds 19–32 (table 2). It is possible that scaffolds 5, 14,

and 59 represent parts of a single chromosome, but long-read

sequencing (PacBio or nanopore) will be needed to test this

hypothesis.

Like many saprotrophic fungi, L. tigrinus grows well in cul-

ture, but fruiting body formation is sensitive to environmental

conditions, including light, temperature, humidity, and CO2

concentration. Most progeny could be clearly differentiated as

secotioid or agaricoid in test crosses, but intermediate forms

occurred. Further studies under controlled conditions will be

necessary to determine reaction norms for fruiting body de-

velopment in the secotioid and agaricoid forms of L. tigrinus.

Genome-wide association studies using geographically di-

verse wild strains could help reconstruct the genetic bases

and evolutionary history of the secotioid form in L. tigrinus.

Other kinds of analyses, such as gene knock-out experiments,

will eventually be needed to test specific mechanistic hypoth-

eses, but at present they are constrained by the absence of a

transformation protocol for L. tigrinus.

Supplementary Material

Supplementary data are available at Genome Biology and

Evolution online.
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