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Abstract: Diabetic retinopathy remains the leading cause of vision loss in working-age adults. The
multi-factorial nature of the disease, along with the complex structure of the retina, have hindered
in elucidating the exact molecular mechanism(s) of this blinding disease. Oxidative stress appears
to play a significant role in its development and experimental models have shown that an increase
in cytosolic Reacttive Oxygen Speies (ROS) due to the activation of NADPH oxidase 2 (Nox2), is
an early event, which damages the mitochondria, accelerating loss of capillary cells. One of the
integral proteins in the assembly of Nox2 holoenzyme, Rac1, is also activated in diabetes, and due to
epigenetic modifications its gene transcripts are upregulated. Moreover, addition of hyperlipidemia
in a hyperglycemic milieu (type 2 diabetes) further exacerbates Rac1-Nox2-ROS activation, and with
time, this accelerates and worsens the mitochondrial damage, ultimately leading to the accelerated
capillary cell loss and the development of diabetic retinopathy. Nox2, a multicomponent enzyme, is
a good candidate to target for therapeutic interventions, and the inhibitors of Nox2 and Rac1 (and its
regulators) are in experimental or clinical trials for other diseases; their possible use to prevent/halt
retinopathy will be a welcoming sign for diabetic patients.
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1. Introduction

Diabetes has become one of the fastest growing health challenges of the 21st century,
and its global prevalence among adults has tripled in 20 years (151 million patients in 2000
to 463 million in 2019 (International Diabetes Federation, IDF Diabetes Atlas, 9th Edition).
Although type 1 diabetes, where the body does not produce enough insulin, is the major
cause of diabetes in childhood, around 90% patients worldwide have type 2 diabetes where
insulin resistance is the major problem. Globally, due to a sedentary lifestyle and obesity,
the prevalence of pre-diabetes (intermediate state of hyperglycemia with glucose levels
above the normal range but below the diagnostic levels of diabetes) and type 2 diabetes is
rising at an alarming rate [1,2].

Constant circulation of high glucose in diabetic patients affects the entire body re-
sulting in many microvascular and macrovascular complications. One of the most feared
microvascular complications of diabetes is retinopathy, which is the leading cause of blind-
ness in working age-adults [3]. With the incidence of diabetes increasing at an alarming rate,
the prevalence of blindness caused by diabetic retinopathy is also increasing worldwide. In
2005, an estimated 5.5 million people over the age of 40 had diabetic retinopathy, and this
number is predicted to rise to 16 million by 2050 [4]. Diabetic retinopathy is a progressive
disease, and sustained bathing of the highly vascularized retina, the light-sensitive layer
of the eye which is responsible for converting light signal into neural signal to send it to
the brain, damages its vasculature in high glucose leading it to swell and leak. The risk
of damage increases with the duration of diabetes and the severity hyperglycemia, and
new blood vessels begin to grow [3,5]. Therapeutic interventions for this sight-threatening
disease, however, have been very limited. Despite some inherent shortcomings, vascular
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leakage is routinely stopped/slowed down by focal laser treatment, and neovascularization
by pan-retinal coagulation [6]. Growth of new blood vessels is also now stopped/slowed
down using anti-vascular endothelial growth factor (VEGF) therapies [7], but not all of the
patients respond to these anti-VEGF treatments. In addition, due to the short half-life of
anti-VEGF therapies (4–6 weeks), which requires frequent visits to the ophthalmologists,
patient compliance remains one of the major issues.

Groundbreaking Diabetes Control and Complications Trials (DCCT) have demon-
strated the benefits of reducing glycemic levels on the progression of diabetic complications
including retinopathy, and even after three decades, control of glycemia remains one of the
best options for a diabetic patient to prevent the progression of diabetic retinopathy [8].
However, many other systemic factors are also implicated in its development/progression
including hypertension and hyperlipidemia. Lipid-lowering agents have shown benefits in
preventing progression of diabetic retinopathy. The Action to Control Cardiovascular Risk
in Diabetes (ACCORD) study has demonstrated reduced rate of progression of diabetic
retinopathy with a combination of fenofibrate and simvastatin, and the Fenofibrate Inter-
vention and Event Lowering in Diabetes (FIELD) study has shown a clear reduction in the
frequency of laser photocoagulation by proliferative diabetic retinopathy [5,9–11]. Thus,
the primary prevention strategy to prevent/ delay diabetic retinopathy, in addition to con-
trolling blood sugar, also requires lifestyle modifications including dietary modifications
and physical activities.

