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Abstract

Background: Food-producing animals can be a vehicle for staphylococcal species as well as their virulence and
antimicrobial resistance genes. This work aimed to analyse the diversity of staphylococcal species in food-producing
animals in Dakar/Senegal, and to determine the antimicrobial resistance phenotype/genotype and virulence factors
of recovered isolates. Nasal samples of 149 cows and 199 chickens (348 animals) were collected from one
slaughterhouse and a local market respectively, and were inoculated on selective media for staphylococci recovery.
For S. aureus isolates, molecular typing (spa-type, MLST) was performed by PCR/sequencing, and the presence of 27
virulence genes (exfoliative and toxic shock toxins, PVL, haemolysins and enterotoxins) as well as the gene scn were
analysed by PCR. Susceptibility to twelve antibiotics was studied by disc-diffusion method for all staphylococci; the
resistance genes involved were screened by PCR.

Results: Staphylococcus spp. was present in 3 and 26.8% of chicken and cow nasal samples, respectively. Seven S.
aureus isolates and forty isolates of other staphylococcal species were identified. S. aureus isolates were recovered
from cow (n = 6) and chicken (n = 1) samples, belonging to four genetic lineages: t084/ST15 (n = 1); t10579/ST291
(n = 3); t355, t4690/ST152 (n = 2); and t6618/ST6 (n = 1). All S. aureus were methicillin-susceptible, penicillin-resistant
(blaZ), and two of them were also tetracycline-resistant [tet(K)]. All the isolates carried at least one of the virulence
genes tested. The PVL genes were detected in three ST15 and ST152 isolates. They all harboured haemolysins
encoding genes and lacked the scn gene. The other staphylococci recovered were S. sciuri (n = 16), S. simulans (n =
11), S. hyicus (n = 5), S. haemolyticus (n = 4), S. chromogenes (n = 3), and S. hominis (n = 1); they were all methicillin-
susceptible and 27.5% tetracycline-resistant [tet(K) and tet(L)].

Conclusions: A low prevalence of S. aureus was detected among food-producing animals, all susceptible to
methicillin. However, the presence of virulence genes (lukF/lukS-PV, eta, tst, sea and see) is worrisome to the extent
that they could be transferred to derived food and therefore, to humans.
Background
Staphylococcus species are common colonizers of skin
and mucous membranes of humans and different animal
species, but can become opportunistic pathogens caus-
ing skin and soft tissues infections (SSTIs) and mastitis,
among others [1]. Furthermore, they are current con-
taminants of animal-derived food, being responsible for
food intoxication [2]. S. aureus in particularly can
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express a large variety of pathogenicity factors, such as
the staphylococcal enterotoxins, toxic shock syndrome
toxin (TSST-1), and Panton-Valentine leucocidin (PVL),
among others [3]. In fact, PVL is the most important
toxin produced by S. aureus; it destroys membranes of
host defence cells and erythrocytes by the synergetic
action of two specific proteins named LukS-PV and
LukF-PV [4]. PVL is though involved in severe skin
infections, haemolysis, leucocyte destruction and necro-
sis [4] . PVL-positive methicillin susceptible S. aureus
(MSSA) is considered endemic in the African continent
[5]. The toxin has been detected worldwide in MSSA
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and methicillin resistant S. aureus (MRSA) isolates of
diverse ecosystems, including humans (clinical or
community-associated isolates) [6], wildlife [7], farm ani-
mals and animal-derived food [8]. The presence of the
toxin in such different environments and in MRSA is a
concern for public health and food safety, mainly for
African regions, especially in those areas in which access
to healthcare is limited. Moreover, S. aureus strains
adapted to humans carry an innate immune evasion
cluster (IEC) system that protects them against the hu-
man immune system [9]. The IEC consists of several
genes, the combination of which gives a determined IEC
type. The gene scn, since present in all the IEC types, is
considered to be a marker-gene for the detection of the
IEC [9]. The presence of this system in a S. aureus iso-
late would suggest a human origin.
In general, studies about molecular epidemiology of

