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Abstract
Phenotypic screening through high-content automated microscopy is a powerful tool for

evaluating the mechanism of action of candidate therapeutics. Despite more than a decade

of development, however, high content assays have yielded mixed results, identifying

robust phenotypes in only a small subset of compound classes. This has led to a combina-

torial explosion of assay techniques, analyzing cellular phenotypes across dozens of

assays with hundreds of measurements. Here, using a minimalist three-stain assay and

only 23 basic cellular measurements, we developed an analytical approach that leverages

informative dimensions extracted by linear discriminant analysis to evaluate similarity

between the phenotypic trajectories of different compounds in response to a range of

doses. This method enabled us to visualize biologically-interpretable phenotypic tracks pop-

ulated by compounds of similar mechanism of action, cluster compounds according to phe-

notypic similarity, and classify novel compounds by comparing them to phenotypically

active exemplars. Hierarchical clustering applied to 154 compounds from over a dozen dif-

ferent mechanistic classes demonstrated tight agreement with published compound mech-

anism classification. Using 11 phenotypically active mechanism classes, classification was

performed on all 154 compounds: 78% were correctly identified as belonging to one of the

11 exemplar classes or to a different unspecified class, with accuracy increasing to 89%

when less phenotypically active compounds were excluded. Importantly, several apparent

clustering and classification failures, including rigosertib and 5-fluoro-2’-deoxycytidine,

instead revealed more complex mechanisms or off-target effects verified by more recent

publications. These results show that a simple, easily replicated, minimalist high-content

assay can reveal subtle variations in the cellular phenotype induced by compounds and can

correctly predict mechanism of action, as long as the appropriate analytical tools are used.
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Introduction
Understanding of a compound’s mechanism of action is essential to the development and eval-
uation of small molecule therapeutics. This is obviously true for novel therapeutic candidates
and elements of large natural product or bioactive screening libraries, but just as critical for
more developed and established therapeutics, as even clinically available compounds can pro-
duce unexpected secondary or off-target effects.[1] Phenotypic assays are increasingly being
used to evaluate compounds in a more complete cellular or tissue microenvironment. [2] High
content screening (HCS) in particular carries great potential for drug discovery and develop-
ment, combining the historic breadth and versatility of visual microscopy with the power,
speed, and efficiency of automated screening.[3,4] Yet the apparent potential of HCS has
remained frustratingly unrealized: in their 2014 review of multidimensional small molecule
profiling, Wolpaw and Stockwell devoted only one page of thirty-five to quantitative imaging,
concluding that “only a minority of compounds displayed an appreciable phenotype”.[5]
Despite the lack of progress in the field, we feel that many potential insights remain untapped
in the analysis and representation of HCS data, and such findings can be unlocked with
improved analytical methods.

The challenges of HCS analysis are numerous. A typical HCS experiment might produce
thousands of images, terabytes of data, and gigabytes of extracted cellular measurements. Some
of these measurements, such as average α-tubulin intensity and cellular size, have clear biologi-
cal significance; whether the additional dozens or hundreds of dimensions of measurements
extracted by a HCS image-processing pipeline contain further phenotypic insights, however, is
a difficult question to answer. Even if statistically significant variations in measured phenotype
can be identified, the dimensions involved are often inscrutable mixed bags of correlated mea-
surements that offer little concrete insight into the effects of a given compound or mechanism
of action in a cell; this is increasingly true as the number and granularity of measurements and
stains increases. Furthermore, several studies have shown that important variations in cellular
phenotype are produced by different doses or concentrations of many compounds,[6,7] but
measurement of similarity between dose response patterns—ordered sequences of cellular phe-
notypic distributions—is a complex, subjective problem, which does not lend itself to many tra-
ditional out-of-the-box measures of similarity.[8]

Though several groups have had considerable success adapting HCS to the identification or
detection of certain pre-selected phenotypes,[9–11] such approaches are not always sufficient;
after all, a secondary screen for off-target effects is hardly necessary if one knows what effects
to look for. Broader, more phenotypically agnostic methods have met with only limited success,
however, often identifying only a small number of phenotypic classes such as microtubule
inhibitors or stabilizers.[6,12] Yet the ubiquitous influence and application of visual micros-
copy clearly attest that deeper biological insights lay buried in the ever increasing haystack of
high content data. We therefore set ourselves the following challenge: given a simple, standard-
ized, minimalist high content assay, using three basic stains and roughly two dozen cellular
measurements, how well can we understand and classify the mechanism of action of a diverse
set of active compounds? In short, how much information about mechanism of action can be
extracted from a minimalist HCS assay? To address this question, we investigated the impact
of three analytical choices: the method of dimensional reduction for visualization and analysis,
the use of dose-response data over single-point measurements, and the appropriate measure of
inter-compound similarity.

This paper describes our analytical approach, derived in answer to these three concerns.
First, though most approaches to high-content data use principal components analysis (PCA)
or common factor analysis [13,14] to perform the dimensionality reductions necessary for
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visualization—and in some cases, analysis—of high content data, we have found that use of
multi-class linear discriminant analysis (LDA) [15] produces dimensions that are far more
informative, and produce more intuitive visualizations with improved classification accuracy.
Second, though single-point screens may sometimes be necessitated by pragmatic consider-
ations, our analyses show that use of dose response data not only improves accuracy in cluster-
ing and classification, but allows for deeper, more intuitive insights that are fundamentally
inaccessible from single-point data. Several mechanistic classes, including topoisomerase
inhibitors and histone deacetylase (HDAC) inhibitors, produced highly distinct phenotypic
behaviors only visible across a range of doses. Finally, we found that an effective measure of
inter-compound similarity, particularly with dose-response data, should be titration- and dilu-
tion-independent, and should ignore phenotypic similarities between populations that are
themselves similar to untreated cells. Using this analytical paradigm, we were able to identify a
number of phenotypic clusters, several of which have not been noted in previous phenotypic
screens, and develop an approach to the phenotypic classification of compound behavior that
reliably recognizes almost a dozen distinct mechanistic classes.

Materials and Methods

Preparation of Cells, Staining, Capturing Images, and Processing
Images
300 HeLa cells in 25 μl of media were plated into each well of a poly-D-lysine coated Perkin
Elmer 384-well View plates (Perkin Elmer 6007710) with a Thermo Scientific Wellmate, in
triplicate plates. The cells were cultured for 18 hours before the addition of compounds by a
VP scientific pintool fitted with FP3S100 pins. Compounds were incubated with cells for forty-
eight hours. Following treatment, the cells were fixed with 4% formaldehyde for 20 minutes at
37°C, then washed with 75 μl of PBS 3 times. The cells were permeabilized with 0.1% Triton X-
100 for 15 minutes at 25°C and blocked using 1% BSA in PBS for 1 hour at 25°C. Primary anti-
bodies against p-H2A.X (Ser139) (Cell Signaling 9718) and α-tubulin (Sigma T6199) were
diluted 1:200 and 1:1000, respectively, in 1% BSA in PBS and incubated with the fixed cells
overnight at 4°C. The plates were washed 3 times with PBS using a Biotek 405LS plate washer,
and incubated for 1 hour at 25°C with a solution containing goat α-rabbit-Alexa-488 (Cell Sig-
naling 4412S) and goat α-mouse-Alexa-647 (Cell Signaling 4410S) secondary antibodies each
diluted 1:400 in 1% BSA in PBS in addition to 1 μMHoechst 34580 (Molecular Probes
H21486). Images were captured using a GE Healthcare InCell 6000 equipped with a 4X objec-
tive lens with the capability of imaging the entire well in a single acquisition. Fluorescent emis-
sions at 405 nm, 488 nm, and 647 nm were captured to detect nuclear staining, p-H2A.X, and
α-tubulin, respectively. All data were analyzed using the multi-target analysis algorithm of the
GE InCell Analyzer Workstation software. The number of nuclear objects in each well and all
nuclear measurements were calculated by masking the nucleus based on Hoechst staining.
Phospho-H2A.X intensity was measured within each nuclear mask. Cell size and shape param-
eters were measured by masking the cytoplasm based on the α-tubulin channel.

