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Pulmonary hypertension (PH) is one of the most devastating cardiovascular diseases worldwide and it draws much attention from
numerous scientists. As an indispensable part of pulmonary artery, smooth muscle cells are worthy of being carefully investigated.
To elucidate the pathogenesis of PH, several theories focusing on pulmonary artery smooth muscle cells (PASMC), such as
hyperproliferation, resistance to apoptosis, and cancer theory, have been proposed and widely studied. Here, we tried to
summarize the studies, concentrating on the role of PASMC in the development of PH, feasible molecular basis to intervene, and
potential treatment to PH.

1. Introduction

Pulmonary hypertension (PH) is a serious global health
problem, which is characterized by progressing elevated
pulmonary pressures and right heart failure, and mainly
affects childbearing women [1].+emean time from onset of
symptoms to diagnosis is about 2 years, the mean survival
time of idiopathic/heritable pulmonary arterial hypertension
patients from treatment initiation is about 14.7 years, and
the 10-year survival rates are 69.5% [2, 3]. Based on recent
estimates, in the global population, the prevalence of PH is
about 1%, while for individuals aged over 65 years, the
number increases to 10%. What is more, about 80% of PH
patients are living in developing countries [4].

+e feature of PH is intense remodeling of small pul-
monary arteries by myofibroblast and smooth muscle cell
proliferation, and for familial pulmonary arterial hyper-
tension, the bone morphogenetic protein type II receptor
(BMPR-II) mutation in pulmonary artery smooth muscle
cells contributes to abnormal growth responses to the
transforming growth factor (TGF)-beta/bone morphoge-
netic protein (BMP) [5]. Compared to previous belief that
vasoconstriction acts a vital role in PH pathogenesis [6, 7],
there is a tendency to think that excessive proliferation and

resistance to apoptosis of PASMC and pulmonary artery
endothelial cells (PAEC) are the crucial components of
pulmonary vascular remodeling [8]. PASMC has been
widely proved to play an important role in the development
of various types of pulmonary hypertension. Different
mechanisms finally lead to uncontrolled proliferation of
PASMC through apoptosis resistance, activated hypoxia-
induced factor (HIF), HDAC modification, and inflam-
mation, resulting in pulmonary hypertension [9, 10].

According to similar pathophysiological mechanisms,
clinical presentation, haemodynamic characteristics, and
therapeutic management, the clinical classification of PH is
intended to categorize multiple clinical conditions into five
groups [11]. Here, we mainly talk about WHO group 1
pulmonary arterial hypertension (PAH). To offer more
suitable treatment and precisely evaluate patients’ clinical
outcome, the following parameters appear to have the
greatest predictive capability: functional class, six-minute
walk distance (6MWD), N-terminal pro-brain natriuretic
peptide/brain natriuretic peptide (NT-proBNP/BNP) levels,
cardiac index, right atrial pressure, and mixed venous ox-
ygen saturation (SvO2) [12, 13]. Specific drug treatment of
WHO group 1 PAH by targeting the nitric oxide, endothelin,
and prostaglandin pathways has been the standard since
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2003. Recently, based on different risk stratification, mon-
otherapy or dual-combination therapies, including maci-
tentan and sildenafil, riociguat and bosentan, selexipag and
endothelin receptor antagonist (ERA) or phosphodiesterase
inhibitor (PDE5i), or both, are recommended [14, 15].

2. Histopathology of Lungs in PH

2.1. Histology of Normal Lung Vessels. +e major role of the
right ventricle (RV) is to pump all the blood it receives per
beat into the pulmonary circulation without elevating right
atrial pressure. Normally, blood flow varies with minimum
changes in pulmonary arterial pressure. Although the total
compliance of the pulmonary circulation is about one-
seventh that of the systemic circulation, it stores much less
blood and has the ability to collapse pulmonary vessels as
well as have them distended. +us, the pulmonary circu-
lation is able to accommodate increased blood volumes
without increasing pulmonary artery pressure as much as
would occur on the systemic circulation [16, 17].