staphylococci in African countries are being mainly
performed in hospital environments [10, 11] and in the
food sector [12], but there is scarce data related to farm
animals [8]. Furthermore, those studies essentially focus
on S. aureus species and most of them are performed in
the Northern, Central and Southern regions of Africa
[8]; consequently, data from West Africa is scarce, espe-
cially regarding Senegal. In Senegal, a study was carried
out in 2012 on S. aureus from pigs and pig farmers,
which highlighted the predominance of the clonal com-
plexes CC152 and CC15, the low rate of resistance to
methicillin and the frequent detection of PVL toxin
[13], and a few years ago a review revealed that
CC398, an emergent Livestock-associated S. aureus
lineage in Europe [2, 14–17], was almost absent in
animals and food in Africa [8]. In the said context,
this study attempts to provide new information on
molecular diversity, antimicrobial resistance and viru-
lence determinants for S. aureus and other staphylo-
coccal species in other food-producing animals (such
as cow and chicken,) in Senegal (West Africa), and
proposes an analysis of the potential occurrence of
the lineage CC398 in the area.
Table 1 S. aureus from nasal samples of healthy cows and chicken:

Antimicro

Origin Strain ST/CC Spa-type Phenotyp

Cow C10068 ST6/CC6 t6618 PEN-TET

Cow C10067 ST15/CC15 t084 PEN-TET

Cow C10064 ST291 t10579 PEN

Cow C10066 ST291 t10579 PEN

Cow C10063 ST291 t10579 PEN

Cow C10065 ST152/CC152 t4690 PEN

Chicken C10056 ST152/CC152 t355 Susceptib
aPEN penicillin, TET tetracycline
Results
Staphylococcus species detection
Staphylococcus spp. were present in 3 and 26.8% of
chicken and cow nasal samples, respectively. S. aureus
was detected in seven of the tested animals (six cows
and one chicken) (Table 1), whereas other staphylococ-
cal species were found in cows (n = 35 isolates) and
chickens (n = 5 isolates) (Table 2). One Staphylococcus
isolate was obtained from all positive samples, except for
one cow sample with two isolates (S. aureus and S. hyi-
cus). A total of 47 staphylococci were recovered: S. aur-
eus (n = 7), S. sciuri (n = 16), S. simulans (n = 11), S.
hyicus (n = 5), S. haemolyticus (n = 4), S. chromogenes
(n = 3), and S. hominis (n = 1).

Staphylococcus aureus isolates: antimicrobial resistance,
molecular typing and virulence
All seven S. aureus isolates were susceptible to cefoxitin
and were therefore considered as MSSA. The six isolates
of cow origin showed resistance for penicillin (with blaZ
gene) and two of them also to tetracycline (with tet(K)
gene). The S. aureus isolate of chicken origin showed
susceptibility to all antimicrobials tested.
Five spa-types were detected among the S. aureus iso-

lates, associated with four sequence-types (STs): t084/
ST15 (n = 1); t10579 /ST291 (n = 3); t355, t4690 /ST152
(n = 2); and t6618 /ST6 (n = 1) (Table 1). All the isolates
were negative for the clonal complex (CC) 398 specific
PCR.
The genes encoding for PVL were detected in 2 out of

7 MSSA isolates (28.6%), specifically in t355/ST152 and
t4690/ST152 isolates from chicken and cow origins, re-
spectively. The eta and tst virulence genes were found in
isolates of cow origin: 1) eta gene in one isolate t084/
ST15; and 2) tst gene in three t10579/ST291 isolates.
The enterotoxin genes sea and see were present in one
isolate of lineage t6618/ST6 recovered of a cow. All the
isolates hosted haemolysin encoding genes. In addition,
all S. aureus isolates lacked the scn gene (IEC-negative).
This data is summarised in Table 1.
phenotypic and genotypic characteristics

bial resistance

ea Genotype Virulence genes scn

blaZ, tet(K) sea, see, hla, hlb, hld negative

blaZ, tet(K) eta, hla, hld negative

blaZ tst, hla, hlb, hld, hlg negative

blaZ tst, hla, hlb, hld, hlg negative

blaZ tst, hla, hlb, hld, hlg negative

blaZ lukF/lukS-PV, hla, hlb, hld, hlg negative

le – lukF/lukS-PV, hla, hlb, hld, hlg negative



Table 2 Non-aureus staphylococcal species in nasal samples of
healthy cows and chicken: phenotypic and genotypic
characteristics