Preparation of Compounds
We identified 160 compounds from our local chemical inventory that represent diverse
mechanisms of action relevant to mammalian cellular biology, including anti-metabolites,
apoptosis inducers, DNA damaging agents, epigenetic modifiers, kinase inhibitors, microtu-
bule inhibitors, mitochondrial poisons, and proteasome inhibitors. Where possible, we chose
at least three representatives from each of the broadly defined classes listed above. We also
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included a few idiosyncratic compounds such as auranofin, bardoxolone methyl, and ouabain
that often show up as active compounds in cell-based screens and demonstrate complex
mechanistic behavior. Six compounds were unavailable in sufficient amount and were
excluded from this study, resulting in a training set of 154 compounds. Compounds were
obtained as dry powder and dissolved in DMSO to a target concentration of either 10mM or
2mM (for compounds with reported high cellular potency or solubility limitations). The
purity of each compound was verified to be>95% using UV/TWC and evaporative light scat-
tering detection (ELSD) spectroscopy, and the concentration of each solution was quantified
using nitrogen chemo-luminescence where possible. Each compound was then serially diluted
into a 384-well polypropylene dose-response plate with three-fold dilution to give 10 concen-
tration points per compound (32 compounds per plate). Approximately 140nl of compound
stock solution was transferred to the assay plate using a pintool as described earlier (178-fold
dilution from stock concentration).

Dimensional Analysis
Though all compounds were tested at 10 concentrations separated by a 3-fold serial dilution,
the highest concentrations often produced far noisier, more divergent phenotypes, perhaps due
to edge effects, liquid handling artifacts, or compound precipitation. The response to the high-
est concentration of each compound was excluded from analysis. Additionally, 12 wells in the
experiment exhibited mean Hoechst stain intensity well above the observed distribution; visual
inspection revealed that these wells were contaminated, either by UV fluorescing artifacts or by
the presence of unexplained biological growth in the well. These wells were also eliminated
from the analysis.

From the 47 measurements extracted in the image analysis, several that were deemed not
relevant to the current analysis (e.g. a cell’s location within the well) or that were direct calcula-
tions from other measurements (e.g. total intensity, which is simply the product of area and
average intensity) were discarded. Measurements of pH2A.X intensity were normalized to
background levels of 488nm fluorescence in all wells (see Results). The remaining 23 measure-
ments were transformed to yield more normal distributions; most, including measurements of
size, area, and intensity were log transformed, while several shape factor measurements which
must lie between 0 and 1 were passed through a logit transform. A full description of the 23
measurements used and how they were transformed can be found in S1 Table. Finally, to mini-
mize inter-plate variation, all measurements were normalized to the mean value for control
wells on the same plate by subtracting that mean value. For PCA, all dimensions were normal-
ized to have a variance of 1.

Formally, multiclass LDA requires identifying the eigenvectors of Sw
�1Sb, where Sw is the

average within-class covariance, and Sb is the average between-class covariance. Rather than
use the variable, subjective, and potentially biasing breakdown of mechanism class available in
the existing literature, we instead used as “classes” the different concentration levels of the 154
compounds included in the training plates (note that covariance across concentration levels is
not part of within-class covariance, but part of between-class covariance). Thus, the extracted
dimensions are those which best distinguish different compounds (or differing concentrations
of the same compound) from one another. In traditional multiclass LDA, the number of classes
is smaller than the number of measurement dimensions and the purpose of the analysis is to
calculate the most informative subspace capturing all between class covariance; in our case,
because the number of “classes” (that is, concentration levels of compounds) is much larger
than the number of measurement dimensions, we are simply generating a ranking of sub-
spaces, in which them eigenvectors with the largest eigenvalues span the most informative
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m-dimensional subspace. Therefore, our particular variation of multi-class LDA can be consid-
ered over-classed. For comparison, an LDA analysis was also run in which all cells exposed to
any treatment (any dose of any drug) in one of the 11 exemplar classes were aggregated into a
single LDA class. Because these exemplar classes (as well as the null class of all unclassified
compounds) only produce 12 classes for analysis, a maximum of 11 informative dimensions
could be extracted.

Phenotypic Similarity
Because the phenotypic responses in this assay consist of changing cellular distributions at dif-
ferent concentration levels, which we call phenotypic trajectories, any similarity measure must
capture the overlap of such trajectories in phenotypic space. We thus take the TISS approach of
Perlman et al. [6] one step further with themaximum sequential weighted overlap (MSWO),
defined as follows: suppose D1 and D2 are two distributions with means μ1 and μ2 and covari-
ance matrices S1 and S2; then the overlap between these two distributions is defined as

OðD1;D2Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffij4S1S2j

p
jS1 þ S2j

exp� 1

2
ðm1 � m2ÞtðS1 þ S2Þ�1ðm1 � m2Þ

This measure is equal to 1 if the two distributions are identical, but drops if the distributions
are separated or have highly distinct covariance matrices. For two cellular distributions D1 and
D2, the weighted overlap between these two distributions is equal to

OWðD1;D2Þ ¼ OðD1;D2Þð1� OðD1;D0ÞÞð1� OðD2;D0ÞÞ

where D0 is the cellular distribution observed in control wells (which, because of plate normali-
zation, will always have a mean of 0 for all measurements). This weighting ensures that similar-
ity between phenotypes contributes to inter-compound similarity only if those phenotypes are
highly different from that of untreated cells. Finally, if the two phenotypic trajectories for com-
pounds Ci and Cj are represented by the sequences of cellular distributions (Di,1,. . .Di,L) and
(Dj,1,. . .Dj,L), then the MSWO between the two trajectories is:

SWðCI ;CjÞ ¼
max
1�k�L

max
1�m�L

SOk;mðCi;CjÞPL
k¼1 Ni;k þ

PL
m¼1 Nj;m

where Ni,k and Nj,m are the number of cells left after exposure to compound Ci at concentration
level k and compound Cj at concentration levelm respectively, and

SOk;mðCi;CjÞ ¼
k > 1;m > 1 ðNi;k þ Nj;mÞOWðDi;k;Dj;mÞ þmax

k0<k
max
m0<m

SOk0;m0ðCi;CjÞ
k ¼ 1 or m ¼ 1 ðNi;k þ Nj;mÞOWðDi;k;Dj;mÞ

(

In short, given two phenotypic trajectories represented by sequences of cellular phenotypic
distributions, subsequences of equal length, not necessarily consecutive, of each trajectory are
chosen such that the sum of the pairwise overlaps between corresponding cellular distributions
in the two subsequences is maximized (Fig 1). The overlap between two cellular distributions is
determined by the agreement of their means and covariances, and is weighted by how dissimi-
lar those two distributions are from the distribution of untreated cells. This attenuation of dis-
tributions similar to untreated cells proves to be a critical element of an effective similarity
measure. The MSWO can be calculated on cellular distributions of any dimensionality; unless
otherwise specified, the results reported in this paper used the 16 most informative dimensions
extracted by over-classed LDA (see Results).
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Weighting a cellular distribution according to its dissimilarity from the distribution of
untreated cells provides us with another useful measure: by taking the average dissimilarity
from the distribution of untreated cells across a compound’s entire phenotypic trajectory, we
have a measure of how phenotypically distinctive that compound is. We call this measure phe-
notypic activity, defined as follows: suppose a phenotypic trajectory for compound C is

