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A novel binding site for angiotensins II and III that is unmasked by parachloromercuribenzoate has been reported
in rat, mouse and human brains. Initial studies of this binding site indicate that it is not expressed in the adrenal,
liver or kidneyof the rat andmouse. To determine if this binding site occurs in othermouse tissues, 8 tissueswere
assayed for expression of this binding site by radioligand binding assay and comparedwith the expression of this
binding site in the forebrain. Particulate fractions of homogenates of testis, epididymis, seminal vesicles, heart,
spleen, pancreas, lung, skeletal muscle, and forebrain were incubated with 125I-sarcosine1, isoleucine8

angiotensin II in the presence or absence of 0.3 mM parachloromercuribenzoate plus 10 µM losartan and
10 µM PD123319 (to saturate AT1 and AT2 receptors). Specific (3 µM angiotensin II displaceable) high affinity
binding occurred in the testisN forebrainNepididymisNspleenNpancreasN lung when parachloromercuribenzo-
ate was present. Binding could not be reliably observed in heart, skeletal muscle and seminal vesicles. High
affinity binding of 125I-sarcosine1, isoleucine8 angiotensin II was observed in the absence of parachloromercur-
ibenzoate in thepancreas onoccasion. This suggests that thisnovel angiotensinbinding sitemayhavea functional
role in these tissues.
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1. Introduction

It is well established that the renin–angiotensin system (RAS) is an
essential multi-organ endocrine system necessary for homeostatic
regulation of blood volume and electrolyte balance, efforts which
ultimately contribute to cardiovascular maintenance at tissue and
organism levels [1]. Dysregulation of the renin–angiotensin system
(RAS) causes several pathophysiological states of which hypertension is
most prevalent. The octapeptide angiotensin II (Ang II) exerts its
classical effects on mean arterial blood pressure primarily through the
AT1 receptor [2]. These include direct vasoconstriction, release of
aldosterone from the adrenal cortex, and centrally-mediated blood-
pressure regulation [3,4]. Additional effects of Ang II and the des Asp1

heptapeptideAng IIImediated through activationof AT1 receptors in the
central nervous system (CNS) include dipsogenesis, secretion of
vasopressin, and changes in reproductive hormone secretion [5,6]. The
brain RAS plays a major role in blood pressure regulation, but there are
many aspects of this system that are not yet fully understood [7,8].

Investigations of the brainRASusing radioligandbinding assays have
beenhamperedby significantmetabolic degradation of the radiolabeled
angiotensin peptides. This makes it impossible to attain steady-state
conditions needed to accurately determine binding kinetics. Binding of
angiotensin fragments as well as intact parent radioligand can also
occur, and the concentrationof free, intact radioligand is also continually
decreasing [9]. Solutions to this problem include the use of peptidase-
resistant analogs of angiotensin and the addition of protease inhibitors
to the incubation medium [7,8,10].

In an effort to establish binding parameters for brain AT1 receptors
that would insure stability of angiotensin peptides, specifically 125I-Ang
II, work in this laboratory demonstrated that parachloromercuribenzo-
ate (PCMB), an angiotensinase inhibitor [11,12], unmasked a novel, high
affinity, non-AT1, non-AT2 binding site for angiotensins in the rat brain
hypothalamus [13]. The binding was considerably greater than that
observed for AT1 and AT2 receptors in the rat brain, and was abundant
throughout the cerebral cortex, a region where there is little AT1 or AT2
binding. Subsequently, autoradiographic analysis of this binding in the
rat brain revealed that this novel binding site, which shows high affinity
for Ang III as well as Ang II, but considerably lower affinity for other
angiotensin fragments, is widespread [14].

To determine if this novel Ang II/Ang III binding site occurs in species
other than the rat, its expression was assessed in the mouse [15]. The
novel angiotensin binding sitewas identified both in themouse cerebral
cortex and hypothalamus. In addition, the binding sitewas absent in the
mouse liver, adrenals, and kidney, a distribution pattern that was also
reported in the rat [13]. A subsequent study reported the presence of
this novel Ang II/Ang III binding site in the human brain [16].

While this novel Ang II/Ang III binding site is not present in tissues
known to express high levels of AT1 receptors, e.g., liver, kidney and
adrenal, a systematic study of other tissues in the body has not been
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Table 1
Tissue distribution of the novel Ang II/III binding site.

