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Abstract 
 

Like other forms of neuropathology, gliomas appear to spread along neural pathways.  

Accordingly, our group and others have previously shown that brain network connecFvity is 

highly predicFve of glioma survival.  In this study, we aimed to examine the molecular 

mechanisms of this relaFonship via imaging transcriptomics.  We retrospecFvely obtained 

presurgical, T1-weighted MRI datasets from 669 adult paFents, newly diagnosed with diffuse 

glioma.  We measured brain connecFvity using gray maVer networks and coregistered these 

data with a transcriptomic brain atlas to determine the spaFal co-localizaFon between brain 

connecFvity and expression paVerns for 14 proto-oncogenes and 3 neural network construcFon 

genes.  We found that all 17 genes were significantly co-localized with brain connecFvity (p < 

0.03, corrected).  The strength of co-localizaFon was highly predicFve of overall survival in a 

cross-validated Cox ProporFonal Hazards model (mean area under the curve, AUC = 0.68 +/- 

0.01) and significantly (p < 0.001) more so for a random forest survival model (mean AUC = 0.97 

+/- 0.06).  Bayesian network analysis demonstrated direct and indirect causal relaFonships 

among gene-brain co-localizaFons and survival.  Gene ontology analysis showed that metabolic 

processes were overexpressed when spaFal co-localizaFon between brain connecFvity and gene 

transcripFon was highest (p < 0.001).  Drug-gene interacFon analysis idenFfied 84 potenFal 

candidate therapies based on our findings. Our findings provide novel insights regarding how 

gene-brain connecFvity interacFons may affect glioma survival. 
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Introduc.on 

 Diffuse gliomas are malignant neoplasms of the brain that have been shown to provoke 

whole-brain network disrupFon regardless of their primary foci (1-3).  It is well-known that 

neuropathology propagates throughout the brain from the iniFal sites of neurodegeneraFon via 

mechanisms such as transneuronal spread (4) and neuron derived exosomes (5), for example. In 

other words, pathology uses the same neural pathways and mechanisms that informaFon uses, 

and the more acFve or connected these pathways are, the more pathology will be transmiVed.  

In the case of glioma, tumors form and reorganize neural networks and glioma-infiltrated 

neurons show significant hyperacFvity.  The more connected these neurons are, the more 

efficiently the tumor proliferates to other areas of the brain, and the shorter the paFent’s 

survival (6, 7).  

Accordingly, previous studies have demonstrated that whole-brain network connecFvity 

is highly predicFve of glioma survival (8, 9).  Uniquely, our prior work has shown that brain-wide 

gray maVer connecFvity accurately predicts glioma genotype and overall survival, performing 

significantly beVer than demographic, clinical, or tumor radiomic models (10, 11).  Gray maVer 

volumes extracted from T1-weighted brain MRI (T1MRI) demonstrate covariance paVerns that 

reflect structural and funcFonal connecFvity networks (12, 13).  T1MRI is non-invasive, efficient 

to acquire, provides excellent contrast between gray and white maVer, and tends to be standard 

of care for glioma paFents.  However, T1MRI does not measure molecular mechanisms. 

Fortunately, advances in the development of transcriptomic brain atlases make it possible to co-

localize neuroimaging and gene expression data (14).  Known as imaging transcriptomics, this 
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emerging field has already provided novel insights regarding the biological pathways underlying 

brain health and disease (15).   

Krishna et al. (2023) performed RNA sequencing of glioma Fssue with high and low 

funcFonal connecFvity, sampled during neurosurgery (6). However, very few studies have 

applied the non-invasive technique of imaging transcriptomics to examine gene expression 

paVerns in glioma.  Mandal et al. (2020) co-localized brain-wide connectomics with spaFal 

profiles of several proto-oncogenes to reveal novel informaFon regarding regional vulnerability 

to glioma (16).  Otherwise, Germann and colleagues (2022) published a review describing 

connectomics and imaging transcriptomics and their potenFal applicaFons for neuro-oncology 

(17).  Here we report the first study to invesFgate the relaFonship between brain-wide 

connecFvity, brain-wide gene expression, and glioma survival.   

 
 
 
Methods 
 

Par$cipant Datasets: We retrospecFvely idenFfied adult (age 18 or older) paFents with 

histopathologically confirmed World Health OrganizaFon grade II–IV gliomas who were newly 

diagnosed and had not yet undergone any treatment (biopsy, resecFon, chemoradiaFon, etc.).  

A total of 669 paFents met these criteria and had an available, usable, pre-surgical, 3 tesla 

T1MRI. PaFents were treated during the years of 1990–2022. De-idenFfied T1MRI, 

demographic, and other clinical data were extracted from the electronic medical record.  The 

University of Texas MD Anderson Cancer Center InsFtuFonal Review Board gave ethical approval 

of this work (protocol# 2021-0236), which included a waiver of informed consent. 
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Structural Brain Connec$vity Maps: Gray maVer volumes were segmented from T1MRI 

with Voxel-Based Morphometry in StaFsFcal Parametric Mapping v12 (Wellcome Trust Centre 

for Neuroimaging, London, UK) in Matlab v2023b (Mathworks, Inc., NaFck, MA). We employed  

Diffeomorphic Anatomical RegistraFon Through ExponenFated Lie Algebra (DARTEL), which uses 

a large deformaFon framework to preserve topology and employs customized, sample-specific 

templates resulFng in superior image registraFon, even in lesioned brains, compared to other 

automated methods (18). Successful normalizaFon was confirmed using visual and quanFtaFve 

quality assurance methods.  