2.2. Histopathology of PAHLungVessels. In 1958, Heath and
Edwards [18] first described the histologic features of hy-
pertensive pulmonary vascular structure changes into six
grades in patients with congenital septal defects of the heart.
+e six grades included retention of fetal type pulmonary
vessels, medial hypertrophy with cellular intimal reaction,
progressive fibrous vascular occlusion, progressive gener-
alized arterial dilatation with the formation of complex
dilatation lesions (plexiform lesions), chronic dilatation with
formation of numerous dilatation lesions and pulmonary
hemosiderosis, and necrotizing arteritis. It is widely accepted
that higher grade is related to worse pulmonary vessels and
right heart function. Compared to the control groups, intima
and intima plus media fractional thicknesses of pulmonary
arteries were increased in the PAH group, in accordance
with pulmonary haemodynamic measurements. +ere were
remarkable perivascular inflammation in a mass of PAH
lungs and correlated with intima plus media remodeling
[19].

Pulmonary vasoconstriction caused by hypoxia was
studied widely in PH [7]. As a result of global pulmonary
hypoxic vasoconstriction, the right ventricular afterload
could increase. Chronic hypoxia-induced PH is partly due to
initial pulmonary artery contraction. Pulmonary artery
pressures are higher in high-altitude dwellers with chronic
mountain sickness, a syndrome including dyspnoea, fatigue,
poor sleep, headache, and cyanosis. Hypoxic pulmonary
vascular remodeling also contributes to PH and begins to
develop within the first hours of hypoxic exposure. Hypoxia-
induced PH in humans or animals is generally mild or
moderate, but with a substantial afterload on the right
ventricle during exercise. In vitro, hypoxia was reported to
inhibit myocardial fibre contractility. Pulmonary vascular
contraction plays an important role not only in hypoxic PH,
but also in pulmonary arterial hypertension (PAH). Current
pharmacological therapies for PAH mostly target pathways
regulating endothelial factors with vasoconstrictive/

vasodilatory and have made great achievements in im-
proving the exercise capacity, haemodynamics, and time to
clinical worsening of PAH patients.

It is increasingly believed that although vasospasm acts a
role, pulmonary hypertension is an obstructive lung pan-
vasculopathy and different forms of PH present with either a
predominance of pulmonary arterial remodeling or vein
remodeling or a variable contribution of both [20]. Obvi-
ously, there is medial and adventitial thickening of the
pulmonary muscular and elastic vessels. +e medial thick-
ening is believed to result in hypertrophy and increased
accumulation of smooth muscle cells as well as increased
deposition of extracellular matrix proteins, predominantly
collagen and elastin. +e extent of structural changes, in-
cluding SMC proliferation, hypertrophy, matrix protein
production, and recruitment of adventitial or circulating
cells, in the medial compartment of the pulmonary arterial
wall partly determined the severity of chronic hypoxic
pulmonary hypertension [21].

3. The Alteration of PASMC in PH

Data from post-mortem studies demonstrated medial hy-
pertrophy, PASMC hyperproliferation, and muscle exten-
sion into distal arterioles, with important variability between
individuals [22–25]. +e accurate regulation of the balance
between PASMC proliferation and apoptosis is significant in
maintaining the normal integrity of structure and function
in the pulmonary vessels. However, in severe angioproli-
ferative PAH, this balance seems to be broken, following
increased PASMC proliferation and decreased apoptosis,
resulting in vessel wall thickening and vascular remodeling
[26–31]. Contrast to previous belief that the relationship
between pulmonary artery endothelial cells (PAEC) and
PASMC is a simple one-way interaction from the endo-
thelium to the PASMC, now it is more likely to believe that
more complicated interactions exist between them [32–34].
Under abnormal or irritant conditions, the intricate inter-
action of PAEC and PASMC can be altered in the long term
so that vascular proliferation and vasocontractility are en-
hanced further, which leads to PAH and right heart failure
[35–38]. Owing to the characteristics of hyperproliferation
and resistance to apoptosis of PASMC in PAH, there is an
argument that PAH has something to do with cancer. At the
molecular level, PASMC of PAH exhibits many features
similar to cancer cells, which gives the chance to explore
potential therapeutic treatments used in cancer to cure PAH
[8, 39, 40].