Brain Testis Epididymis

Bmax 139±11.5 384±70.7 80.8±15.5
KD 1.85±0.15 3.69±0.77 5.89±1.23

n=32 (32) n=11 (12) n=7 (7)

Spleen Pancreas Lung

Bmax 72.9±16.2 63.1±9.9 56.9±7.6
KD 2.87±0.82 3.03±0.75 2.55±0.62

n=8 (10) n=10 (11) n=6 (9)

Heart Skeletal muscle Seminal vesicles

Bmax 11.9±4.8 13.3±3.2 265±36.5
KD 0.86±0.44 3.15±1.70 3.81±1.63

n=3 (11) n=5 (10) n=3 (8)

Saturation binding analyses of 125I-SI Ang II binding to the novel Ang II/Ang III binding site
in mouse forebrain, testis, spleen, pancreas, skeletal muscle, heart, lung, epididymis, and
seminal vesicles. Bmax (fmol/mg protein) and KD (nM) (±SEM) values reported do not
include samples for which Bmax or KD was not significantly different from zero (95%
confidence interval from the saturation isotherm was zero or less from the non-linear
regression analysis to the equation B=Bmax[D]/(KD+[D]) where [D]=concentration of
125I SI Ang II) [n=samples used (total samples)]. Values shown in italics are for tissues and
conditions in which binding was not reliably detectable in half or more of the assays.

Fig. 1. Representative saturation binding analyses of specific 125I-SI Ang II binding to the no
(Panel B), spleen (Panel C), pancreas (Panel D), and lung (Panel E). Values for each panel are
fmol/mg protein; KD=4.04 nM). Panel B, Brain (Bmax=101.6 fmol/mg protein; KD=1.5
(Bmax=247.1 fmol/mg protein; KD=2.21 nM) and Spleen (Bmax=79.7 fmol/mg protein; KD

(Bmax=73.5 fmol/mg protein; KD=1.60 nM). Panel E, Brain (Bmax=122.0 fmol/mg protein
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undertaken. In this study we report the presence of this novel Ang II/
Ang III binding site in a variety of tissues in the mouse, of which,
several are considered to have minor involvement with the RAS.

2. Materials and methods

2.1. Animals

Adult ND4 male mice (Harlan) 30–35 g maintained in 12 h light/
dark cycle, fed ad libitumwere used. Somemicewere initially used for
behavioral studies (cannabinoid tetrad) with natural cannabinoid
agonists, of which vehicle-treated (saline) and drug-tested animals
were used at least 2 and 3 days after testing, respectively. Presented
data are the summary of results from all animals as there was no
apparent difference in observed effects from intact and vehicle/drug-
treated mice. The protocol for these studies was approved by the
University of Mississippi IACUC.

2.2. Reagents

Sarcosine1, isoleucine8 Ang II (SI Ang II) was obtained from Phoenix
Pharmaceuticals. Losartan was a gift from Dr. Ron Smith of Dupont
vel AngII/AngIII binding site in mouse brain (Panels A–E), testis (Panel A), epididymis
: Panel A, Brain (Bmax=173.4 fmol/mg protein; KD=1.32 nM) and Testis (Bmax=342.2
6 nM) and Epididymis (Bmax=75.3 fmol/mg protein; KD=5.46 nM). Panel C, Brain
=3.34 nM). Panel D, Brain (Bmax=141.9 fmol/mg protein; KD=1.50 nM) and Pancreas
; KD=3.65 nM) and Lung (Bmax=54.3 fmol/mg protein; KD=2.93 nM).



Fig. 2. 125I-SI Ang II binding to the novel Ang II/Ang III binding site. Control (150 mM
NaCl) Bmax=93.6±15.1 fmol/mg protein and high ionic strength (400 mM NaCl)
group Bmax=98.9±12.1 fmol/mg protein (Panel A). Control KD=2.08±0.41 nM and
high salt treatment group KD=1.74±0.24 nM (Panel B) n=6.
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Merck. Parachloromercuribenzoic acid (PCMB) sodium salt was
purchased from MP Biomedicals. [125I] SI Ang II was prepared in house
by the chloramine T procedure and purified by reverse-phase HPLC as
described previously [17]. All other reagents were purchased from
major commercial suppliers.