A gray maVer covariance map was constructed for each parFcipant using a similarity-

based extracFon method (19).  Specifically, network nodes were defined as 3x3x3mm cubes 

spanning the enFre gray maVer volume (i.e., 54 gray maVer values per cube, 7134 +/- 382 

cubes).  A correlaFon matrix was calculated across all pairs of nodes.  We then applied graph 

theoreFcal analysis using the bNets Toolbox v2.2 (Brain Health Neuroscience Lab, AusFn, TX) 

(20) and Brain ConnecFvity Toolbox v2019-03-03 (21) to calculate local efficiency (22) for each 

node. Nodal efficiency is consistently observed to be affected in paFents with diffuse glioma (2, 

23-25) and we have shown that it predicts overall survival and IDH tumor status with cross-

validated areas under the curve of 0.88 and 0.94, respecFvely (10, 11).  A staFsFcal image 

corresponding to the nodal efficiency of each cube was created using the standard space 

Montreal Neurological InsFtute (MNI) coordinates of each cube.  

Gene Expression Profiles: We obtained brain transcriptome data from the Allen Human 

Brain Atlas (AHBA), which is currently considered the most comprehensive transcripFonal brain 

map available (15).  AHBA was developed using six adult human donor brains to provide 
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expression data from tens of thousands of genes measured from thousands of brain regions 

(26). The standard space T1MRI’s of the donor brains are also publicly available to facilitate their 

spaFal coregistraFon with neuroimaging data from study samples.  Mandal and colleagues 

showed that several proto-oncogenes important for gliomagenesis, as idenFfied in a review by 

Molinaro et al. (27), were spaFally correlated with glioma distribuFon (16).  Krishna and 

colleagues showed that expression of certain genes involved in the development of neural 

networks were upregulated in highly connected, tumor-infiltrated brain regions (6).  We 

therefore extracted expression profiles for these same genes, excluding those for which there 

were no valid AHBA probes available (Supplementary Table 1).  

Imaging Transcriptomics: To determine the co-localizaFon of brain imaging and 

transcripFon data, we used the MulFmodal Environment for Neuroimaging and Genomic 

Analysis (MENGA) toolbox v3.1 in Matlab v2023b to spaFally correlate the structural brain 

connecFvity map of each parFcipant with paVerns of AHBA expression from the 17 selected 

genes.  The details of this analysis were described by Rizzo et al. (2016) (28).  Briefly, the 

imaging data for each glioma parFcipant was resampled into AHBA coordinates with a 3mm 

resoluFon.  The expression data for each AHBA donor, for each gene was sampled from each of 

169 AHBA regions resulFng in a 169x6 region-by-gene expression matrix for each gene.  

Principal Components Analysis was performed on the region-by-gene expression matrix to 

idenFfy components explaining at least 95% variance across the AHBA donors.  The component 

scores were then entered as independent variables into a weighted, mulFple linear regression 

analysis with the corresponding local efficiency values from the glioma parFcipant as the 

dependent variable.  The regression weights were the mean number of samples in each 
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connecFvity map region and the variability of these connecFvity values.  P values for the 

regression models were corrected for mulFple comparisons using false discovery rate (29).  

Associa$on of Imaging Transcriptomics with Survival:  The regression R squared staFsFcs 

for each gene for each parFcipant (669x17 matrix) were then entered into 1) Cox ProporFonal 

Hazards (PH), and 2) random forest survival (30) regression models to predict overall survival in 

months.  The absolute value of the R squared staFsFcs were uFlized as predictors to determine 

if the strength of the image-transcriptome spaFal co-localizaFon was significantly associated 

with survival.  Compared to inferenFal models like Cox PH, random forest models tend to 

demonstrate significantly beVer performance, are more robust to mulFcollinearity, and can 

capture complex non-linear relaFonships and interacFons between features.  However, they 

have lower interpretability as the importance of individual predictors is more difficult to 

ascertain.  There is also increased risk of overfipng the model to the data.  

We implemented 10-folds cross-validaFon (31) for both models to reduce overfipng and 

increase external validity.  Specifically, the N=669 cases were randomly shuffled and then split 

into 10 subsets (i.e., folds). For each of the 10 cross-validaFon loops, a Cox PH/random forest 

model was trained on the data from 9 of the folds and then tested on the ler-out fold such that 

every fold was tested once.  The Fme-dependent area under the curve (AUC) of the receiver 

operaFng characterisFc was used to determine model performance.  This is the integral of AUC 

on the range of survival Fme from 0 to maximum, weighted by the esFmated probability 

density of the Fme-to-event outcome. This AUC calculaFon accounts for censoring and the 

Fme-dependent nature of the parameters (32). The AUC was averaged across the 10 cross-

validaFon loops for each model and the means were compared using a t-test. For the cross-
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validaFon models with the highest AUC, we examined the coefficients and p values (Cox PH) and 

the variable holdout error (random forest survival) (33) to interpret the importance of individual 

genes in the models.   