Fig 1. Maximum Sequential Weighted Overlap. (A) HDAC inhibitors follow a consistent, stereotypical
phenotypic track, shown here in the “Cell Damage” and “Structural Breakdown” (tubulin intensity outside cell
boundary, Hoescht stain outside nucleus, increased tetraploidy signal) dimensions. (B) Different compounds
move through “Structural Breakdown” with differing potencies and sensitivities. (C) The optimal overlap
between abexinostat and panobinostat uses the highest seven concentrations of abexinostat and a non-
consecutive subset of doses of panobinostat.

doi:10.1371/journal.pone.0149439.g001
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represented by a sequence of distributions (D1,. . .DL). Assuming that overlap O is defined as
above, the phenotypic activity of C is defined as

APðCÞ ¼
PL

k¼1 Nkð1� OðDk;D0ÞÞPL
k¼1 Nk

where D0 is the cellular distribution of untreated cells, and Nk is the number of cells left after
exposure to compound C at concentration level k.

Hierarchical Clustering and Compound Classification
Of the 154 training compounds, 137 could be identified with one of 18 mechanistic classes; the
remaining 17 compounds were too idiosyncratic to associate with a mechanism shared by
other test compounds (see S2 and S3 Tables). To ensure the robustness of classification, only
those mechanistic classes containing at least 4 compounds with a phenotypic activity above 0.4
were used as exemplar classes. Compounds in those classes exceeding the phenotypic activity
threshold were used as exemplar compounds. This ensured that in cross-validation of the clas-
sification method, all compounds were compared with at least 3 phenotypically active exemplar
compounds in each exemplar class. Several classes, such as mTOR inhibitors and tyrosine
kinase inhibitors, were too small to include as exemplar classes, while others, including the
alkylating agents, were far too phenotypically inactive to produce a robust classification.

Given the MSWO similarity scores for all pairs of compounds, hierarchical clustering of
compounds was performed using UPGMA pairwise clustering.[16] For compound classifica-
tion, the similarity between a test compound and a given mechanism class was simply the aver-
age of all similarity scores for all exemplar compounds in that class.

Because there is the considerable possibility that a given test compound will not belong to
any exemplar compound class, a classification method should account for this possibility. All
154 compounds were compared against the 85 exemplar compounds to determine their maxi-
mummechanism class similarity (“Best Match”); the distributions of these maximum similari-
ties for classified and unclassified compounds, normalized to each compound’s phenotypic
activity, were compared, and Bayes’ rule was used to determine a threshold below which the
maximum a posteriori (MAP) likelihood was greater that a compound did not belong to one of
the 11 exemplar mechanism classes, as follows. Passing all normalized maximum similarities
through a log transform generates a more normal distribution. The mean and variance of the
distribution of transformed maximum similarities was calculated for all compounds that lie in
one of the 11 exemplar classes, in addition to the mean and variance for all compounds that do
not. Assuming the mean and variance of the log transformed maximum similarities for classi-
fied compounds are μc and sc

2, and the corresponding measures for unclassified compounds
are μu and su

2, and the prior probability that a compound is classified is Pc, then according to
Bayes’ rule, the log transform of the maximum similarity threshold is:

mt ¼
sc

2mu � su
2mc þ scsu

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðmc � muÞ2 þ ðsc

2 � su
2Þlog sc2

su2
Pc

1�Pc

q
ðsc

2 � su
2Þ

Passing this value back through an exponential transform gives us the classification thresh-
old we seek. Note that when Pc is assumed to be 0.5 (that is, it is equally likely that the com-
pound is classified or unclassified), the equation above simplifies to the much more elegant
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form:

mt ¼
scmu þ sumc

sc þ su

However, for our classifications, we elected to use the proportion of training compounds
that belonged to one of the 11 exemplar classes (�0.68). Those compounds that exceeded the
threshold were assigned to the mechanism class with which they achieved the highest similar-
ity, and the remaining compounds were designated “Unspecified”. This is reported as the “Pre-
dicted Class”.

Results

Advantages of LDA vs. PCA
Simply put, PCA finds dimensions that best explain the variability within a data set, whereas
LDA finds the dimensions that best discriminate the classes embedded in the data. In this
study, we expanded the concept of “class” to include each concentration tested for every com-
pound. With M compounds tested at N concentration points, we trained a multi-class LDA
model to discriminate between MxN classes. This approach finds dimensions in the data that
best discriminate by both compound and concentration, enabling the identification of com-
mon phenotypic trajectories shared by mechanistically-similar compounds.

It was interesting, then, that one of the earliest benefits of using multiclass LDA came not in
the form of improved accuracy in mechanism clustering, but in the identification of a previ-
ously unknown source of experimental noise. When LDA was first run on the set of 154 train-
ing compounds, the three most putatively informative dimensions consistently contained a
dimension of variability that seemed to carry very little information at all. Though the dimen-
sion displayed a great deal of variation from one compound to the next, it also displayed great
variability from one dose of a given compound to the next, with little to no discernible pattern.
Visual evaluation and manual rotation allowed us to determine that the dimension was domi-
nated by the average level of phosphorylated histone H2A family member X (p-H2A.X) stain-
ing both inside and outside the nucleus. This led us to examine the distributions of 488nm
intensities (which represent the levels of p-H2A.X [Ser139]) in the original images. As Fig 2A
shows, the level of 488nm intensity exhibited a great deal of variability from one well to
another, leading to a correspondingly high level of variation from one compound to another in
our LDA. This turned out to be a result of a variation in overall 488nm intensity from one
image to the next, and not variability produced by the underlying compounds. Normalization
of the background 488nm intensity of each image all but eliminated this variability (Fig 2B).
This insight would have been difficult to achieve using PCA, because the magnitude of p-H2A.
X variability was small relative to the total variation in the data set, yet this noise happened to
be a significant (and erroneous) means of discriminating between compounds.

The strength of LDA, of course, was not limited to elimination of experimental noise. Fig 3
depicts a comparison of reduced dimensionality subspaces calculated using PCA and multi-
class LDA across several metrics of representational efficacy. The first, and most common met-
ric, is the proportion of overall variance accounted for by a given n-dimensional subspace.
PCA handily outperforms LDA on this scale, which is hardly surprising as it is this objective
which PCA is specifically designed to optimize. Fig 3B and 3C, however, depict two metrics
more appropriate to the task at hand. The first is a ratio of average intra-class similarity (calcu-
lated using maximum sequential weighted overlap, or MSWO, see Methods) to average inter-
class similarity. While increasing dimensionality improves this metric for both methods, LDA
provides a consistently higher ratio, with an additional three or four PCA dimensions needed

Minimalist High-Content Mechanism Classification

PLOS ONE | DOI:10.1371/journal.pone.0149439 February 17, 2016 8 / 21



to reach the same level of discriminability. The third and final metric is the accuracy of our
classification algorithm (see Methods for full details). As with the similarity ratio, LDA sub-
spaces consistently outperform PCA subspaces, with PCA needing an extra three or four
dimensions to achieve similar performance. Based on the flat behavior in the first three or four
PCA subspaces, this finding is likely because the first several PCA dimensions correspond to
high global variability, but little inter-compound variation, and thus contributes little to the
recognition or identification of compound phenotype. This plot also shows that maximum per-
formance is achieved using the first 16 LDA dimensions, suggesting that 16 of the 23