Antimicrobial Resistance

Origin

(n° of positive
animals)

Species

(n° of isolates)

Phenotypea

(n° of
isolates)

Genotype

(n° of isolates)

Cow (35) S. sciuri (16) TET (2) tet(K) (2)

TET (1) tet(K)

Susceptible (13) –

S. simulans (8) TET (2) tet(K) (2)

Susceptible (6) –

S. haemolyticus (3) SXT (1) dfrG

Susceptible (2) –

S. chromogenes (3) Susceptible (3)

S. hyicus (5) TET (1) tet(K)

Susceptible (4) –

Chicken (5) S. simulans (3) PEN-TET (1) blaZ, tet(K)

TET-SXT (2) tet(L) (2), dfrK (2)

S. haemolyticus (1) TET-SXT tet(K), tet(L), dfrK

S. hominis (1) ERY-TET tet(L), msr(A)/msr(B)
aPEN penicillin, TET tetracycline, ERY erythromycin,
SXT trimethoprim/sulfamethoxazole
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Non-aureus staphylococci: antimicrobial resistance
phenotype and genotype
Among the 40 non-S. aureus isolates, 32.5% showed re-
sistance to at least one antimicrobial agent tested. The
following resistance rates and genotypes were observed:
tetracycline [27.5%; tet(K), tet(L)], trimethoprim/sulfa-
methoxazole (SXT) (10%; dfrG, dfrK), penicillin (2.5%;
blaZ), erythromycin [2.5%; msr(A)/msr(B)] and clinda-
mycin (2.5%). It should be noted that resistance to tetra-
cycline was mediated only by tet(K) gene for the isolates
from cow origin, and by either tet(K) or tet(L) for the
isolates recovered from chicken; furthermore, dfrG was
present in one isolate from cow, whereas dfrK was de-
tected in isolates of chicken origin.
Discussion
Farm animals are a source for staphylococcal species as
well as for their resistance genes and virulence factors
[28]. The transmission to humans could occur either
through direct contact or via animal derived food [1],
hence the importance of analysing staphylococci from
food-producing animals.
In this study, the frequency of detection of S. aureus was

low in cows (4%) and chickens (0.5%). A similar study
from Nigeria showed a rate of 2.6% in cattle from slaugh-
terhouses [29]. A higher detection rate was observed in
other animals intended for human consumption, such as
pigs in Senegal (12.3%) [13] as well as goat and sheep, ac-
cording to studies carried out in Tunisia [28, 30].
Among the S. aureus detected in our work, the most fre-