Path Analysis: We conducted exploratory Bayesian network analysis to examine the 

causal relaFonship among the genes whose spaFal co-localizaFon with gray maVer connecFvity 

showed significant associaFon with survival across both predicFve models.  Unlike Structural 

EquaFon Modeling, this method learns the condiFonal dependencies between variables 

without any prior assumpFons. We uFlized a hill-climbing approach by opFmizing the Bayesian 

informaFon criterion to idenFfy the best fit network. The condiFonal 

independence/dependence relaFonships among variables were encoded with a directed acyclic 

graph.  We employed the method described by Stajduhar and Dalbelo-Basic (34) to account for 

censored data.  

Reliability of Genomic Data: Most of the genes included in AHBA have mulFple probes 

with some showing more reliable expression paVerns than others.  First, the current accuracy of 

the probe to gene mapping was verified and probe data were normalized to z-scores.  

RepresentaFve probes were then selected in a data-driven manner considering between-donor 

homogeneity and the distribuFons of probe data.  Genomic autocorrelaFons were calculated to 

measure the gene expression variability between donors. Most of the Fssue samples used to 

develop AHBA were obtained only from the ler hemisphere and therefore, we employed a 

binary mask to limit our analysis to the ler hemisphere (28).   

Gene Enrichment: We performed a gene ontology enrichment analysis using the 17 

selected genes ranked by the R squared staFsFc from the co-localizaFon analysis.  We uFlized 
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the Gene Ontology Enrichment Analysis and VisualizaFon (GOrilla) online tool, which idenFfies 

hierarchical gene ontology terms by opFmizing the hypergeometric tail probability across 

subsets of genes based on ranking (35, 36).  

Drug-Gene Interac$ons:  We uFlized the web-based Drug-Gene InteracFon Database 

(DGIdb) v5.0 (37) to explore the potenFal druggability of genes whose spaFal co-localizaFon 

with gray maVer connecFvity showed significant associaFon with survival across both predicFve 

models. DGIdg idenFfies drug-gene interacFons based on publicaFons and other open sources 

and calculates a Query Score for ranking search results.  The Query Score considers the 

specificity of the gene-drug associaFon, the overlapping drug interacFons among all genes in 

the query, and the number of sources supporFng the interacFon. DGIdb results also describe 

the indicaFon for drugs, when known, as well as the current regulatory status.  

 
Results 
 
 Pa$ent Characteris$cs: PaFents were aged 48 +/- 16 years (range: 18 to 87) at diagnosis 

and 59% were male.  Most paFents had high grade tumors (65%) and underwent gross total 

resecFon (46%). Ler hemisphere (75%) and frontal lobe (48%) were the most common tumor 

locaFons, and most were histologic astrocytomas (76%). Those paFents with available tumor 

genotyping data were relaFvely split between IDH mutant and wild type (N = 91 missing) as well 

as MGMT methylated and unmethylated (N = 450 missing). Most paFents (98%) had a Karnofsky 

Performance Scale (KPS) of 70 or higher, although these data were missing for over half the 

cohort (Table 1).  Median overall survival was 81 months (95% CI: 70 to 96, Figure 1a) with a 

36.5% mortality rate over the follow up period of 335 months (median = 45 months).     
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Imaging Transcriptomics:  As shown in Table 2, all 17 selected genes demonstrated 

significant spaFal co-localizaFon with whole brain gray maVer connecFvity, even arer 

correcFon for mulFple comparisons (p < 0.03, corrected).   

Imaging Transcriptome and Survival: The mean cross-validated, Fme dependent AUCs 

were 0.68 +/- 0.01 for Cox PH and 0.97 +/- 0.06 for random forest (Figure 1b).  Random forest 

significantly outperformed Cox PH (p < 0.001, corrected). In the best Cox PH model (AUC = 

0.71), co-localizaFon of brain connecFvity and TERT (B = -5.1, p = 0.004), ATRX (B = -5.5, p = 

0.012), FUBP1 (B = 5.2, p = 0.03), NOTCH1 (B = -7.5, p = 0.004), and CDKN2A (B = 1.0, p = 0.02) 

were significant predictors (Table 3). In the best random forest model (AUC = 0.999), the most 

important predictors were the strengths of co-localizaFon of brain connecFvity with TERT, ATRX, 

FUBP1, and SYNPO (Table 4). Figure 2 shows the causal, Bayesian network pathways among 

spaFal co-localizaFon and survival. 

Gene Enrichment:  Ontology analysis indicated several processes that are overexpressed 

when spaFal co-localizaFon between gray maVer connecFvity and gene transcripFon is highest.  

These included biological processes related to regulaFon of biological quality as well as cellular, 

primary, nitrogen compound, organic substance, and macromolecule metabolism (Figure 3a).    

 Drug-Gene Interac$ons: We submiVed the genes whose co-localizaFon with brain 

connecFvity was determined as most important across the two predicFve models (TERT, ATRX, 

FUBP1, CDKN2A, SYNPO and NOTCH1) to the Drug-Gene InteracFon Database.  The database 

idenFfied 84 different drugs with a mean query score of 1.7 +/- 2.6 (range = 0.02 to 22.1).  The 

highest Query Score was for BronFctuzumab (OMP-52M51).  However, there were no 

interacFons found in the database for FUBP1 or SYNPO (Figure 3b, Supplementary Table 2).  
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Discussion 
 

We conducted the first imaging transcriptomics study evaluaFng the relaFonship 

between widespread brain connecFvity, brain gene expression, and glioma survival.  We found 

that the expression paVerns of important proto-oncogenes as well as neural network 

construcFon genes were significantly spaFally correlated with whole brain, gray maVer 

connecFvity.  AddiFonally, we showed that the strength of this co-localizaFon was highly 

predicFve of overall survival.  Our findings make a novel contribuFon to results from prior 

studies (6, 16) by combining both proto-oncogenes and neural network construcFon genes and 

by examining large scale brain connecFvity rather than tumor specific connecFvity.   