Fig 2. p-H2A.X Stain Normalization. (A) Violin plot depicting the distributions of cytoplasmic p-H2A.X stain
intensity across all cells in 32 wells containing 32 different compounds at the highest concentrations used in
analysis. The distributions show high levels of inter-compound variation, suggesting the dimension could be
used to distinguish compounds. (B) Violin plot depicting the distributions of the same measurements as
described in (A) normalized to the background level of 488nm intensity in each well. While some small
differences remain, almost all inter-well variation has been eliminated.

doi:10.1371/journal.pone.0149439.g002

Fig 3. Performance of LDA vs. PCA. (A) Proportion of total variance accounted for in the first n dimensions as extracted by PCA and LDA. (B) Ratio of
average MSWO similarity between compounds in the samemechanism class to average similarity between compounds in different classes using the first n
dimensions extracted by PCA and LDA. (C) Classification accuracy achieved using our classification algorithm and the first n dimensions extracted by PCA
and LDA.

doi:10.1371/journal.pone.0149439.g003
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dimensions constitute the optimal bias-variance tradeoff for mechanistic classification. Unless
otherwise specified, we use these 16 dimensions in all subsequent analyses.

Identified Phenotypic Tracks
Visual examination of the most informative dimensions reveals several clearly discernible phe-
notypic tracks dominated by the trajectories of one or a small number of compound mecha-
nism classes. Furthermore, manual rotation and inspection of these dimensions separates
many of these tracks into distinct phenotypic dimensions associated with easily understood cel-
lular properties. Here, we discuss several such phenotypic tracks (depicted in Fig 4).

The DNA Damage Track
Fig 4A plots the phenotypic trajectories of all 154 compounds on two highly informative phe-
notypic dimensions. The x-axis, described as “Cell Damage” is one of the more complex
dimensions, but is largely characterized by a decrease in cell size, an increase in cell roundness,
an increase in nuclear DNA content, and a small increase in p-H2A.X staining. Nearly all com-
pounds that reduce cell count compared to negative controls move positively along this dimen-
sion, and the relationship between variation on this dimension and cell count is tight enough
that plotting other phenotypic dimensions against the “Cell Damage” dimension gives an intui-
tive representation of how cell phenotype changes as drugs become more cytotoxic.

The second dimension, referred to as “DNA Damage” is, unsurprisingly, primarily driven
by intensity of p-H2A.X staining inside the nucleus. As the plot shows, while most drugs are
relatively unperturbed in this dimension, two mechanism classes—topoisomerase inhibitors
and antimetabolites—show a large increase compared with untreated cells. In addition, the
topoisomerase inhibitors return to the lower values in this dimension at higher, more cytotoxic
concentrations; as a result, the phenotypic distributions for the highest concentrations of some
topoisomerase inhibitors are difficult to distinguish from those of many other drugs, making
the use of dose response behavior particularly valuable for this class. Examples of cells corre-
sponding to this phenotypic track are shown in Fig 4F–4H.

The Microtubule Track. Fig 4B plots the “Cell Damage” dimension against another highly
informative and biologically intuitive dimension: the “Tubulin Intensity” dimension is gov-
erned almost entirely by the intensity of α-tubulin intensity both inside and outside the
nucleus. As expected, microtubule stabilizers like the taxanes show an elevated response along
this dimension compared with other similarly potent treatments, while the microtubule inhibi-
tors show a relatively lower level throughout their phenotypic trajectories. Another mechanism
class, however, distinguishes itself along this dimension: the heat shock protein 90 (HSP90)
inhibitors, which show elevated levels of tubulin intensity coupled with a relatively low level of
cell damage. In fact, the HSP90 inhibitors produce a very tight phenotypic cluster that exhibits
idiosyncratic behavior along a number of phenotypic dimensions, but this is one of the most
pronounced. Examples of cells in each of these phenotypic tracks are shown in Fig 4I–4N.

The Blebbish Track. Fig 4C and 4D plot the “Cell Damage” dimension against two more
highly informative dimensions, referred to as the “Blebbishness” and “Structural Damage”
dimensions. Mathematically, the “Blebbish” dimension is represented by a delicately balanced
set of morphological parameters, including an increase in cell radius relative to cell area, an
increase in eccentricity, and a decrease in compactness (neither “blebbishness” nor anything
similar was explicitly measured in the image processing software), while the “Structural Dam-
age” dimension describes the spatial relationships between the distribution of stains and cellu-
lar compartments, factoring in α-tubulin staining outside the cell, DNA staining outside the
nucleus, and increased tetraploidy. The “Blebbish” dimension is particularly interesting
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Fig 4. Example Phenotypic Tracks. (A) Plot of the means of the phenotypic trajectories of all 154 compounds in two highly informative dimensions, “Cell
Damage” and “DNA Damage”. Topoisomerase inhibitors (red) and antimetabolites (magenta) have been highlighted. (B) Plot of phenotypic trajectory means
in the “Cell Damage” and “Tubulin Intensity” dimensions. Microtubule stabilizers (yellow), microtubule inhibitors (purple), and HSP90 inhibitors (green) have
been highlighted. (C) Plot of phenotypic trajectory means in the “Cell Damage” and “Blebbishness” dimensions. Proteasome inhibitors (blue) and CDK
inhibitors (teal) have been highlighted. (D) Plot of phenotypic trajectory means in the “Cell Damage” and “Structural Damage” dimensions. HDAC inhibitors
(dark orange) and CDK inhibitors (teal) have been highlighted. (E) Example microscopy image of untreated cells. The red channel depicts α-tubulin intensity,
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because it makes little to no appearance in the first ten dimensions extracted by PCA, because
the variations that define it, though statistically significant, are small compared with overall
variations. One compound class known to induce blebbing, the proteasome inhibitors, [17]
shows a pronounced and unmistakable deviation in this dimension (though, as with the topo-
isomerase inhibitors, only at middling to lower concentrations). Visual examination of the cells
exposed to these treatments reveals that they do indeed exhibit a blebbing phenotype.

The proteasome inhibitors, however, are not the only treatments that induce a blebbing
appearance. The HDAC inhibitors and some cyclin-dependent kinase (CDK) inhibitors pro-
duce visually similar phenotypes; but these mechanism classes produce only small deviations
on the morphology-based “Blebbishness” dimension. This suggests that the “Blebbishness”
dimension captures only one facet of the blebbing phenotype, a facet which is most strongly
present in the proteasome inhibitors. It also demonstrates how the human limitations of visual
microscopy can be complemented by the strengths of quantitative analysis: though the pheno-
types of the proteasome inhibitors, CDK inhibitors, and HDAC inhibitors are visually similar
(Fig 4O–4T), the plots of their phenotypic trajectories in Fig 4C and 4D show that the pheno-
types are quantitatively highly distinct. This impression is confirmed by the clustering and clas-
sification results below, in which the three mechanism classes are robustly separated.

Hierarchical Clustering and Classification
Training Compounds. A hierarchical clustering of the 154 training compounds resulting

from the MSWO similarity measure is shown in Fig 5 (a full copy of this clustering tree, with
compound labels, can be found in S1 Fig). Compounds belonging to the 11 exemplar classes
used in the classification are highlighted (a full listing of the phenotypic activities of all 154
compounds and how they were classified can be found in S3 Table).The heat map of pheno-
typic activity (Fig 5B) beneath the tree demonstrates that the ability of compounds to form
similarity clusters is tightly correlated with phenotypic activity. From the similarity matrix
below (Fig 5C), it is easy to see why: compounds with low phenotypic activities also show low
similarity scores with other compounds across the board.