2. Pathogenesis of Diabetic Retinopathy

The pathogenesis of diabetic retinopathy is complex as the patient remains asymp-
tomatic in the early stages of the disease. The earliest clinical signs, seen by an eye care
provider, are microaneurysms and intraretinal hemorrhages, and as the disease progresses,
the number and size of hemorrhages increase and precapillary arterioles occlude. Gradu-
ally, the capillaries become nonperfused, which results in neovascularization, and if left
untreated, to retinal detachment and blindness [3]. Experimental models have provided
better insights into its pathogenesis, and have shown that the basement membrane thickens,
and apoptosis of the capillary cells, seen in the early stages of this progressive disease,
results in degenerative capillaries and pericyte ghosts [3,12,13]. In addition to the vascula-
ture, other cells of the retina including ganglion cells, also undergo accelerated apoptosis,
and retinal functions (electroretinograms and contrast sensitivity) are impaired before any
vascular changes can be seen [14].

Many leading laboratories have been trying to unveil the complex pathogenesis of
this slow progressing blinding disease, but the molecular mechanism(s) still remains elu-
sive. Several major metabolic abnormalities have been implicated in diabetic retinopathy;
for example, accumulation of polyols due to conversion of excess circulating glucose to
sorbitol by aldose reductase oxidizing NADPH to NAPP+ and activation of protein kinase
C. Additionally, interactions of glucose with proteins or lipids, via nonenzymatic reactions,
forming Schiff’s base and Amadori products, and they subsequently form advanced glyca-
tion end products. Circulating high glucose itself can auto-oxidize, accumulating reactive
oxygen species (ROS) [15–18]. Polyunsaturated fatty acid rich retina is a desired target for
oxidative damage [19], and in diabetes, ROS production is increased from both cytosolic
and mitochondrial compartments of a cell, damaging the retina [20,21]. Oxidative stress,
an imbalance between free radicals accumulation and their removal, is now considered
as one of the major metabolic abnormalities associated with the development of diabetic
retinopathy, and other major metabolic abnormalities including activation of polyol path-
way and protein kinase C and advanced glycation end products, are also associated with
increase in oxidative stress [16,22–25]. However, despite extensive research in the field,
multifactorial nature of this progressive disease has made it difficult to identify a link
between any specific abnormality and the development of diabetic retinopathy.
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3. NADPH Oxidase

Historically ROS are viewed as by-products of oxidative metabolism in the mito-
chondria; however, they are also produced enzymatically by extra-mitochondrial sources
including xanthine oxidase and NADPH oxidases (Nox). While xanthine oxidase generates
free radicals by catalyzing the oxidation of xanthine and hypoxanthine during purine
metabolism, Nox catalyze the production of free radicals by transferring one electron to
oxygen from NADPH [26,27]. The Nox family has seven catalytic homologues, and al-
though first identified as the enzymes responsible for respiratory burst, these enzymes are
also expressed in a variety of nonphagocytic cells including endothelial cells and smooth
muscle cells [28–31]. Nox-derived ROS affect many signaling processes and play essential
roles in normal physiology and immune system [26]. Among this family of enzymes, Nox2
catalyzes one-electron reduction of oxygen to superoxide, and this multicomponent protein
complex has both membrane and cytosolic components. It has two trans-membrane pro-
teins (p22phox and gp91phox/Nox2, which form the cytochrome b558) and three cytosolic
proteins (p47phox, p67phox, p40phox). This spatial separation of the subunits allows it to
remain dormant in resting cells, but in response to a stimulation, the cytosolic components
migrate to the membrane where they assemble with the flavocytochrome b558 to form the
holo-active enzyme. The cytosolic core also has a small G-protein, Ras-related C3 botulinum
toxin substrate 1 (Rac1), which is integral in Nox2 activation [28]. p22phox subunit requires
protein–protein interactions, and p47phos subunit moves from cytosol to the membrane,
enabling recruitment of p67phox and p40phox subunits to the complex. Rac1 subsequently
interacts with p67phox, and activation (GTP-bound) and deactivation (GDP-bound) cycle
of Rac1 is mediated by specific guanine exchange factors (GEFs) and GTPase-activating
proteins (GAPs), respectively. Under basal conditions, the guanine nucleotide-dissociation
inhibitor (GDI) remains complexed with Rac1, preventing its constitutive activation and
membrane targeting. Rac1 continues to cycle between the cytoplasm and the plasma
membrane, and the hydrophilic cytoplasmic Rac1 lacks a transmembrane domain, but post-
translational modifications (e.g., prenylation and lipidation) make it hydrophobic, allowing
it to move to the plasma membrane. Post-translational modifications of Rac1 precisely
dictate its functional regulation (GDI association) and subcellular localization [32–37].