We evaluated brain connecFvity using a metric known as nodal efficiency, which 

indicates how many direct connecFons a brain region has with other regions.  InformaFon 

processing is more efficient when there are direct connecFons among neural communiFes.  

Given previous findings that highly connected, tumor-infiltrated neurons tend to increase 

proliferaFon of glioma pathology (6), we expected higher nodal efficiency to be associated with 

lower survival.  However, this was dependent on the gene-brain pathway.  Higher expression of 

ATRX, CDKN2A, FUBP1, and SYNPO as well as lower expression of TERT and NOTCH1 were 

associated with higher nodal efficiency.  The strength of these relaFonships was significantly 

associated with survival.  This is consistent with our prior findings that overall survival in 

paFents with glioma is associated with areas of lower as well as areas of higher gray maVer 

connecFvity (10). 

It is important to remember that these relaFonships are not directly between gene 

expression and survival, but instead reflect the effects of spaFal co-localizaFon of gene 
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expression and brain connecFvity on survival.  The causal, Bayesian network path analysis 

provides further insight regarding these complex relaFonships.  NOTCH1- and FUBP1-related 

brain connecFvity showed the only direct influences on survival.  TERT-related brain 

connecFvity showed an indirect effect on survival by exerFng influence on CDKN2A-related 

brain connecFvity, which in turn influenced NOTCH1-related brain connecFvity.  FUBP1-related 

brain connecFvity also appeared to influence the relaFonship of brain connecFvity with 

CDKN2A and NOTCH1 as well as having a direct effect on survival status.  ATRX-related brain 

connecFvity showed an indirect effect on survival via the relaFonship between NOTCH1 and 

brain connecFvity.   

InterpreFng the impact of higher versus lower brain connecFvity on survival is 

challenging.  These relaFonships were evaluated in mulFvariate space and the significantly 

beVer performance of the random forest model compared to the Cox PH model indicates that 

these relaFonships were highly nonlinear.  These findings are consistent with evidence that the 

brain network operates as a system at criFcality, funcFoning opFmally when finely balanced on 

the edge of various compeFng demands (38).  In other words, there is an opFmal range of brain 

connecFvity where too liVle or too much can be detrimental.  Gene-interacFon networks also 

operate at criFcality (39).  At the edge of criFcality, these systems are highly sensiFve to 

perturbaFons. This sensiFvity can be beneficial, as it allows the network to flexibly respond to 

changing environments or condiFons. However, it can also make the system vulnerable to 

mutaFons or detrimental stressors.  The interacFons within criFcal systems can lead to 

emergent behaviors that are not predictable by studying individual components (genes, brain 

regions) in isolaFon.  
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The opFmal level of brain connecFvity allows for the efficient exchange of informaFon 

without overwhelming the system’s resources (22) and thus connecFvity is inherently Fed to 

metabolism (40).  Our gene ontology analysis indicated that metabolism was the common 

funcFon across the genes that were most important in our predicFve models. This is consistent 

with previous research on cancer metabolism (41).  Our Bayesian network path analysis showed 

that SYNPO-related brain connecFvity was directed by the relaFonships between brain 

connecFvity and all other genes in the model.  The direct or indirect effects of SYNPO-related 

brain connecFvity on glioma survival was not apparent from our findings.  SYNPO expression is 

believed to be involved in neural network construcFon (6) and thus would rely heavily on 

upstream, metabolically driven pathways.  However, the effects of SYNPO-related brain 

connecFvity on survival in the context of proto-oncogenes requires further invesFgaFon.  

Given that neural connecFvity is associated with neural acFvity, it would be interesFng 

to see if these properFes could be safely reduced to slow tumor progression using drugs that 

impact the gene-brain connecFvity relaFonships idenFfied by our models.  NOTCH1- and 

FUBP1-related connecFvity showed the only direct causal links to survival and are therefore 

strong candidate targets.  Our drug-gene interacFon analysis idenFfied BronFctuzumab (OMP-

52M51) as the best candidate.  BronFctuzumab is a human monoclonal anFbody that blocks 

NOTCH1 signaling and has already been proposed as a potenFal treatment for glioma and other 

cancers (42).  Our analysis did not idenFfy any drug-gene interacFons specific to FUBP1, 

however, this analysis suggests drugs in the context of all queried genes.  We noted that the 

Query Score doubled from 10.91 when NOTCH1 was entered alone to 22.11 when including all 6 

significant genes.  This suggests BronFctuzumab has overlapping interacFons with the other 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 28, 2023. ; https://doi.org/10.1101/2023.11.27.23299085doi: medRxiv preprint 

https://doi.org/10.1101/2023.11.27.23299085
http://creativecommons.org/licenses/by-nc-nd/4.0/


genes in the query, including FUBP1.  Our Bayesian network analysis suggested that enhancing 

the relaFonship between NOTCH1 and brain connecFvity has survival benefit.  Given the 

nonlinear nature of these relaFonships, it is possible that inhibiFng NOTCH1 could enhance this 

relaFonship within a certain window of parameters.  However, further research is required 

especially given that this analysis required query of the genes themselves. Thus, the results may 

not reflect candidate drugs that would directly impact the gene-brain connecFvity rela$onship.     