Of the 154 training compounds, classification using a leave-one-out cross-validation cor-
rectly classified 120 compounds for a hit rate of 78% (chance performance being 16%). Perfor-
mance improved when less phenotypically active compounds were excluded: compounds with
a phenotypic activity greater than 0.3 (111 compounds) were correctly classified at a rate of
80%, and compounds with a phenotypic activity greater than 0.5 (80 compounds) were cor-
rectly classified at a rate of 89%. Most encouragingly, compounds belonging to one of the 11
exemplar classes with a phenotypic activity greater than 0.3 (87 compounds) were correctly
classified at a rate of 90%. All aurora kinase inhibitors, microtubule inhibitors, microtubule sta-
bilizers, proteasome inhibitors, and topoisomerase inhibitors were classified correctly. The 10
most phenotypically active compounds that were incorrectly classified are shown in Table 1.

Model Comparison. Our results suggest that phenotypic analysis and classification is
most effective when dimensions extracted through treatment-based LDA are used on dose
response data with a weighted similarity metric that attenuates similarity between phenotypi-
cally inactive treatments. Fig 6 depicts the clustering results of our model in comparison with
several alternative models which lack at least one of these critical features; Fig 7 depicts the clas-
sification results of each of these alternate models broken down by compound mechanism. Use

the green channel Hoescht stain intensity, and the blue channel p-H2A.X stain intensity. (F–T) Example microscopy images of cells treated by 15 different
compounds from the mechanism classes highlighted in Fig 4A–4D. The points in the phenotypic trajectories to which the images correspond have been
indicated where appropriate.

doi:10.1371/journal.pone.0149439.g004

Minimalist High-Content Mechanism Classification

PLOS ONE | DOI:10.1371/journal.pone.0149439 February 17, 2016 12 / 21



of PCA rather than LDA introduces subtle degradations in the clustering and classification per-
formance; the effect is even more pronounced when a minority of extracted dimensions is
used. Here, using PCA rather than LDA causes the aurora kinase inhibitors, HDAC inhibitors,
and proteasome inhibitors to fail to form distinct clusters. Use of mechanism class-based LDA

Fig 5. Hierarchical Compound Clustering. (A) Dendrogram of similarity-based hierarchical clustering. For
more detail, see S1 Fig. (B) Heatmap depicting phenotypic activity of all compounds in the dendrogram in Fig
5A. (C) Similarity matrix for all 154 training compounds (white indicates the minimum similarity of 0, black
indicates the maximum similarity of 1).

doi:10.1371/journal.pone.0149439.g005
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limits the number of extracted dimensions and degrades handling of complex multi-cluster
classes such as the antimetabolites Use of single-point measurements and un-weighted similar-
ity scores causes even larger drops in performance, particularly in reliable identification of
compounds that do not belong to one of the exemplar classes.

Test Compounds. To assess reproducibility and predictive power, we applied our cluster-
ing and classification method to 8 compounds from a drug plate that was not part of the origi-
nal training set. The plate contained four proteasome inhibitors, all of which appeared in the
training compounds, and four compounds that were not reported to belong to any of the exem-
plar classes. Using the dimensions extracted from the multi-class LDA run on the 154 training
compounds, plots of the 8 novel trajectories on the “Cell Damage”, “Tubulin Intensity”, and
“Blebbishness” dimensions are shown in Fig 8A and 8B. Though all eight test compounds fol-
low standard trajectories in the “Cell Damage” and “Tubulin Intensity” dimensions, the four
proteasome inhibitors exhibit the same increasing and decreasing phenotypic trajectory in the
“Blebbishness” dimension as was exhibited by their counterparts in the training set.

Again using the 16 most informative phenotypic dimensions extracted from the training
compounds, similarity between the eight test compounds and the training compounds was
estimated. The results of the expanded hierarchical clustering are shown in Fig 8C (a more
complete version of this clustering tree, with compounds labeled, can be found in S2 Fig); as
expected, three of the four proteasome inhibitors cluster tightly with the proteasome inhibitors
in the training compounds, while a fourth (MG 132) exhibited a low phenotypic activity and
thus achieved corresponding low similarity scores. Of the four unknown compounds, three
exhibited low phenotypic activities (<0.3); but the fourth, the survivin inhibitor YM-155,
showed a significantly higher activity measure, and clustered near the proteasome inhibitors.
This clustering, however, was not robust: when the analysis was performed using 15 or 17
dimensions, YM-155 clustered differently. This behavior made YM-155 similar to other highly
phenotypically active but idiosyncratic compounds such as ouabain, auranofin, and stauros-
porine, which were differently misclassified based on small changes in the conditions of the
analysis.

Finally, the results of the similarity-based compound classification are shown in Table 2. All
four proteasome inhibitors were correctly classified, even phenotypically weak MG 132. Of the
four unknown compounds, the three phenotypically inactive compounds were correctly
grouped into the ‘Unspecified’ class, while YM-155 was incorrectly classified as a CDK inhibi-
tor. Interestingly, recent reports suggest that YM-155 might exert pleotropic effects beyond the
inhibition of survivin [18] For example, YM-155 can block the association of the transcription

Table 1. 10 most phenotypically active misclassified compounds.

Drug Expected Class PA Best Match Class Predicted Class

Gemcitabine Antimetabolite 0.980 Topoisomerase inhibitor Unspecified

Rigosertib PLK1 inhibitor 0.980 Microtubule inhibitor Microtubule inhibitor

Mitomycin Unspecified 0.887 Topoisomerase inhibitor Topoisomerase inhibitor

Thapsigargin Unspecified 0.854 Proteasome inhibitor Proteasome inhibitor

Cladribine Antimetabolite 0.767 Topoisomerase inhibitor Topoisomerase inhibitor

FdCyd Unspecified 0.754 Antimetabolite Antimetabolite

Cytarabine Antimetabolite 0.641 Topoisomerase inhibitor Topoisomerase inhibitor

Rotenone Unspecified 0.599 Microtubule inhibitor Microtubule inhibitor

Bleomycin sulfate Unspecified 0.514 Topoisomerase inhibitor Topoisomerase inhibitor

Thioguanine Antimetabolite 0.479 HDAC inhibitor Unspecified

doi:10.1371/journal.pone.0149439.t001
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Fig 6. Clustering in Alternate Models. (A) Hierarchical clustering resulting from our complete model. (B) Clustering resulting from using the 16 best PCA
dimensions, rather than the 16 best LDA dimensions. (C) Clustering resulting from 11 best dimensions extracted through mechanism class-based LDA. (D)
Clustering resulting from using only 8 LDA dimensions. (E)Clustering resulting from using only 8 PCA dimensions. (F) Clustering resulting from using only
the highest concentration of each compound (no dose response). (G) Clustering resulting from using simple overlap in the MSWO calculation rather than
weighted overlap.

doi:10.1371/journal.pone.0149439.g006

Minimalist High-Content Mechanism Classification

PLOS ONE | DOI:10.1371/journal.pone.0149439 February 17, 2016 15 / 21



factor SP1 to promoter sites, which decreases the expression of cyclin D1 and induces a cell-
cycle arrest phenotype [19] that could also be comparable to that achieved by pan-CDK
inhibition.