quently detected lineage was ST291, followed by ST152;
however, a similar study performed in Senegal on isolates
of pigs and pig farmers showed a predominance of the line-
ages ST15 and ST152, containing the PVL genes [13]. The
sequence type ST291 is a ST398 double locus variant,
which encodes two specific subunits, sauI-hsdS1 and sauI-
hsdS2, located in GIα and GIβ genomic islands respectively,
whereas CC398 isolates encode a single sauI-hsdS1, located
in GIα [31]. Furthermore, sauI-hsdS1 of ST291 showed
60% nucleotide similarity to the CC398 sauI-hsdS1; conse-
quently, the CC398 specific PCR cannot identify ST291 iso-
lates as part of the CC398 cluster [25, 31], as was the case
in our study. The lineage ST291 has been previously de-
scribed as the major lineage in cattle with mastitis in Egypt
[32]; they were all MSSA harbouring scn and PVL genes,
unlike our isolates. The lineage ST15, mainly associated to
MSSA isolates, frequently harbours PVL and enterotoxins
[5] and is highly prevalent in African countries, according
to the findings of healthcare institutions [33, 34]. Neverthe-
less, this lineage has also been found in animals (cattle,
poultry and donkeys) [3, 8, 30]. The clonal complex CC152
was reported as one of the major clonal complexes in many
African countries (healthcare environment) (Madagascar,
Morocco, Cameroon, Gabon, Niger, Nigeria, Ghana, Mali
and Senegal) [13, 33]. The lineage ST152 is sporadically as-
sociated to community-associated (CA) MRSA in some
European countries, whereas ST152-MSSA is a particularly
frequent clone in Western and Central Africa [33, 35]. PVL
is the most important toxin secreted by S. aureus and is
involved in severe skin infections and life-threatening dis-
eases. This toxin is found all over the world, mainly among
CA S. aureus isolates [6, 35]. Nonetheless, it was also de-
scribed in isolates from farm/wild animals (linked to the
lineages ST5, ST8, ST15, ST80, ST152, and ST121) [36–38]
and animal-derived food (linked to the lineages ST8,
ST121, and ST152) [3, 39]. PVL is very frequently har-
boured by MSSA isolates in Africa, where PVL-positive S.
aureus is considered endemic [5]. In this work, all the PVL-
positive isolates were MSSA (28.6% of S. aureus detected),
contrary to the results obtained from healthy sheep in
Tunisia, showing only PVL-positive MRSA (6.8% of S. aur-
eus detected) [40]. In a previous study performed on pigs in
Senegal, 38.4% of the S. aureus isolates harboured the PVL
toxin, being 78.6% of them MSSA [13]. Contrarily to the
above mentioned studies highlighting the recurrence of
PVL-positive S. aureus among animals intended for human
consumption in Africa, the absence of PVL was noted
among S. aureus recovered from donkeys for meat con-
sumption in Tunisia [30]. Furthermore, other virulence en-
coding genes were detected among the isolates (sea, see, eta,
tst, hla, hlb, hld and hlg). The presence of staphylococcal
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enterotoxins (SEs) in bovine isolates is worrisome since, as
the literature shows, SEs are detected more often in cows
with mastitis than in healthy cows [41]. Furthermore, SEA is
the enterotoxin most frequently reported in food (encoded
by sea gene) and the main cause of staphylococcal food poi-
soning (SFP) in many countries [42]; it is generally detected
in meat, poultry and milk, among others. Nevertheless, SEE
(encoded by see gene) is rarely reported in food and food-
producing animals, although it was involved in some cases of
SFP outbreaks in France [42]. Interestingly, none of our iso-
lates carried the genes which encode the toxins SEC or SED,
described as the most recurrent in bovines [43]. The pres-
ence of such virulent factors in S. aureus from food-
producing animals, especially in African countries like
Senegal, is a big concern for public health to the extent that
in some cases, the animals are raised in the houses or sold in
open markets, where they are in contact with people and re-
tail food products. This easily results in the dissemination of
staphylococcal virulence genes in different niches of the
community. The lack of scn gene in our isolates suggests
their being of animal origin, as expected, thus discarding a
potential human origin (by handlers during slaughter).
In addition, other species were detected, the most

prevalent being S. sciuri and S. simulans, followed by S.
hyicus, S. haemolyticus, S. chromogenes and S. hominis.
The coagulase-negative species mentioned above seem
to be frequent in cattle and poultry samples [36, 44, 45].
Increasingly considered as opportunistic pathogens for
humans and animals [44], coagulase-negative staphylo-
cocci are thought to be a reservoir for important resist-
ance genes that could be transferred to S. aureus isolates
[45], hence the importance of their surveillance.
Regarding the antimicrobial resistance, the phenotypes