Nonpharmacologic alternaFves for reducing neural acFvity include mindfulness 

meditaFon and neuromodulaFon.  Mindfulness meditaFon focuses on decreasing intrusive 

thought processes and has been shown to reduce neural acFvity, especially in the default mode 

network (43), which is the most metabolically acFve funcFonal brain network (40).  MeditaFon 

has addiFonal benefits such as reducing distress, inflammaFon, and blood pressure, and 

improving cogniFve funcFon (44).  However, mindfulness meditaFon can also increase neural 

acFvity and connecFvity in some individuals, especially among novices (43).  NeuromodulaFon 

involves regulaFng brain acFvity via neurosFmulaFon or neurofeedback.  We previously showed 

that healthy adults can be trained to significantly down-regulate neural acFvity and improve 

cogniFve funcFon in only 1.5 total hours of neurofeedback across 2 weeks (45).  In addiFon to 

regulaFng neural acFvity, cogniFve funcFon is itself an important predictor of survival in glioma 

(46).  However, given the complex, nonlinear nature of our findings, it will be criFcal to 

determine which specific neural communiFes require up regulaFon and which require down 

regulaFon.   

In conclusion, we demonstrated that the expression paVerns of several proto-oncogenes 

as well as neural network construcFon genes are significantly co-localized with brain 
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connecFvity.  However, higher brain connecFvity may not always be associated with lower 

survival.  We also showed that some gene-brain relaFonships have a direct effect on survival, 

but most others tend to influence mortality by affecFng other gene-brain relaFonships. The 

limitaFons of our study include the retrospecFve nature of the data.  We selected genes and 

measured local efficiency based on prior literature, but other genes, connecFvity metrics or 

connecFvity methods may have produced different results.  As noted above, the AHBA provides 

limited data for the right hemisphere and contralateral differences in gene-brain relaFonships 

cannot be ruled out.  There was heterogeneity in gene expression across the AHBA donors as 

reflected in the genomic autocorrelaFons, and this may have reduced the power to detect 

certain effects.   Bayesian network coefficients are analogous to those derived from mulFple 

regression and therefore do not adequately reflect the nonlinear relaFonships among variables.  

Despite these limitaFons, our findings provide novel insights regarding how gene-brain 

connecFvity interacFons may affect therapeuFc vulnerabiliFes and glioma survival. 

 

Acknowledgements: This research was supported by the NaFonal InsFtutes of Health 

(1R03CA241862).  The sponsor was not involved in any aspects of study design, analysis, 

manuscript preparaFon or submission.  

Author contribu.ons: ConceptualizaFon: SRK, RAH, SP. Data collecFon: HM, PB, VV, ADS, SP. 

Formal analysis: SRK, ADS. Methodology: SRK, SP, ADS. WriFng-review & ediFng: All authors. 

Data Availability: All data relevant to the study are included in the arFcle. The original MRI data 

underlying this arFcle cannot be shared publicly due to data protecFon regulaFon.  

Addi.onal Informa.on:  The authors declare no compeFng interests related to this manuscript. 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 28, 2023. ; https://doi.org/10.1101/2023.11.27.23299085doi: medRxiv preprint 

https://doi.org/10.1101/2023.11.27.23299085
http://creativecommons.org/licenses/by-nc-nd/4.0/


References 

1. Stoecklein VM, Stoecklein S, Galie F, Ren J, Schmutzer M, Unterrainer M, et al. ResFng-
state fMRI detects alteraFons in whole brain connecFvity related to tumor biology in 
glioma paFents. Neuro Oncol. 2020;22(9):1388-98. 

2. Kesler SR, Noll K, Cahill DP, Rao G, Wefel JS. The effect of IDH1 mutaFon on the structural 
connectome in malignant astrocytoma. J Neurooncol. 2017;131(3):565-74. 

3. Derks J, Dirkson AR, de WiV Hamer PC, van Geest Q, Hulst HE, Barkhof F, et al. 
Connectomic profile and clinical phenotype in newly diagnosed glioma paFents. 
NeuroImage Clinical. 2017;14:87-96. 

4. Zhou J, Gennatas ED, Kramer JH, Miller BL, Seeley WW. PredicFng regional 
neurodegeneraFon from the healthy brain funcFonal connectome. Neuron. 
2012;73(6):1216-27. 

5. Huo L, Du X, Li X, Liu S, Xu Y. The Emerging Role of Neural Cell-Derived Exosomes in 
Intercellular CommunicaFon in Health and NeurodegeneraFve Diseases. Front Neurosci. 
2021;15:738442. 

6. Krishna S, Choudhury A, Keough MB, Seo K, Ni L, Kakaizada S, et al. Glioblastoma 
remodelling of human neural circuits decreases survival. Nature. 2023;617(7961):599-
607. 

7. Venkatesh HS, Morishita W, Geraghty AC, Silverbush D, Gillespie SM, Arzt M, et al. 
Electrical and synapFc integraFon of glioma into neural circuits. Nature. 
2019;573(7775):539-45. 

8. Wei Y, Li C, Cui Z, Mayrand RC, Zou J, Wong A, et al. Structural connectome quanFfies 
tumour invasion and predicts survival in glioblastoma paFents. Brain. 2023;146(4):1714-
27. 