Thus, although YM-155 is considered a classification error, our method provided poten-
tially important insight into its mechanism of action. This finding suggested that we should
more closely examine the behavior of outliers from our training set.

Selected Classification Outliers
Antimetabolites. When originally assigning mechanism classes, classification of the anti-

metabolites was a problematic decision. Though they constituted the largest class (23 of the
154 test compounds), and subdivisions of antimetabolites certainly do exist, these subdivisions
are multifaceted and overlapping, making the selection of a single rational partition of the class
difficult. To avoid biasing results with a largely subjective decision, the antimetabolites were
left as a single monolithic class. Yet the hierarchical clustering results from Fig 5 clearly show
that among the more phenotypically active antimetabolites, two distinct phenotypic clusters
exist: one closely grouped with the topoisomerase inhibitors, and another forming an adjacent
but distinct compact cluster. These clusters are not merely an arbitrary division resulting from
experimental noise: the compounds comprising these clusters target distinct metabolic mecha-
nisms. The first cluster, which exhibits high deviation along the “DNA Damage” dimension,
much like the topoisomerase inhibitors, consists of the DNA polymerase inhibitors cytarabine
and its pro-drug ancitabine hydrochloride; and the ribonucleotide reductase inhibitors gemci-
tabine and cladribine, all of which directly inhibit the repair of DNA damage. The second clus-
ter, which shows a significantly smaller deviation on the “DNA Damage” dimension, includes
floxuridine, pralatrexate, raltitrexed, methotrexate, trifluridine, and pemetrexed, all antifolates
that have multiple effects including the inhibition of thymidylate synthase (TS), which eventu-
ally results in DNA damage. This distinction, though biologically relevant, is not one which

Fig 7. Classification in Alternate Models. Breakdown of classification performance of alternate analysis models by mechanism class. “All Dims” depicts
classification performance when no dimensional reduction is performed prior to classification.

doi:10.1371/journal.pone.0149439.g007
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was known to be phenotypically relevant prior to our analysis. The use of this assay, therefore,
has allowed us to develop a more nuanced understanding of the phenotypic behavior of anti-
metabolites, which can improve our analysis and identification of such compounds in future
work.

Fig 8. Phenotypic Analysis of Test Compounds. (A) Plot of phenotypic trajectory means for all eight test compounds in the “Cell Damage” and “Tubulin
Intensity” dimensions. The extent of phenotypic trajectory means in the 154 test compounds has been included in grey for reference. Proteasome inhibitors
are indicated by solid lines; unclassified compounds are indicated by dotted lines. (B) Plot of phenotypic trajectory means for all eight test compounds in the
“Cell Damage” and “Blebbishness” dimensions. (C) The complete hierarchical clustering resulting from including the eight test compounds in the set. The
eight test compounds have been indicated with black triangles. For more detail, see S2 Fig.

doi:10.1371/journal.pone.0149439.g008

Table 2. Classification results for all eight test compounds.

Drug Expected Class PA Best Match Predicted Class

Bortezomib Proteasome inhibitor 0.588 Proteasome inhibitor Proteasome inhibitor

Carfilzomib Proteasome inhibitor 0.544 Proteasome inhibitor Proteasome inhibitor

Ixazomib Proteasome inhibitor 0.421 Proteasome inhibitor Proteasome inhibitor

MG 132 Proteasome inhibitor 0.273 Proteasome inhibitor Proteasome inhibitor

YM-155 Unspecified 0.498 CDK inhibitor CDK inhibitor

Gambogic acid Unspecified 0.277 Protein synthesis inhibitor Unspecified

ICG001 Unspecified 0.214 Antimetabolite Unspecified

Gossypol Unspecified 0.204 HDAC inhibitor Unspecified

doi:10.1371/journal.pone.0149439.t002
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FdCyd. 5-Fluoro-2’-Deoxycytidine (FdCyd) is a pyrimidine analog currently in clinical tri-
als as a DNAmethyltransferase inhibitor.[20,21] Though other DNAmethyltransferase inhibi-
tors were included in the test set of drugs, including azacitidine, decitabine, and zebularine,
FdCyd unexpectedly grouped more strongly with the phenotypically active antifolates dis-
cussed in the previous section; in fact, the similarity between FdCyd and floxuridine was
greater than the similarity between any pair of antifolates. Further review of the literature
revealed that FdCyd is administered in conjunction with tetrahydrouridine (THU), which
inhibits the action of cytidine deaminase and prevents the metabolism of FdCyd into 5-fluoro-
2’deoxyuridine—a potent inhibitor of TS.[22] Thus, in the presence of cytidine deaminase,
FdCyd can, in addition to its action as a DNAmethyltransferase inhibitor, behave like a potent
TS inhibitor. Cytidine deaminase levels wary widely in human tumors [23] and can be aug-
mented by cell culture conditions.[24] As THU was not applied in our minimalist assay, and
given uncertain cytidine deaminase expression, the classification of FdCyd as an antimetabolite
and the clustering of FdCyd with the TS-inhibiting antifolates does not represent a failure of
the phenotypic assay. Rather, this indicates an accurate identification of an off-target effect that
had not yet been accounted for by our analysis.

Rigosertib. Another compound that grouped very strongly with a class other than its pub-
lished mechanism class is ON01910.Na, or rigosertib. Currently in Phase II clinical trials for
the treatment of myelodysplactic syndromes, rigosertib was originally reported, and is gener-
ally listed, as a polo-like kinase 1 (PLK1) inhibitor.[25] Hierarchical clustering and similarity-
based classification in our assay, however, suggested that rigosertib was acting not as a PLK1
inhibitor, but as a microtubule inhibitor or disruptor. Subsequent research on rigosertib has
shown that while it can phenocopy the behavior of a PLK1 inhibitor, it does not directly inhibit
PLK1.[26] Recent analysis of a close analog, TL-77, revealed that both drugs inhibit tubulin
polymerization, interfere with mitotic spindle assembly, and may indirectly suppress the PLK1
pathway.[27] Thus, as with FdCyd, what appears to be a misclassification instead represents
the identification of an unanticipated off-target effect—precisely the kind of effect such an
assay should identify.

Discussion
We have described a new analytical paradigm for interpreting high content phenotypic screen-
ing experiments. The use of multi-class treatment-based LDA rather than more traditional fac-
tor analysis such as PCA enabled the identification of assay artifacts while improving
clustering and classification accuracy. Visual inspection and manual rotation of the most infor-
mative LDA dimensions allowed us to identify biologically intuitive and highly informative
phenotypic dimensions that successfully discriminated several mechanistic classes. The flat
accuracy curve displayed by PCA subspaces in Fig 3C demonstrates that several of the initial
phenotypic dimensions extracted by PCA carry little information that distinguishes one com-
pound from another; therefore visual examination of these dimension would offer little to no
insight about what defines a given mechanism class’s particular phenotypic behavior. Further-
more, as additional stains and more complex or targeted cellular measurements are added to
an assay, the total dimensionality of the data can easily grow faster than the space of informa-
tive dimensions. Hence, robust identification of the most informative dimensions through
treatment-based LDA will become increasingly essential as our approach is extended to less
minimalist assays. Finally, the most informative dimensions produced by LDA, because they
consists of linear combinations of phenotypic measurements, can be easily interpreted in terms
of phenotypic measurements, making their biological significance more accessible than
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representations extracted by non-linear approaches like multidimensional analysis or self-
organizing maps.