4. Possible Pathways to Act on PASMC

4.1. Role of Ion Channels. It is well known that ions play
many important roles in cell potential, cell contraction, and
pH homeostasis, which can influence the proliferation and
apoptosis of PASMC. Some studies demonstrated that de-
crease of K+ channels affected the PASMC depolarization,
then facilitated vascular remodeling, and inhibited PASMC
apoptosis. In PAH rat models, restoration of K+ channels
activity and expression, using dehydroepiandrosterone or
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dichloroacetate, reduced pulmonary vascular remodeling.
However, the exact mechanisms by which K+ channels act
on PASMC are still controversial [41–51]. Lv et al. found
increased expression of MicroRNA-206 suppressed potas-
sium voltage-gated channel subfamily A member 5 (Kv1.5)
and promoted the PASMC proliferation [52].

+e elevated concentration of intracellular Ca2+ was
found in PAH animal models and patients. +is kind of
phenomenon was not realized through activation of voltage-
gated calcium channels (VGCC), but by increase of ca-
nonical transient receptor potential (TRPC) proteins, which
involved Ca2+-permeable nonselective cation channels
(NSCCs). Increased abundance of NSCCs was detected in
PAH rat models and patients and inhibition of NSCCs,
either pharmacologically or by RNA silencing, effectively
decreased the concentration of intracellular Ca2+ and pro-
liferation of PASMC [53–61]. Song et al. reported that
stromal interaction molecule 2 (STIM2) protein, a Ca2+

sensor in the sarcoplasmic reticulum (SR) membrane, may
contribute to elevated intracellular Ca2+ [62]. What is more,
Ca2+ could activate nuclear factor of activated T-cells
(NFAT), then suppress K+ channels expression, and lead to
PASMC hyperproliferation [63]. It was also proved that
hypoxia can cooperate with intracellular Ca2+, which in-
creased the expression of aquaporin 1 (AQP1), a membrane
water channel, indispensable for PASMC migration. In-
creased AQP1 upregulated β-catenin and its target genes
(such as c-Myc and cyclin D1), which accelerated the
proliferation and migration of PASMC [64–66].

+e normal operation of Na+/H+ exchange (NHE) is es-
sential to keep pH homeostasis of PASMC [67, 68]. Studies
showed that increased expression of NHE isoform 1 (NHE1)
can promote the exchange, elevate the pH, and induce the
proliferation and migration of PASMC. Although the specific
mechanisms are still unclear, it may have something to do with
p27 (a cyclin-dependent kinase inhibitor), E2F1 (a nuclear
transcription factor), and cytoskeletal re-arrangement [69–75].

4.2. CrucialMolecules. When we talk about PAH, we should
never miss hypoxia and hypoxia-inducible factors (HIF).
Under the circumstances of hypoxia, increased expression
and decreased degradation result in accumulation of HIF-
1α. A lot of studies proved that HIF-1α can influence the
PASMC proliferation and mediate pulmonary vascular
remodeling, by acting on Ca2+, pH homeostasis, endothelin-
1 (ET-1), vascular endothelial growth factor (VEGF), and
Warburg effect [76–84].

Endothelin is secreted by endothelial cells and has three
isoforms, among which endothelin-1 (ET-1) is the most
widely expressed and mediates vascular contraction, cell
migration, and proliferation. In terms to PASMC, ET-1
binds to ETA or ETB and then has an impact on decreased K+

channels, elevated intracellular Ca2+, and activation of
NHE1 and Rho kinase (ROCK) signaling, leading to the
migration and proliferation of PASMC [85–88].

5-Hydroxytryptamine (5-HT) is well known in de-
pression mechanism and it also takes part in the develop-
ment of PAH. 5-HT enters PASMC through serotonin

transporter (SERT). +e signaling cascades caused by 5-HT
include increased reactive oxygen species and activation of
mitogen-activated protein kinase (MAPK) and ROCK
pathway, which regulate the expression of genes targeting
cell growth and influence PASMC [89–93].