and genotypes observed in this study are frequent
among S. aureus isolates from food-producing animals
and animal-derived food [12, 28, 36, 38]. Similar pheno-
types were previously observed among pig isolates of the
same country [13]. Resistance to at least one antimicro-
bial agent was evidenced in 32.5% of the non-S. aureus
isolates tested (tetracycline, SXT, penicillin, erythro-
mycin and clindamycin), maybe due to the very frequent
use of beta-lactams, tetracyclines, lincosamides and
sulphonamides in the veterinary sector (food-producing
animals and pets) [46].
Conclusion
A relatively low prevalence of S. aureus has been ob-
served in nasal samples of food-producing animals
(chickens and cows) in Senegal, with S. aureus being
MSSA in all cases. Nevertheless, all the S. aureus isolates
detected harboured at least one virulence gene (espe-
cially PVL and enterotoxins genes), which could be a
concern for food-safety and public health, particularly in
a developing country with areas in which access to med-
ical care is difficult and limited.

Methods
Sample collection
From May to July 2017, nasal samples of 149 cows and
199 chickens (348 animals) were taken with aseptic
swabs in the General Society of Slaughterhouses of
Senegal (SOGAS) and a local market, respectively. In all
cases, nasal samples were obtained from dead animals,
just after they were sacrificed to human consumption as
part of routine work in the slaughterhouse and the
market.

Isolation and identification of staphylococci strains
Tubes of 5 ml of Brain Heart Infusion (BHI) broth
(+NaCl 6.5%) were inoculated with the nasal swabs and
then incubated at 37 °C for 24 h. After growth, bacterial
culture was distributed on plates of mannitol-salt-agar
(Conda, Madrid/Spain), Baird Parker (Becton Dickinson,
Heidelberg/Germany) and oxacillin-resistance-screening-
agar-base (Oxoid, Hampshire/England) for S. aureus and
MRSA recovery. Non-aureus staphylococci were also
identified and characterised. Up to two colonies/plate
with staphylococcal morphology were isolated and
subjected to Dnase agar test (Conda, Madrid/Spain) and
identification by matrix-assisted laser desorption/
ionization time of flight (MALDI-TOF) mass spectrom-
etry (Bruker, Massachusetts/USA).

Antibiotic susceptibility and resistance genes detection
For all staphylococci identified, susceptibility to penicillin
(10 units), cefoxitin (30 μg), gentamicin (10 μg), tobramycin
(10 μg), tetracycline (30 μg), chloramphenicol (30 μg),
erythromycin (15 μg), clindamycin (2 μg), ciprofloxacin
(5 μg), linezolid (30) and SXT (1.25 + 23.75 μg) was analysed
by disk-diffusion method [18]. In addition, susceptibility to
streptomycin (30 μg) was also tested [19]. Antimicrobial
resistance genes were determined by PCR, according to the
resistance phenotype of the isolates: penicillin (blaZ), tetra-
cycline [tet(K), tet(L), and tet(M)], macrolides [erm(A),
erm(B), erm(C), msr(A)/msr(B)], and trimethoprim (dfrA,
dfrD, dfrG, dfrK) [20–23] .

Molecular typing and virulence genes study in S. aureus
isolates
Spa-typing and Multilocus sequence typing (MLST)
were performed for S. aureus strains by polymerase
chain reaction (PCR) and sequencing and the spa-type,
sequence type (ST), and clonal complex (CC) were de-
termined as previously described [24]. In addition, a spe-
cific PCR was performed for the livestock-associated
CC398 lineage detection [25]. The presence of the genes
encoding the PVL (lukF/lukS-PV), exfoliative toxins (eta
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and etb), toxic shock syndrome toxin (tst), haemolysins
(hla, hlb, hld, hlg and hlgv) and SEs (sea, seb, sec, sed,
see, seg, seh, sei, sej, sek, sel, sem, sen, seo, sep, seq, ser,
and seu) was screened by PCR [14, 26, 27]. The gene
scn, was also tested for S. aureus isolates [14]. Positive
and negative control strains of the University of La Rioja
were included in all PCR reactions.
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