The use of dose-response data, though it requires a greater investment of time and material,
yielded a significant improvement in the ability of our assay to identify phenotypic clusters and
correctly classify phenotypically active compounds. Further, it revealed complex, multi-stage
phenotypic tracks which are traversed by similarly acting compounds across a wide range of
concentrations. Finally, we developed an inter-compound similarity metric (MSWO) that inte-
grates information across doses and attenuates similarity between ineffective treatments,
allowed for robust measurement of within-class similarity, and greatly improved classification
accuracy and clustering.

Perhaps the most intriguing insight resulting from this study is the complexity and nuance
that it revealed in the behavior of compounds within the same mechanistic class. Though the
assay was originally developed to assist in the classification of novel or unknown molecules
according to established mechanistic classes, several of the most interesting results have been
those that reveal unexpected off-target effects, as in the case of two advanced clinical candi-
dates—FdCyd and rigosertib, and the phenotypic complexity of classes like the antimetabolites.
This suggests that an equally important application of this assay will be the identification of
compounds that behave differently from other members within the same mechanistic class.

Though the results described here are promising, several mechanistic classes, including the
alkylating agents, apoptotic agents, mTOR inhibitors, and PI3K inhibitors, were left unspeci-
fied in classification because they contained too few sufficiently phenotypically active exemplar
compounds. Lack of sufficient phenotypic activity is a significant limitation for high content
phenotypic screening that has compelled the field to add more and more assays focused on spe-
cific molecular processes. However, our minimalist assay—measuring only DNA content,
DNA damage, and tubulin—did remarkable well at discriminating several mechanistic classes.
Additional dyes that capture orthogonal aspects of cell morphology, such as those staining the
mitochondrial membrane, endoplasmic reticulum, or Golgi, would almost certainly increase
the power of our analytical method to discern mechanistic behavior, and require only a nomi-
nal increase in time, effort, and cost.

We also recognize that time and the cellular environment play critical roles in determining
a compound’s phenotypic response. Our assay was limited to a signal time point in a single cell
line. One can imagine adding additional cell lines and time points, though at some point this
will lead to diminishing returns. More importantly, we believe that our methodology is not
ideal for determining the precise molecular mechanism of action, but rather is best used to
identify phenotypic signatures that provide biologically-meaningful insight and a means to
compare different compounds. Indeed, as was discussed earlier in the case of the antimetabo-
lites, the definition of a mechanistic class is somewhat subjective and depends on the granular-
ity you wish to impose. On the other hand, examining the morphological changes in a cell
upon compound addition connects a molecular-scale event (e.g., the binding of an enzyme
inhibitor) to a macroscopic effect and informs our understanding of the underlying biology.

The increasing accuracy and decreasing cost of automated microscopy have made high con-
tent screening and analysis an invaluable tool in the discovery and understanding of novel ther-
apeutics. Yet the apparent promise of high content phenotypic screening still stands far from
the reality of existing phenotypic analysis approaches. Given the variety of tools available and
the increasing ease with which massive datasets may be collected, stored and accessed, it is
tempting to address the limitations of high content analysis with ever more complex and data-
rich assays, running several dozen stains and collecting hundreds of cellular measurements.
The results presented here, however, show that careful analytical choices can yield varied and

Minimalist High-Content Mechanism Classification

PLOS ONE | DOI:10.1371/journal.pone.0149439 February 17, 2016 19 / 21



often unexpected insights in high content phenotypic assays, and that these insights do not
require us to drown in ever-growing oceans of high content data.

Supporting Information
S1 Fig. Hierarchical clustering of all 154 training compounds. Similarity corresponds to
average MSWO between clusters.
(PDF)

S2 Fig. Hierarchical clustering of all 154 training compounds and 8 test compounds. Test
compounds are marked by a double asterisk (��).
(PDF)

S1 Table. 23 measurements used in analysis, and the transformation applied to them to
produce a more normal distribution.
(DOCX)

S2 Table. List of all 154 training compounds, their published mechanism, the vendor that
provided them, and the top concentration used in the assay.
(DOCX)

S3 Table. List of all training compounds, their phenotypic activities (PA), the mechanism
used for the compound in classification, the best matching exemplar class, and the classifi-
cation result.
(DOCX)

S4 Table. List of all 8 test compounds, their published mechanism, the vendor that pro-
vided them, and the top concentration used in the assay.
(DOCX)

Acknowledgments
We wish to thank the American Lebanese Syrian Associated Charities (ALSAC) for funding to
support this work.

Author Contributions
Conceived and designed the experiments: NRT JAL DGC GM AAS. Performed the experi-
ments: JAL DGC. Analyzed the data: NRT AAS. Contributed reagents/materials/analysis tools:
NRT JAL DGC TC GM AAS. Wrote the paper: NRT AAS.

References
1. Schmidinger M, Zielinski CC, Vogl UM, Bojic A, Bojic M, Schukro C, et al. Cardiac toxicity of sunitinib

and sorafenib in patients with metastatic renal cell carcinoma. J Clin Oncol. 2008; 26(32): 5204–5212.
doi: 10.1200/JCO.2007.15.6331 PMID: 18838713

2. Swinney DC, Anthony J. How were newmedicines discovered?. Nat Rev Drug Discov. 2011; 10(7):
507–519. doi: 10.1038/nrd3480 PMID: 21701501

3. Feng Y, Mitchison TJ, Bender A, Young DW, Tallarico JA. Multi-parameter phenotypic profiling: using
cellular effects to characterize small-molecule compounds.Nat Rev Drug Discov. 2009; 8(7): 567–578.
doi: 10.1038/nrd2876 PMID: 19568283

4. Abraham Y, Zhang X, Parker CN. Multiparametric Analysis of Screening Data Growing Beyond the Sin-
gle Dimension to Infinity and Beyond. J Biomol Screen. 2014; 19(5): 628–639. PMID: 24598104

5. Wolpaw AJ, Stockwell BR. Multidimensional profiling in the investigation of small-molecule-induced cell
death.Methods Enzymol. 2014; 545: 265. doi: 10.1016/B978-0-12-801430-1.00011-1 PMID:
25065894

Minimalist High-Content Mechanism Classification

PLOS ONE | DOI:10.1371/journal.pone.0149439 February 17, 2016 20 / 21

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0149439.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0149439.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0149439.s003
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0149439.s004
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0149439.s005
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0149439.s006
http://dx.doi.org/10.1200/JCO.2007.15.6331
http://www.ncbi.nlm.nih.gov/pubmed/18838713
http://dx.doi.org/10.1038/nrd3480
http://www.ncbi.nlm.nih.gov/pubmed/21701501
http://dx.doi.org/10.1038/nrd2876
http://www.ncbi.nlm.nih.gov/pubmed/19568283
http://www.ncbi.nlm.nih.gov/pubmed/24598104
http://dx.doi.org/10.1016/B978-0-12-801430-1.00011-1
http://www.ncbi.nlm.nih.gov/pubmed/25065894


6. Perlman ZE, Slack MD, Feng Y, Mitchison TJ, Wu LF, Altschuler SJ. Multidimensional drug profiling by
automated microscopy. Science. 2004; 306(5699): 1194–1198. PMID: 15539606

7. Loo L, Wu LF, Altschuler SJ. Image-basedmultivariate profiling of drug responses from single cells.
Nat Methods. 2007; 4(5): 445–453. PMID: 17401369

8. Reisen F, Zhang X, Gabriel D, Selzer P. Benchmarking of multivariate similarity measures for high-con-
tent screening fingerprints in phenotypic drug discovery. J Biomol Screen. 2013; 18(10): 1284–1297.
doi: 10.1177/1087057113501390 PMID: 24045583