4.3. Important Pathways

4.3.1. Rho Kinase. Rho kinase (ROCK) signaling pathway
plays an indispensable part in vascular contraction and
remodeling. Exposed to hypoxia, activation of ROCK in
PASMC through Rho B (upstream activators of ROCK)
could augment the proliferation and migration of PASMC,
resulting in increased pulmonary vascular resistance. +ere
were studies stating that long-term use of ROCK inhibitors
could ameliorate vascular remodeling [94–103]. Abe et al.
reported that PDGF activated ROCK, suppressed the
translocation of Smad1 originally induced by bone mor-
phogenetic protein 2 (BMP 2), and increased PASMC
proliferation [104].

4.3.2. BMP Signaling. Bone morphogenetic protein receptor
type 2 (BMPR2) mutations are present in patients with
heritable and idiopathic PAH, which reminds us of BMP
signaling’s significant role in the development of PAH. +e
mutation of BMPR2 could inhibit the antiproliferation effect
of BMP2, leading to PAH. BMP can exert its function in a
way of Smad dependent or independent. BMP/BMPR1
interacts with Smad1/5/8, then increasing their binding with
Smad4, finally leading to elevated related genes expression.
In other ways, BMP activates MAPK, PI3K/AKT, or protein
kinase C (PKC) to influence PASMC. +e impaired control
of BMP signaling may be a common characteristic of PH no
matter what the pathogenesis is [105–110] (Figure 1).

4.3.3. Cancer �eories. As mentioned above, at the molec-
ular level, PASMC of PAH exhibits many features similar to
cancer cells, making it possible to explore potential thera-
peutic treatments used in cancer to cure PAH (reviewed in
[40]). Studies showed increase of IL-6, monocyte chemo-
tactic protein 1 (MCP-1), and tumor necrosis factor alpha
(TNF-α) related to worse clinical outcomes in PAH patients.
IL-6 knockout effectively ameliorated PAH in animal
models. Platelet-derived growth factor (PDGF) mediated
mitogenic signaling and thickening of the pulmonary vascular
media. +ese growth factors and inflammatory mediators
eventually have an impact on cell growth and survival by
MEK/ERK, PI3K/AKT, or JAK/STAT3 pathways. In PASMC,
it was reported that activation of STAT3 can upregulate the
expression of proviral integration site for Moloney murine
leukemia virus-1 (PIM-1) and then enhance NFAT-mediated
transactivation, resulting in decreased K+ channels and in-
creased intracellular Ca2+. In addition, activation of PI3K/
AKT and JAK/STAT3 inhibited the transcription factor
Forkhead box protein O1 (FOXO1), causing elevated Cyclin
B1 and D1 and decreased p27, which promoted PASMC
proliferation [48, 111–122].
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Mammalian target of rapamycin (mTOR) signaling plays
important roles in cell metabolism, cell proliferation, and
survival. Together with other proteins, mTOR forms two
independent complexes, mTORC1 (mTOR-Raptor) and
mTORC2 (mTOR-Rictor). Activation of mTORC1 could
enhance ribosomal protein S6 kinase beta-1 (S6K1) and
suppress eukaryotic translation initiation factor 4E-binding
protein 1 (4E-BP1), which facilitates cell growth and pro-
liferation. On the other hand, mTORC2 is more likely to
respond to growth factors, increasing cell survival [123–125].
However, Tang et al. reported that mTORC1 and mTORC2
had different roles in the development of PAH. Inhibition of
mTORC1 ameliorated pulmonary hypertension, while in-
hibition of mTORC2 facilitated spontaneous pulmonary
hypertension and it may result from upregulation of PDGF
receptors in PASMC [126].

+e Hippo signaling pathway is believed to relate to
controlling organ size. It is constitutive of a cascade of tumor
suppressive kinases mammalian STE20-like protein kinase
1/2 (MST1/2) and large tumor suppressor homolog 1/2
(LATS1/2), while its downstream molecules include yes-
associated protein 1 (YAP) and transcriptional coactivator
with PDZ-binding motif (TAZ). Inactivation of LATS1/2
leads to decrease of YAP and TAZ in cytoplasm and acti-
vation of HIF-1α and Notch3 pathways, which plays a
deleterious role in the development of PAH [127–133].