In addition to being an integral component of the Nox2 holoenzyme, Rac1 also has
nuclear functions including its cellular responses to genomic DNA damage and trigger-
ing activation of nuclear transcription factor [38,39], and nuclear sequestration of Rac1 is
shown to affect its cytosolic functions [40,41]. Rac1 is also present in the mitochondria,
where its response depends largely on the cell type. For example, in alveolar macrophages
pulmonary fibrosis, mitochondrial import and direct electron transfer from cytochrome c
to Rac1 modulates mitochondrial H2O2 production [42], and Bcl2 overexpression in lym-
phoma cells inhibits Rac1-mediated apoptosis [42]. Thus, Rac1 is not only restricted in the
cytosol-membrane compartments, but it also has important functions in other subcellu-
lar organelles.

4. NADPH Oxidase and Diabetic Retinopathy

Nox2 is activated in the retina and its capillary cells in diabetes, and its activation,
which is one of the major sources of cytosolic ROS, is an early event in this progressive
disease [37,43]. Sustained production of cytosolic ROS, along with suboptimal antioxidant
defense system including inhibition of cytosolic superoxide dismutase and glutathione per-
oxidase, allows continuous accumulation of ROS. This is further exacerbated by decreased
levels of cytosolic antioxidant, glutathione [44,45]. The buildup of free radicals begins to
damage the mitochondrial structural and functional stability, allowing cytochrome c to leak
out in the cytosol to accelerate capillary cell apoptosis. Experimental models have demon-
strated that in the pathogenesis of diabetic retinopathy, mitochondrial damage-capillary cell
apoptosis precedes the development of histopathology characteristic of diabetic retinopa-
thy [24,46]. Capillary cell loss also creates a hypoxic environment, which, by stimulating the
burst of growth factors, results in neovascularization, and ultimately, in retinal detachment
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and blindness. Furthermore, ROS themselves also act as signaling molecules in growth
factor-mediated physiological responses and play an important role in angiogenesis; en-
zymes of the Nox family are associated in the regulation of angiogenic signaling pathways
of VEGF and hypoxia-inducible factors. Cell migration-proliferation-neovascularization is
the hallmark of proliferative diabetic retinopathy [47], and Nox2 is shown to have a role
in endothelial cell migration and proliferation [48,49]. Thus, Nox2 activation, which is an
early event in the pathogenesis of diabetic retinopathy, contributes to both, background
and proliferative stages of the disease.

4.1. Functional Activation of Nox2

As mentioned above, Nox2 holoenzyme has multi-components, and how diabetic
milieu activates Nox2 is also equally complex. Activation of Rac1 is mediated by several
factors, e.g., GEFs, GAPs and GDIs. GEFs facilitate GTP binding on Rac1 by releasing
the bound GDP, and several GEFs are shown to govern Rac1 activation including T cell
lymphoma invasion and metastasis (Tiam1) and Son of Sevenless 1 (Sos1). In diabetic
retinopathy, Rac1 signaling is activated by Tiam1, which, with increase in duration of
glucose insult, results in mitochondrial damage-capillary cell apoptosis; a specific inhibitor
of Tiam1, NSC23766, inhibits glucose-induced mitochondrial damage and accelerated apop-
tosis of retinal capillary cells [31]. Inhibition of GEF Vav2, by its pharmacological inhibitor
EHop, prevents activation of Rac1-Nox2-ROS signaling and inhibits mitochondrial damage
and the development of retinopathy in diabetic mice [50]. Son of Sevenless homolog 1
(Sos1), another GEF, is also implicated in Rac1 activation in diabetic milieu; a regulator
of Sos1, 66kDa proto-oncogene Src homologous-collagen homologue (p66Shc), regulates
the of binding of Sos1 with the growth factor receptor-bound protein 2 (Grb2) [51], and in
diabetes, the binding of Sos1 with Grb2 is decreased, resulting in Rac1 activation [52]. In
contrast to GEFs, GDIs inhibit Rac1-GEF association to keep it in the cytosolic compart-
ment [53], and in diabetic retinopathy the binding of Rac1 with GDI is decreased [50].