9. Wilson CJ, Si Y, Thompsons CM, Smellie A, Ashwell MA, Liu J, et al. Identification of a small molecule
that induces mitotic arrest using a simplified high-content screening assay and data analysis method. J
Biomol Screen. 2006; 11(1): 21–28. PMID: 16234339

10. Freeley M, Bakos G, Davies A, Kelleher D, Long A, Dunican DJ. A high-content analysis
toolbox permits dissection of diverse signaling pathways for T lymphocyte polarization. J Biomol
Screen. 2010; 15(5): 541–555. doi: 10.1177/1087057110369703 PMID: 20460253

11. Xia X, Yang J, Li F, Li Y, Zhou X, Dai Y, et al. Image-based chemical screening identifies drug efflux
inhibitors in lung cancer cells.Cancer Res. 2010; 70(19): 7723–7733. doi: 10.1158/0008-5472.CAN-
09-4360 PMID: 20841476

12. Caie PD, Walls RE, Ingleston-Orme A, Daya S, Houslay T, Eagle R, et al. High-content phenotypic pro-
filing of drug response signatures across distinct cancer cells.Mol Cancer Ther. 2010; 9(6): 1913–
1926. doi: 10.1158/1535-7163.MCT-09-1148 PMID: 20530715

13. Tanaka M, Bateman R, Rauh D, Vaisberg E, Ramachandani S, Zhang C, et al. An unbiased cell mor-
phology-based screen for new, biologically active small molecules. PLoS Biol. 2005; 3(5): e128. PMID:
15799708

14. Young DW, Bender A, Hoyt J, McWhinnie E, Chirn G, Tao CY, et al. Integrating high-content screening
and ligand-target prediction to identify mechanism of action. Nat Chem Biol. 2008; 4(1): 59–68. PMID:
18066055

15. Rao CR. The utilization of multiple measurements in problems of biological classification. J R Stat Soc
Series B Stat Methodol. 1948; 10(2): 159–203.

16. Sokal RR, Michener CD. A statistical method for evaluating systematic relationships. Univ Kansas Sci
Bull. l958; 38(22): l409–l438.

17. Drexler HC. Activation of the cell death program by inhibition of proteasome function. Proc Nat Acad
Sci. 1997; 94(3): 855–860. PMID: 9023346

18. Rauch A, Hennig D, Schäfer C, Wirth M, Marx C, Heinzel T, et al. Survivin and YM155: how faithful is
the liaison? Biochim Biophys Acta. 2014; 1845(2): 202–220. doi: 10.1016/j.bbcan.2014.01.003 PMID:
24440709

19. Grinstein E, Jundt F, Weinert I, Wernet P, Royer H-D. Sp1 as G1 cell cycle phase specific transcription
factor in epithelial cells.Oncogene. 2002; 21(10), 1485–1492. PMID: 11896576

20. Kaysen J, Spriggs D, Kufe D. Incorporation of 5-fluorodeoxycytidine and metabolites into nucleic acids
of humanMCF-7 breast carcinoma cells.Cancer Res. 1986; 46(9): 4534–4538. PMID: 2425957

21. Newman EM, Longmate J, Lenz H, Carroll M, Stalter S, Lim D, et al. Phase I and clinical pharmacoki-
netic evaluation of the DNAmethyltransferase inhibitor 5-fluoro-2'-deoxycytidine: a California Cancer
Consortium Study. Proc Am Soc Clin Oncol. 2002; 21: 108a.

22. Beumer JH, Eiseman JL, Parise RA, Joseph E, Holleran JL, Covey JM, et al. Pharmacokinetics, metab-
olism, and oral bioavailability of the DNAmethyltransferase inhibitor 5-fluoro-2'-deoxycytidine in mice.
Clin Cancer Res. 2006; 12(24): 7483–7491. PMID: 17138702

23. Gumireddy K, Reddy MR, Cosenza SC, Nathan RB, Baker SJ, Papathi N, et al. ON01910, a non-ATP-
competitive small molecule inhibitor of Plk1, is a potent anticancer agent.Cancer Cell. 2005; 7(3): 275–
286. PMID: 15766665

24. Watanabe S, Uchida T. Expression of cytidine deaminase in human solid tumors and its regulation by
1α,25-dihydroxyvitamin D3. Biochim Biophys Acta. 1996; 1312(2): 99–104. PMID: 8672545

25. de Sousa Cavalcante L, Monteiro G. Gemcitabine: Metabolism and molecular mechanisms of action,
sensitivity and chemoresistance in pancreatic cancer. Eur J Pharmacol. 2014; 741: 8–16. doi: 10.1016/
j.ejphar.2014.07.041 PMID: 25084222

26. Steegmaier M, Hoffmann M, Baum A, Lénárt P, Petronczki M, Krššák M, et al. BI 2536, a potent and
selective inhibitor of polo-like kinase 1, inhibits tumor growth in vivo.Curr Biol. 2007; 17(4): 316–322.
PMID: 17291758

27. Lu T, Laughton CA, Wang S, Bradshaw TD. In Vitro Antitumor Mechanism of (E)-N-(2-methoxy-5-(((2,
4, 6-trimethoxystyryl) sulfonyl) methyl) pyridin-3-yl) methanesulfonamide.Mol Pharmacol. 2015; 87(1):
18–30. doi: 10.1124/mol.114.093245 PMID: 25316768

Minimalist High-Content Mechanism Classification

PLOS ONE | DOI:10.1371/journal.pone.0149439 February 17, 2016 21 / 21

http://www.ncbi.nlm.nih.gov/pubmed/15539606
http://www.ncbi.nlm.nih.gov/pubmed/17401369
http://dx.doi.org/10.1177/1087057113501390
http://www.ncbi.nlm.nih.gov/pubmed/24045583
http://www.ncbi.nlm.nih.gov/pubmed/16234339
http://dx.doi.org/10.1177/1087057110369703
http://www.ncbi.nlm.nih.gov/pubmed/20460253
http://dx.doi.org/10.1158/0008-5472.CAN-09-4360
http://dx.doi.org/10.1158/0008-5472.CAN-09-4360
http://www.ncbi.nlm.nih.gov/pubmed/20841476
http://dx.doi.org/10.1158/1535-7163.MCT-09-1148
http://www.ncbi.nlm.nih.gov/pubmed/20530715
http://www.ncbi.nlm.nih.gov/pubmed/15799708
http://www.ncbi.nlm.nih.gov/pubmed/18066055
http://www.ncbi.nlm.nih.gov/pubmed/9023346
http://dx.doi.org/10.1016/j.bbcan.2014.01.003
http://www.ncbi.nlm.nih.gov/pubmed/24440709
http://www.ncbi.nlm.nih.gov/pubmed/11896576
http://www.ncbi.nlm.nih.gov/pubmed/2425957
http://www.ncbi.nlm.nih.gov/pubmed/17138702
http://www.ncbi.nlm.nih.gov/pubmed/15766665
http://www.ncbi.nlm.nih.gov/pubmed/8672545
http://dx.doi.org/10.1016/j.ejphar.2014.07.041
http://dx.doi.org/10.1016/j.ejphar.2014.07.041
http://www.ncbi.nlm.nih.gov/pubmed/25084222
http://www.ncbi.nlm.nih.gov/pubmed/17291758
http://dx.doi.org/10.1124/mol.114.093245
http://www.ncbi.nlm.nih.gov/pubmed/25316768