9. Liu L, Zhang H, Rekik I, Chen X, Wang Q, Shen D. Outcome PredicFon for PaFent with 
High-Grade Gliomas from Brain FuncFonal and Structural Networks. Medical image 
compuFng and computer-assisted intervenFon : MICCAI  InternaFonal Conference on 
Medical Image CompuFng and Computer-Assisted IntervenFon. 2016;9901:26-34. 

10. Kesler SR, Harrison RA, Rao V, Dyson H, Petersen M, Prinsloo S. PredicFng overall survival 
in diffuse glioma from the presurgical connectome. ScienFfic reports. 2022;12(1):18783. 

11. Kesler SR, Harrison RA, Petersen ML, Rao V, Dyson H, Alfaro-Munoz K, et al. Pre-surgical 
connectome features predict IDH status in diffuse gliomas. Oncotarget. 
2019;10(60):6484-93. 

12. Alexander-Bloch A, Giedd JN, Bullmore E. Imaging structural co-variance between human 
brain regions. Nat Rev Neurosci. 2013;14(5):322-36. 

13. Hosseini SM, Kesler SR. Comparing connecFvity paVern and small-world organizaFon 
between structural correlaFon and resFng-state networks in healthy adults. 
NeuroImage. 2013;78:402-14. 

14. Fornito A, Arnatkeviciute A, Fulcher BD. Bridging the Gap between Connectome and 
Transcriptome. Trends Cogn Sci. 2019;23(1):34-50. 

15. Arnatkeviciute A, Fulcher BD, Bellgrove MA, Fornito A. Imaging Transcriptomics of Brain 
Disorders. Biol Psychiatry Glob Open Sci. 2022;2(4):319-31. 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 28, 2023. ; https://doi.org/10.1101/2023.11.27.23299085doi: medRxiv preprint 

https://doi.org/10.1101/2023.11.27.23299085
http://creativecommons.org/licenses/by-nc-nd/4.0/


16. Mandal AS, Romero-Garcia R, Hart MG, Suckling J. GeneFc, cellular, and connectomic 
characterizaFon of the brain regions commonly plagued by glioma. Brain. 
2020;143(11):3294-307. 

17. Germann J, Zadeh G, Mansouri A, Kucharczyk W, Lozano AM, Boutet A. Untapped 
Neuroimaging Tools for Neuro-Oncology: Connectomics and SpaFal Transcriptomics. 
Cancers (Basel). 2022;14(3). 

18. Ripolles P, Marco-Pallares J, de Diego-Balaguer R, Miro J, Falip M, Juncadella M, et al. 
Analysis of automated methods for spaFal normalizaFon of lesioned brains. 
NeuroImage. 2012;60(2):1296-306. 

19. Tijms BM, Series P, Willshaw DJ, Lawrie SM. Similarity-based extracFon of individual 
networks from gray maVer MRI scans. Cereb Cortex. 2012;22(7):1530-41. 

20. Hosseini SM, Hoer F, Kesler SR. GAT: a graph-theoreFcal analysis toolbox for analyzing 
between-group differences in large-scale structural and funcFonal brain networks. PLoS 
One. 2012;7(7):e40709. 

21. Rubinov M, Sporns O. Complex network measures of brain connecFvity: uses and 
interpretaFons. NeuroImage. 2010;52(3):1059-69. 

22. Achard S, Bullmore E. Efficiency and cost of economical brain funcFonal networks. PLoS 
Comput Biol. 2007;3(2):e17. 

23. Bahrami N, Seibert TM, Karunamuni R, Bartsch H, Krishnan A, Farid N, et al. Altered 
Network Topology in PaFents with Primary Brain Tumors Arer FracFonated 
Radiotherapy. Brain connecFvity. 2017;7(5):299-308. 

24. Huang Q, Zhang R, Hu X, Ding S, Qian J, Lei T, et al. Disturbed small-world networks and 
neurocogniFve funcFon in frontal lobe low-grade glioma paFents. PLoS One. 
2014;9(4):e94095. 

25. Xu H, Ding S, Hu X, Yang K, Xiao C, Zou Y, et al. Reduced efficiency of funcFonal brain 
network underlying intellectual decline in paFents with low-grade glioma. Neurosci LeV. 
2013;543:27-31. 

26. Hawrylycz MJ, Lein ES, Guillozet-Bongaarts AL, Shen EH, Ng L, Miller JA, et al. An 
anatomically comprehensive atlas of the adult human brain transcriptome. Nature. 
2012;489(7416):391-9. 

27. Molinaro AM, Taylor JW, Wiencke JK, Wrensch MR. GeneFc and molecular epidemiology 
of adult diffuse glioma. Nat Rev Neurol. 2019;15(7):405-17. 

28. Rizzo G, Veronese M, Expert P, Turkheimer FE, Bertoldo A. MENGA: A New 
Comprehensive Tool for the IntegraFon of Neuroimaging Data and the Allen Human 
Brain Transcriptome Atlas. PLoS One. 2016;11(2):e0148744. 

29. Benjamini Y, YekuFeli D. The Control of the False Discovery Rate in MulFple TesFng under 
Dependency. The Annals of StaFsFcs. 2001;29(4):1165-88. 

30. Ishwaran H, Kogalur UB, Blackstone EH, Lauer MS. Random survival forests. The Annals 
of Applied StaFsFcs. 2008;2(3):841-60. 