Function of Rac1 is also regulated by its post-translational modifications, and these
modifications are implicated in its subcellular distribution and interaction with effector
proteins. Prenylation (geranylgeranylation), palmitoylation and phosphorylation are some
of the major modifications associated with Rac1 regulation. While Rac1 membrane translo-
cation to form Nox2 holoenzyme is mediated by its prenylation, its association with GDIs
is regulated by both palmitoylation and prenylation [54]. In diabetic retinopathy, both
prenylation and palmitoylation are implicated in Rac1 activation, and inhibition of prenyla-
tion impedes glucose-induced Rac1-Vav2 association and Nox2 activation-mitochondrial
damage, preventing capillary cell apoptosis. Localization of Rac1 in the lipid rafts is its
major signaling site, and Rac1 translocation in the lipid rafts is mainly mediated by Rac1
palmitoylation. However, prenylation of Rac1 and an intact PBR (C-terminal polybasic
region) region are essential for its palmitoylation [55]. In hyperglycemic milieu, inhibition
of palmitoylation in retinal endothelial cells also prevents activation of Rac1-Nox2 signaling
pathway [31,36,56].

Furthermore, Rac1 activation can also activate stress kinase p38MAPK, and activated
stress kinase damages the mitochondria, resulting in the leakage of cytochrome c into the cy-
tosol. This activates the apoptosis machinery, and accelerated apoptosis of retinal capillary
cells leads to the degeneration of retinal capillaries and pericyte ghosts [50,57]. In addition,
activated stress kinases can also breakdown the tight junctions and the blood-retinal barrier,
the damages routinely seen during early stages of diabetic retinopathy [58–61]. Nox is also
implicated in lipoxygenase-derived metabolites-mediated retinal endothelial cell migra-
tion and tube formation, the hallmarks of angiogenesis, seen in the proliferative stages
of diabetic retinopathy [62]. Increased leukocyte adherence to the retinal microvascula-
ture is commonly observed in animal models of diabetic retinopathy before they present
histopathological lesions in their retinal microvasculature, and Nox-dependent activa-
tion of 12-HETE or 15-HETE is implicated in the leukocyte recruitment [63]. Thus, Nox2
activation in diabetes can results in the development of diabetic retinopathy via many
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different pathways including damaging the mitochondria by elevating ROS, breaking
down blood-retina barrier and increasing leukostasis [64,65]. Nox enzymes also promote
inflammation, inflammation plays a critical role in the development of diabetic retinopathy;
increased inflammatory mediators including interleukin 1β, TNFα and intercellular adhe-
sion molecule 1 are routinely seen in the retina in diabetes [64,66]. In addition, expression of
Nox2 subunits is also influenced by angiotensin, and regulation of angiotensin-converting
enzyme is shown to provide beneficial effect on the neurovascular pathology associated
with diabetic retinopathy [67].