Most cancer cells rely on aerobic glycolysis, instead of
depending on mitochondrial oxidative phosphorylation to
generate energy, a phenomenon termed “the Warburg ef-
fect.” +is effect also can be seen in PASMC and PAH.
Driven by HIF activation, augmented glycolysis is charac-
terized by elevated expression of pivotal proteins in its
pathway, such as glucose transporters, hexokinase, pyruvate
dehydrogenase kinase (PDK), lactate dehydrogenase (LDH),
and 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase
3 (PFKFB3). By interacting with PI3K/AKT, ERK1/2, and
HIF-1α and altering the morphology and subcellular dis-
tribution of mitochondria, Warburg effect increases the
proliferation of PASMC in PAH [10, 134–144].

4.3.4. Other Pathways. Peroxisome proliferator-activated
receptor c (PPARc) regulates mitochondrial gene expression
and biogenesis. Loss of PPARc leads to derangement in
mitochondrial structure and function, which has a harmful
impact on PASMC and PAH [145]. Xie et al. stated that
leptin effectively ameliorated pulmonary vascular remod-
eling and PAH, via activation of ERK1/2 and elevated ex-
pression of early growth response-1 (Egr-1), resulting in loss
of PPARc [146]. In addition, Li et al. reported that activating
prostanoid EP4 receptor (EP4) also decreased the expression
of PPARc through protein kinase A (PKA) pathway and
attenuated pulmonary arterial remodeling [147] (Figure 2).

Cyclin-dependent kinases (CDK) are crucial regulators
of cell cycle and proliferation. Dinaciclib and palbociclib
inhibited specific CDK and decreased PASMC proliferation
via cell cycle arrest and interacted with the downstream
CDK-Rb (retinoblastoma protein)-E2F signaling pathway,
offering a potential strategy in PAH [148]. Sphingosine
kinase 1 (SphK1) is a lipid kinase for phosphorylating
sphingosine to generate sphingosine-1-phosphate (S1P).
SphK1/S1P have been reported to relate to cell proliferation,
migration, and survival. TGF-β1 could phosphorylate
Smad2/3 and then elevate the expression of SphK1 and S1P,
which activates Notch3 pathway to promote PASMC pro-
liferation [149]. What is more, Sysol et al. reported that
decreased micro-RNA-1 induced by hypoxia had an effect
on the development of PAH via regulation of sphingosine
kinase 1 [150].

5. Potential Treatment to PAH

While calcium channel blockers, endothelin receptor an-
tagonists, phosphodiesterase type 5 inhibitors and guanylate
cyclase stimulators, prostacyclin analogues, and prostacyclin
receptor agonists are the classical specific drug therapies for
PAH, their effects still are limited and unsatisfactory. Based
on the molecular pathways mentioned above, tyrosine ki-
nase inhibitors (platelet-derived growth factor inhibitors)
and serotonin antagonists are being explored, but present

ET-1 Hypoxia 5-HT BMP

ion 
channels ET A/ET B SERT BMPR

K+ ↓/Ca2+ ↑/NHE(PH↑) HIF↑ ROCK Smad/PI3K/AKT/PKC

Hyperproliferation and resistance to apoptosis of PASMC

Stimulators

Figure 1: Molecular pathways in PASMC (1). ET-1: endothelin-1, 5-HT: serotonin, BMP: bone morphogenetic proteins, ET A/ET B
endothelin receptor A/B, SERT: serotonin transporter, BMPR: bone morphogenetic proteins receptor, NHE: Na+/H+ exchanger, HIF:
hypoxia-induced factor, ROCK: Rho kinase, PI3K/AKT: phosphatidylinositide 3-kinase/protein kinase B, PKC: protein kinase C.
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outcomes are not ideal. Moreover, ROCK inhibitors, VEGF
receptor inhibitors, stem cell therapy, mTOR inhibitors,
PPAR-c agonist, and strategies aiming at Warburg effect are
all in the early phase of research [15, 142–144, 151, 152].

6. Summary

Although the treatment for pulmonary hypertension has
achieved great improvement, it is still not that satisfactory.
Owing to its indispensable role in the development of
pulmonary hypertension, PASMC becomes the research hot
spot in PH. Further elucidating the molecular basis of
PASMC, including ion channels, HIF, ET-1, ROCK, BMP,
PPAR-c, and Warburg effect, could bring hope to PH
treatment.
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