31. Varoquaux G, Raamana PR, Engemann DA, Hoyos-Idrobo A, Schwartz Y, Thirion B. 
Assessing and tuning brain decoders: Cross-validaFon, caveats, and guidelines. 
NeuroImage. 2017;145(Pt B):166-79. 

32. Chambless LE, Diao G. EsFmaFon of Fme-dependent area under the ROC curve for long-
term risk predicFon. Stat Med. 2006;25(20):3474-86. 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 28, 2023. ; https://doi.org/10.1101/2023.11.27.23299085doi: medRxiv preprint 

https://doi.org/10.1101/2023.11.27.23299085
http://creativecommons.org/licenses/by-nc-nd/4.0/


33. Ishwaran H. Variable importance in binary regression trees and forests. Electronic 
Journal of StaFsFcs. 2007;1(none):519-37. 

34. Stajduhar I, Dalbelo-Basic B. Learning Bayesian networks from survival data using 
weighFng censored instances. Journal of biomedical informaFcs. 2010;43(4):613-22. 

35. Eden E, Navon R, Steinfeld I, Lipson D, Yakhini Z. GOrilla: a tool for discovery and 
visualizaFon of enriched GO terms in ranked gene lists. BMC BioinformaFcs. 2009;10:48. 

36. Eden E, Lipson D, Yogev S, Yakhini Z. Discovering moFfs in ranked lists of DNA sequences. 
PLoS Comput Biol. 2007;3(3):e39. 

37. Freshour SL, Kiwala S, CoVo KC, Coffman AC, McMichael JF, Song JJ, et al. IntegraFon of 
the Drug-Gene InteracFon Database (DGIdb 4.0) with open crowdsource efforts. Nucleic 
Acids Res. 2021;49(D1):D1144-D51. 

38. Heiney K, Huse Ramstad O, Fiskum V, ChrisFansen N, Sandvig A, Nichele S, et al. 
CriFcality, ConnecFvity, and Neural Disorder: A MulFfaceted Approach to Neural 
ComputaFon. FronFers in computaFonal neuroscience. 2021;15:611183. 

39. Torres-Sosa C, Huang S, Aldana M. CriFcality is an emergent property of geneFc 
networks that exhibit evolvability. 2012. 

40. Shokri-Kojori E, Tomasi D, Alipanahi B, Wiers CE, Wang GJ, Volkow ND. Correspondence 
between cerebral glucose metabolism and BOLD reveals relaFve power and cost in 
human brain. Nat Commun. 2019;10(1):690. 

41. Masui K, Cavenee WK, Mischel PS. Cancer metabolism as a central driving force of 
glioma pathogenesis. Brain Tumor Pathol. 2016;33(3):161-8. 

42. Herrera-Rios D, Li G, Khan D, Tsiampali J, Nickel AC, Aretz P, et al. A computaFonal 
guided, funcFonal validaFon of a novel therapeuFc anFbody proposes Notch signaling as 
a clinical relevant and druggable target in glioma. ScienFfic reports. 2020;10(1):16218. 

43. Ganesan S, Beyer E, Moffat B, Van Dam NT, Lorenzep V, Zalesky A. Focused aVenFon 
meditaFon in healthy adults: A systemaFc review and meta-analysis of cross-secFonal 
funcFonal MRI studies. Neurosci Biobehav Rev. 2022;141:104846. 

44. Pascoe MC, de Manincor M, Tseberja J, Hallgren M, Baldwin PA, Parker AG. 
Psychobiological mechanisms underlying the mood benefits of meditaFon: A narraFve 
review. Compr Psychoneuroendocrinol. 2021;6:100037. 

45. Hosseini SMH, Pritchard-Berman M, Sosa N, Ceja A, Kesler SR. Task-based neurofeedback 
training: A novel approach toward training execuFve funcFons. NeuroImage. 
2016;134:153-9. 

46. Bruhn H, Blystad I, Milos P, Malmstrom A, Dahle C, Vrethem M, et al. IniFal cogniFve 
impairment predicts shorter survival of paFents with glioblastoma. Acta Neurol Scand. 
2022;145(1):94-101. 

 

  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 28, 2023. ; https://doi.org/10.1101/2023.11.27.23299085doi: medRxiv preprint 

https://doi.org/10.1101/2023.11.27.23299085
http://creativecommons.org/licenses/by-nc-nd/4.0/


Table 1. PaFent CharacterisFcs.   

  N (%)  N (%) 

Mean age at diagnosis 

(years) 48.02 ± 15.7  Extent of resection 

Biological sex Gross total  309 (46.2%)  

Male 397 (59.3%) Subtotal 287 (42.9%) 

Female 272 (40.7%) Biopsy 70 (10.5%) 

Histologic phenotype Missing/Unknown 3 (0.4%)  

Astrocytoma 508 (75.9%) IDH genotype  

Oligodendroglioma 139 (20.8%) Wildtype 284 (42.5%) 

Oligoastrocytoma 22 (3.3%) Mutant 294 (43.9%) 

Histologic grade Missing/Unknown 91 (13.6%)  

Grade I 1 (0.1%) MGMT genotype 

Grade II 231 (34.5%) Methylated 107 (16.0%) 

Grade III 136 (20.3%) Unmethylated 112 (16.7%) 

Grade IV 301 (45.0%) Missing/Unknown 450 (67.3%) 

Tumor laterality KPS 

Right 167 (25.0%) 60 5 (0.75%) 

Left 504 (75.3%) 70 15 (2.2%) 

Primary tumor location 80 64 (9.6%) 

Frontal 320 (47.8%) 90 156 (23.3%) 

Temporal 254 (38.0%) 100 82 (12.3%) 

Parietal 116 (17.3%) Missing/Unknown 347 (51.9%) 

Occipital 8 (1.2%)   

IDH: isocitrate dehydrogenases; MGMT: O6-methylguanine-DNA methyltransferase; KPS: 

Karnofsky Performance Scale 
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Table 2. Imaging Transcriptomics.  MulFple regression analysis indicated significant spaFal co-

localizaFon of gene expression and gray maVer connecFvity.  FDR: false discovery rate, sd: 

standard deviaFon.  