4.2. Transcriptional Activation of Rac1

Diabetes also upregulates the gene expression of Rac1 [68,69], and recent research
has shown that gene expression can also be regulated by epigenetic modifications, the
modifications that regulate expression of a gene without altering its DNA sequence [70,71].
Epigenetic modifications These modifications can be transmitted to the daughter cells—
thus epigenetic modifications can be considered as ‘inheritable’, which is not mediated via
DNA sequence of genes [72]. However, depending on the regulation of external factors and
life style, these epigenetic changes can also be erased/reversed, which makes them good
therapeutic targets for chronic diseases [73]. These modifications are mainly influenced
by external factors such as lifestyle, disease state and exposure to pollutants, and, as
mentioned above, can be transmitted to the next generation, or can also be erased/reversed.
Methylation of cytosine in the DNA, and modification of lysine or arginine in histones are
some of the major epigenetic modifications. DNA methylation is associated with the closing
of the chromatin structure, suppressing the gene expression, but the results of histone
modifications depend on the type of the modification (e.g., methylation or acetylation), the
site of methylation and the cell type [74–76]. Epigenetic modifications themselves are also
interrelated; for example, histone methylation can direct DNA methylation patterns, and
DNA methylation can influence histone modification patterns. Moreover, expression of the
same gene can be regulated by single modification, or several modifications can function
in concurrence [77,78].

DNA methylation is one of the most widely studied epigenetic modifications in var-
ious diseases, and formation of methyl cytosine (5mC) is considered as a mark of gene
repression [79]. However, DNA methylation is a dynamic process, and the methylated
cytosine can be rapidly hydroxylated, forming 5 methyl hydroxyl cytosine (5hmC), which is
a mark of gene induction [80,81]. In diabetes, both DNA methylating (Dnmts) and hydrox-
ymethylating/demethylating (ten-eleven translocase, Tets) enzymes are activated in the
retinal vasculature [82], and Rac1 promoter undergoes dynamic DNA methylation. While
the binding of Dnmt1 isoform of the Dnmt family is increased, the levels of 5mC remain
subnormal, but in contrast, 5hmC levels are upregulated at Rac1 promoter, suggesting that
despite activation of Dnmts, concomitant activation of Tets quickly converts 5mC to 5hmC.
This interplay between two opposing enzymes leaves the promoter hypomethylated, which
facilitates the binding of the transcription factor, resulting in transcriptional activation of
Rac1 [69]. In addition, DNA methylation can also influence histone methylation, and the
recruitment of Dnmt1 at the promoter can be enabled by the methylation of lysine 9 of
histone 3 (H3K9) [83]. In diabetes, the binding of histone trimethyltransferase, Suv39H1,
is increased at Rac1 promoter, and increase in H3K9me3 facilitates the recruitment of
the DNA methylation machinery. Furthermore, regulation of Suv39H1, in addition to
protecting H3K9 trimethylation, also protects active Rac1 promoter DNA methylation-
hydroxymethlation [84]. Thus, both DNA methylation and histone methylation function in
concordance to regulate Rac1 transcriptional activation (Figure 1).
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Figure 1. Hyperglycemia activates the key components of the Nox2 holoenzyme, and also increases Rac1 transcription by
modifying its DNA methylation and histone methylation. Activated Nox2 increases ROS production, and sustained increase
in ROS damages the mitochondria. Capillary cell apoptosis is accelerated, which ultimately leads to the development of
diabetic retinopathy. Hyperglycemia also induces many metabolic abnormalities that can generate ROS, and themselves are
also influenced by ROS. POP = polyol pathway, PKC = protein kinase C and AGEs = advanced glycation end products.

5. Sweet and Slippery Road: NADPH Oxidase and Retinopathy in Type 1 and Type 2
Diabetic Patients

As mentioned above, about 90% of diabetic patients worldwide have type 2 diabetes.
Although type 2 diabetes is more common in older adults, due to sedentary lifestyle and
obesity in children it is becoming more prevalent in young adults. Nearly all patients with
type 1 and 60% of patients with type 2 diabetes have retinopathy within 20 years of diabetes,
but unfortunately, 20% of patients with type 2 diabetes have some form of retinopathy at
the time of their diagnosis of diabetes, which may remain asymptomatic [85]. As mentioned
earlier, hyperglycemia is considered as the main instigator of the development of diabetic
retinopathy, but abnormalities in lipid metabolism are also now emerging as potential risk
factors for its development, and lipid-lowering therapy has helped in reducing the number
of laser treatments in patients with diabetes with proliferative retinopathy [5,9–11]. Results
from a cohort of 1340 type 2 diabetic patients with prevalence of dyslipidemia in 83% of
them have revealed a relationship between diabetic retinopathy and dyslipidemia [86].
In vitro and in vivo models of diabetic retinopathy have shown that simultaneous presence
of both hyperlipidemia and hyperglycemia accelerates and exacerbates capillary cell apop-
tosis and the development of diabetic retinopathy; results from isolated retinal endothelial
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cells have documented that addition of lipotoxicity in a glucotoxic environment accelerates
and exacerbates Nox2-ROS production, accelerating mitochondrial damage. An in vivo
model of type 2 diabetes, Zucker Diabetic Fatty rat, has shown that Nox2-ROS mediated
mtDNA damage and retinal vascular death are present as early as 20 weeks of age, when
these rats are hyperglycemic for 14 weeks or less. In contrast, in type I model, mtDNA
damage is not seen until the duration of diabetes is extended beyond 20 weeks [87,88].
Furthermore, a high fat-low streptozotocin type 2 diabetic model, which closely mimics
type 2 diabetic populations, has shown that even during early stages of diabetes, compared
to age-matched normal rats, Rac1-Nox2-ROS are high in type 1 diabetic animals, but type 2
diabetic animals have exacerbated increase in Rac1-Nox2-ROS, compared to type 1 diabetic
model [43].