2.3. Receptor binding assays

The measurement of 125I-SI Ang II binding in 9 mouse tissues
(forebrain, heart, liver, pancreas, spleen, skeletal muscle, testis,
seminal vesicles and epididymis) was carried out using established
procedures [13,18]. After mechanical homogenization (Tekmar
Tissuemizer) of tissue in ice-cold hypotonic buffer, 20 mM NaPO4
(pH 7.2) the homogenates were centrifuged at 40,000 ×g for 20 min at
4 °C. The supernatant was removed and the pellet (total particulate
including total cellular membrane fractions) was re-suspended by
homogenization in assay buffer (150 mM NaCl, 5 mM EDTA, 0.1 mM
bacitracin, 50 mM NaPO4, pH 7.1–7.2). The homogenates were re-
centrifuged at high speed as before and the pellets re-suspended by
homogenization in the assay buffer at a concentration of 50 mg initial
wet weight/ml. Losartan and PD123319 (final concentration 10 μM
from a 10 mM stock in de-ionized water) were added to saturate AT1
and AT2 receptors, respectively. PCMB (final concentration 0.3 mM
from a 100 mM stock solution in 50 mM NaOH) was also added into
an aliquot of the tissue homogenates 10–15 min before incubation to
unmask this novel Ang II/Ang III binding site.

A similar protocol was used to determine the effect of a high ionic
strength (400 mMNaCl) concentration on the occurrence of the novel
Ang II/III binding site. For this experiment an aliquot of the brain
tissue following the second centrifugation was re-suspended by
homogenization either standard assay buffer or assay buffer contain-
ing 400 mM NaCl instead of 150 mM NaCl. The high ionic strength
buffer comparison was performed to assess whether the novel
binding protein is a membrane-associated protein that can be
dissociated from brain membranes by a high ionic strength buffer,
or if it is a membrane-integral protein that is not dissociable from
membranes by a high ionic strength assay buffer.

The protein concentration of the homogenates was determined by
the Coomassie blue dye method [19] using bovine γ-globulin as
standard. Determination of Bmax (fmole of radioligand bound per mg
protein) and KD values were carried out using the one-site saturation
bindingmodel of Prismsoftware (GraphpadSoftware) on specific (3 μM
Ang II displaceable) 125I-SI Ang II binding at 6 concentrations ranging
from 0.3 to 6 nM. Values reported are mean±SEM for assays in which
the values obtained for KD and Bmax were significantly different from
zero. Assays in which the KD value was greater than 20 nM were also
excluded because this is more than 3 times the highest concentration of
radioligand used and Bmax cannot be accurately determinedwith such a
small occupancy (b25%) of the binding site.

3. Results

3.1. Tissue distribution

Specific binding of 125I-SI Ang II in the presence of 0.3 mM PCMB,
10 µM losartan, and 10 µM PD123319 to the novel Ang II/Ang III
binding site was observed in the following order of abundance: testis,
forebrain, spleen, epididymis, pancreas, and lung membranes
(Table 1, Fig. 1). However, in 3 of the 9 assays of the lung, binding
was not statistically different from zero. So, the true density of the
novel Ang II/Ang III binding site in the lung is likely to be considerably
less than that reported in Table 1 as it was not possible to include the
undetectable values in the average.

Specific binding of 125I-SI Ang II in the presence of 0.3 mM PCMB,
10 µM losartan, and 10 µM PD123319 in skeletal muscle, heart, and
seminal vesicles, though seen on occasion, was not significantly
different from zero in half or more of the assays. Therefore the binding
of 125I-SI Ang II to the novel Ang II/Ang III binding site in these tissues
cannot be reliably observed and the values shown in Table 1 may not
be representative of the expression of this binding site in these tissues.

Measurable specific binding in the absence of 0.3 mM PCMB, but in
the presence of losartan (10 µM) and PD123319 (10 µM)was observed
on more than two occasions in two tissues: the testis and pancreas.
However, in themajority of the assays of the testis (8 of 12 assays) in the
absence of 0.3 mM PCMB, binding did not differ from zero. And, when
measurable bindingwas detectable (579±163 fmol/mg protein 4 of 12
assays), the binding affinity was considerably lower (KD=14.8±
1.8 nM) than in the presence of PCMB. In the pancreas 6 of the 11 assays
were significantly greater thanzero (106±49.9 fmol/mgprotein) in the
absence of PCMB and showed high affinity (KD=4.06±0.30 nM)
similar to that seen with PCMB, although the SEM, for the Bmax was
nearly 50%. This indicates that under the in vitro conditions of this assay,
the binding site in the pancreas may occur in a conformation capable of
binding Ang II and Ang III.