Gene 

R2 F p 

uncorrected 

p FDR 

corrected 

Direc.on of 

rela.onship 

Genomic 

autocorrela.on 

coefficient [R2 

(sd)] 

IDH1 0.335 14.213 <0.001 <0.001 -1 0.16 (0.14) 

IDH2 0.058 5.189 0.002 0.003 1 0.39 (0.15) 

TERT 0.227 9.292 <0.001 <0.001 -1 0.24 (0.10) 

ATRX 0.311 10.240 <0.001 <0.001 1 0.14 (0.07) 

EGFR 0.219 8.973 <0.001 <0.001 -1 0.28 (0.11) 

CDKN2A 0.004 3.139 0.030 0.030 -1 0.54 (0.09) 

CDKN2B 0.121 5.619 <0.001 0.001 -1 0.15 (0.14) 

PTEN 0.305 12.660 <0.001 <0.001 1 0.10 (0.10) 

TP53 0.205 6.682 <0.001 <0.001 -1 0.02 (0.03) 

NF1 0.267 8.662 <0.001 <0.001 -1 0.05 (0.05) 

MDM2 0.286 9.325 <0.001 <0.001 -1 0.09 (0.07) 

PIK3CA 0.272 11.154 <0.001 <0.001 -1 0.16 (0.09) 

FUBP1 0.144 5.006 <0.001 0.001 1 0.13 (0.10) 

NOTCH1 0.246 10.045 <0.001 <0.001 -1 0.20 (0.14) 
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SYNPO 0.069 4.137 0.004 0.004 1 0.50 (0.11) 

NTNG1 0.068 17.063 <0.001 <0.001 -1 0.66 (0.09) 

THBS1 0.211 6.858 <0.001 <0.001 1 0.04 (0.06) 
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Table 3. Variable importance data from the best cross-validated Cox PH model.  Variables with a 

p value less than 0.05 were considered the most important (bold font).  

 
 

gene coef z p 
TERT -5.103 -2.884 0.004 
NOTCH1 -7.499 -2.870 0.004 
ATRX -5.477 -2.477 0.013 
CDKN2A 10.390 2.415 0.016 
FUBP1 5.217 2.115 0.034 
MDM2 3.938 1.749 0.080 
PTEN 5.264 1.716 0.086 
CDKN2B 4.641 1.669 0.095 
TP53 3.577 1.327 0.184 
IDH2 2.229 0.831 0.406 
EGFR -1.685 -0.672 0.502 
NF1 -1.460 -0.459 0.646 
PIK3CA -1.097 -0.403 0.687 
IDH1 0.870 0.300 0.764 
NTNG1 0.710 0.294 0.769 
SYNPO 0.286 0.089 0.929 
THBS1 -0.035 -0.014 0.989 
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Table 4. Variable importance data from the best cross-validated random forest model.  The 

holdout error is the error of the permuted model when that variable was ler out and thus, the 

higher the value (error), the more important the variable for the model.  Variables with holdout 

error greater than 1 standard deviaFon above the mean were considered the most important 

(bold font).  

  
Gene Holdout 

Error 
FUBP1 0.0551605 
ATRX 0.0532774 
SYNPO 0.0451783 
TERT 0.0436162 
PTEN 0.03571821 
EGFR 0.03050043 
PIK3CA 0.02924016 
TP53 0.0285317 
NF1 0.02509829 
CDKN2B 0.02472045 
THBS1 0.02361924 
NTNG1 0.02274742 
IDH1 0.02062945 
CDKN2A 0.01902337 
IDH2 0.01802656 
NOTCH1 0.01583884 
MDM2 0.01042772 
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Figure 1.  Glioma Survival Data.  A: Median overall survival for our cohort of glioma paFents 

was 81 months.  B: The mean cross-validated, Fme dependent area under the curve for 

predicFng survival from imaging transcriptomic relaFonships was 0.68 +/- 0.01 for Cox PH and 

0.97 +/- 0.06 for random forest (RF).  Random forest significantly outperformed Cox PH (p < 

0.001, corrected). 
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Figure 2. Bayesian Network Path Analysis. Causal relaFonships are represented by directed 

arrows between imaging transcriptomes and glioma survival.  The gene labeled nodes represent 

the strength of the rela$onship between the gene and brain connec$vity, not gene expression 

itself.  The direcFon of the coefficient is represented by a + for direct and  - for inverse.   
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Figure 3. Gene Ontology and Drug-Gene Interac.ons. A: Gene ontology analysis of the genes 

whose relaFonship with brain connecFvity was predicFve of glioma survival.  B: Drug-gene 

interacFon results for these same genes.  The magnitude of the Query Score is represented in 

the height of the gray box to the right of the drug name. 
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