As mentioned above, epigenetic modifications at Rac1 promoter are associated with
its transcriptional activation in diabetes, and the promoter undergoes DNA methylation-
hydroxymethylation. However, external factors including exercise and lifestyle, have
major influence on epigenetic modifications, and lipids can also alter activities of the DNA
methylation-hydroxymethylation enzymes. Our results from experimental models of type 1
and type 2 diabetes have shown that hyperglycemia, in a hyperlipidemic milieu further
activates Tets and increase in 5hmC levels, aggravating Rac1 transcriptional activation.
Mitochondria copy numbers and its DNA transcription are much lower in type 2 diabetes,
compared to type 1 diabetes [43]. The retina with high concentration of omega-3 fatty acids,
has its own unique fatty acid profile, and is also prone to exacerbated and accelerated
damage in a hyperlipidemic environment; Rac1-Nox2-ROS pathway appears to play a
significant role in this damage (Figure 2).
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This review is focused on Nox2, but the involvement of other members of the Nox
family in the development of diabetic retinopathy cannot be ruled out. Genome wide
association study and metanalysis have now shown an association between Nox4 gene
and the severity of retinopathy in type 2 diabetic patients [89]. Pharmacological inhibition
of Nox4 reduces the severity of experimental retinal vasculopathy [90]. Nox1, Nox4 and
Nox5 are implicated in increased vascular permeability and neovascularization [91].

6. Therapeutic Implications

NADPH oxidases are the major source of cytosolic ROS, and several leading labo-
ratories have suggested focusing on Nox2 as a therapeutic target to prevent excessive
cytosolic ROS generation in many diseases including cancer [92]. In the pathogenesis
of diabetic retinopathy, activation of Rac1 is an early event, and sustained activation of
Rac1-Nox2-ROS damages the mitochondria, initiating a self-propagating a vicious cycle
of free radicals, making it an attractive target for therapeutic intervention. As mentioned
above, Nox2 is a multi-component enzyme, which allows multiple avenues to target this
enzyme, such as Rac1 and its GEFs and GDI, and interaction between its various subunits
and their assembly. Pharmacological approaches to regulate Rac1 activation by focusing
on its GEFs has gained attention. Experimental models have shown that the inhibitors of
its GEFs- Tiam1 and Vav2, inhibit the development of diabetic retinopathy via regulating
Rac1-Nox2 signaling [31,50]. Pharmacological and molecular inhibitors of posttranslational
modifications, and the enzymes associated with such modification provide another oppor-
tunity to regulate Rac1 activation [57,93]. Apocynin, an inhibitor which impedes binding
of p47phox with p22phox, diphenyleneiodonium chloride (DPI), pefabloc, proline-arginine
rich antimicrobial peptide and new peptide inhibitors have been developed to particularly
target NADPH oxidases, such as gp91 ds-tat and novel nonpeptide VAS2870 [94,95]. Chem-
icals that inhibit generation of ROS provide considerable benefits over general antioxidants
such as vitamin E, which appears to be less efficient due to various properties, including
decreased bioavailability. This makes blocking the assembly of NADPH oxidase subunits
to reduce the function, and downstream effects of Nox2, as attractive therapeutic targets;
various peptide and non-peptide inhibitors are known that mainly operate by disrupting
the association of Nox complex assembly [95,96]. The main focus should be to develop an
inhibitor with increased efficiency and specificity of binding with the protein subunit, and
comprehensive studies are needed on the molecular subunit structures to be targeted and
their effects on interactions with other subunits present downstream in the Nox2 complex.
For example, Rac1-Nox2 signaling is inhibited by statins, which inhibits 3-hydroxy-3-
methylglutaryl coenzyme A, and a population-based cohort study in Taiwan has shown
promising results in decreasing the risk retinopathy and its progression [97]. However,
additional studies are needed to ascertain the link between statins and diabetic retinopathy.
Furthermore, since Nox2 is also stimulated by the renin–angiotensin–aldosterone system,
and both experimental and clinical studies have shown that the regulation of the renin–
angiotensin system improves retinal neurovascular pathology [67,98], which is observed
before vascular pathology [99]. This opens up the use of such inhibitors to regulate Nox2
stimulation and prevent the development and progression of diabetic retinopathy.