3.2. High ionic strength (400 mM NaCl) effect

In the assay buffer containing 400 mMNaCl, no significantdifference
in 125I-SI Ang II binding, either Bmax (Fig. 2A) or KD (Fig. 2B) was
observed compared to that in the 150 mM NaCl assay buffer.

4. Discussion

4.1. Tissue distribution

Previous studies showing that the novel Ang II/Ang III binding site is
present in rat and mouse brains, also show that it is not present in rat
and mouse liver, adrenal glands, and kidney. Although previously
described as brain-specific, binding assays in tissues not generally
considered to be part of the classical RAS had not been done. Herein we
report a broader examination of the tissue distribution of this novel
binding site in 8 mouse tissues. This novel Ang II/Ang III binding site,
which is unmasked by 0.3 mM PCMB in the brain, is also present in
the testis, spleen, pancreas, epididymis, and lung, but was not reliably
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detectable in the heart, seminal vesicles and skeletal muscle. The
presence of this novel Ang II/Ang III bindingprotein in tissues other than
the brain suggests that it may mediate or regulate the effects of these
angiotensins in these tissues. While the tissues in which this novel Ang
II/Ang III binding site are not generally associated with the RAS, there is
data to indicate that these tissueshave local RAS's [1,20,21] andmayalso
be responsive to systemically generated circulating angiotensins.

The highest level of 125I-SI Ang II binding to this novel Ang II/Ang III
binding site was observed in the testis. Active angiotensins are
produced in the testis [22]. Renin and angiotensinogen mRNA are
present in mouse testis [23]. In rat however, renin mRNA is readily
detectable but angiotensinogen mRNA could only be detected with a
high sensitivity assay [23–25]. Within the rat and mouse testes, renin
and renin-like-ir is present in Leydig cells [22,26–28]. The testicular
angiotensin-converting enzyme (ACE) variant [22,29,30] and Ang II
receptors (predominantly AT1) are also found in Leydig cells [31–34].
It has been proposed that Ang II functions in a negative feedback loop
wherein LH stimulated Ang II production [35,36] leads to inhibition of
LH stimulated testosterone production [32]. Angiotensin II is not the
only RAS component ascribed with functionality in the testicular RAS.
Recent studies have established that Ang (1–7) activation of the Mas
receptor is necessary for spermatogenesis in mice and rats [37] and
that testicular ACE is necessary for capacitation and subsequent
fertilization [38–42]. Thus, this novel Ang II/Ang III binding site could
participate in Ang II-regulated male reproductive functions. See also
reviews [1,43,44].

The next highest expression of the novel Ang II/Ang III binding site
is in the brain. The binding site is present in high abundance relative
to the expression of the AT1 and AT2 subtypes and is more widely
distributed than either subtype in the rat brain which may indicate
novel, heretofore undescribed actions of Ang II and Ang III in the brain
[8,14]. The Bmax values for mouse forebrain in this study are
approximately 3 to 4 times greater than previously reported for rat
and mouse hypothalamus and rat, mouse and human cerebral cortex
[13,15,16] although the KD values are similar. It is not readily apparent
why there is such a large difference in forebrain versus cerebral cortex
and hypothalamus Bmax values.

There was an abundance of 125I-SI Ang II binding to the novel Ang
II/Ang III binding site in the spleen. While expression of renin and
angiotensinogen in the spleen is low [24,45,46], the spleen is reported
to have a complete RAS, see reviews [1,20]. High levels of Ang II
receptor binding have been found in the red pulp of the spleen [47].
These receptors are of the AT1 subtype [48]. Splenic AT1 receptors
might participate in regulation of splenic volume and blood flow
[47,49] or in regulation of lymphocyte function via AT1 receptor
activation of cytotoxic T lymphocytes [50,51]. Ang II stimulates
proliferation of lymphocytes in the mouse spleen reportedly via
stimulation of both AT1 and AT2 receptors [52]. See also reviews
[1,20]. The density of AT1 receptors in the rat spleen reported by
Castren et al., [47] 81.6 fmol/mg protein, is very similar to the density
of the novel Ang II/Ang III binding site, 72.9 fmol/mg protein. It
remains to be determined if the novel Ang II/Ang III binding site is
expressed on red or white pulp of the spleen. Thus its potential
functional significance in the spleen remains uncertain.