As detailed above, a combination of hyperlipidemia and hyperglycemia further acti-
vates Rac1-Nox2 signaling, potentiating and exacerbating ROS production, and accelerating
mitochondrial damage. Management of hyperlipidemia/obesity in pre-diabetic patients
by healthy lifestyle and weight management, without undermining the importance of
maintaining their hyperglycemic control, has potential to prevent the development of
diabetic retinopathy.

Epigenetic modifications play a major role in its transcriptional activation of Rac1
in the pathogenesis of diabetic retinopathy, and since epigenetic modifications can also
be reversed, targeting such modifications is another possible therapeutic option. Many
demethylating agents, e.g., azacytidine and decitabine, are now in clinics to treat myelodys-
plastic syndromes; however, their non-specific effects make them less desirable [100,101].



Antioxidants 2021, 10, 783 9 of 13

Hydralazine and procainamide are also in clinical trials for tumors [102]. As transcription
of Rac1 is also regulated by histone modifications, and histone modifications can regu-
late DNA methylation and vice versa, targeting histone modification machinery becomes
another desirable target, and regulation of Suv39H1-H3K9 trimethylation could prevent
dynamic DNA methylation process.

Activation of Rac1-Nox2 is an early event in the pathogenies of diabetic retinopathy,
and sustained activation of Rac1-Nox2-ROS damages the mitochondria, initiating a self-
propagating a vicious cycle of free radicals. As mentioned above, Nox2 is also associated
with other abnormalities seen in the early stages of diabetic retinopathy including increase
in inflammatory mediators, leukostasis and blood-retinal barrier damage, and inhibition of
its activation will spare the retina from these metabolic abnormalities and prevent further
progression of this blinding disease. Rac1-Nox2 activation is also associated with aberrant
retinal neovascularization, and its inhibition, during the advanced stages of retinopathy has
potential to slow down neovascularization, a hallmark of proliferative diabetic retinopathy.

7. Conclusions

As described above, Nox2 plays many contributory roles in the development and
progression of diabetic retinopathy. Its activation in early stages of the disease increases
cytosolic ROS, damages blood retinal barriers and increases inflammatory mediators. As
the duration of hyperglycemia increases, accumulation of cytosolic ROS damages the
mitochondria and the damaged mtDNA-electron transport chain initiates a vicious cycle
of ROS, which continues to self-propagate. In the later stages of diabetic retinopathy,
via regulating angiogenic signaling pathways of VEGF and hypoxia-inducible factors,
Nox2 contribute to the neovascularization. This makes targeting Rac1 Nox2 signaling
an attractive therapeutic option to prevent the development and progression of diabetic
retinopathy. Several inhibitors of Nox2 and Rac1 (and its GEFs) are in experimental or
clinical trials for other diseases, and their possible use in diabetic retinopathy will be a
welcoming sign for diabetic patients. In addition, since hyperlipidemia further exacerbates
and potentiates hyperglycemia-induced Rac1-Nox2 activation, future diabetic retinopathy
treatment modalities should also include maintenance of a healthy lipid profile for a
diabetic patient, which will help them alleviate the risk of losing their vision.
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