Binding of 125I-SI Ang II was also observed in the epididymis, a
tissue which is contiguous with the testis and completes or com-
plements many of its functions. Components of the RAS present in the
epididymis include renin-like activity [53], angiotensinogen, the
testicular ACE variant [29,54] and Ang II receptors [55]. Ang II and
both AT1 and AT2 receptors have been identified in epididymis with a
proposed functionality in the maturation of spermatozoa, specifically
by regulating fluid and electrolyte balance and stimulating sperma-
tozoal transport, see review [43]. Thus this novel Ang II/Ang III binding
site may also participate in this functionality.

The novel Ang II/Ang III binding site was also observed in the
mouse pancreas. Components of the RAS that have been observed in
the pancreas of various species include renin mRNA [56], angiotensi-
nogen mRNA, Ang II and Ang II receptors [57]. Ang II-like
immunoreactivity was reported to be present in endothelial cells of
pancreatic blood vessels and the epithelial cells of pancreatic ducts,
with less pronounced immunoreactivity for Ang II in the acinar cells
and in the smoothmuscle layers overlying the pancreatic ducts as well
as the blood vessels but with no Ang II-like immunoreactivity in islet
cells [58]. Ang II-like immunoreactivity was not detected in islet cells.
The density of Ang II receptors in the canine pancreas was relatively
low, 15.8 fmol/mg protein [57] and is predominantly made up of the
AT2 subtype [59]. In the rat pancreas Ang II receptors were also
reported to have a low (15 fmol/mg protein) density, but were
observed on islet cell membranes as well as on the exocrine pancreas
[60]. This is about ¼ the density of the novel Ang II/Ang III binding site
in the mouse pancreas. AT1 receptor immunoreactivity was observed
in rat pancreatic acinar cells [61] and was tied to the induction of
apoptosis of acinar cells during experimental pancreatic fibrosis.

Clinical evidence has clearly established that RAS blockade is
protective against type2 diabetesmellitus. There is evidence supporting
a role for both systemic and pancreatic islet RASs in regulation of islet
bloodflowand insulin biosynthesis [62]. The useof angiotensin receptor
blockers (ARBs) andACE inhibitors appears to attenuate orprevent RAS-
mediated inflammatory responses, apoptosis, fibrosis, and superoxide
anionproduction in islet cells [63]. A less classical role of theRAShas also
been noted: acute diabetes seen in some SARS patients is mediated by
ACE2 which functions as a receptor for the SARS coronavirus [64]. See
also reviews: [1,56,65]. In view of the continuing ambiguities regarding
the functionality of the pancreatic RAS and the effects of systemically
generated circulating angiotensins on the pancreas, it remains to be
determined how the novel Ang II/Ang III binding protein would affect
the actions of angiotensins on the pancreas.

The pancreas was unique inasmuch as it was the only tissue in
which nearly similar amounts and affinity of binding was seen with
and without PCMB, although binding was not always observed in the
absence of PCMB (5 of 11 assays). This suggests that the novel Ang II/
Ang III binding site may be more stably expressed in a conformation
capable of binding Ang II and Ang III so as to be observable in vitro
without PCMB. Further studies of this unique characteristic of the
pancreas are needed to verify this possibility.

Binding of 125I-SI Ang II to the novel Ang II/Ang III binding site was
observed in the lung, but only in 6 of the 9 assays carried out. The
vasculature of the lung contains a rich supply of ACE [66,67] making
the lung the most integral tissue for the systemic production of Ang II.
Renin and angiotensinogenmRNA have been observed in low levels in
the rat lung [24,46,68]. The predominant Ang II receptor subtype in
the lung is AT1 and was initially reported to have a density of 704±
60 fmol/mg protein and KD of 2.8±0.9 nM [69]. However, a
subsequent study showed a much lower density of 128.4±
15.7 fmol/mg protein and a KD of 0.63±0.05 nM [70]. The novel
Ang II/Ang III binding site shows a density below both of those
reported for the AT1, (Bmax=56.9±7.6 fmole/mg protein). Ang II has
several functions in the lung including induction of microvascular
permeability and subsequent pulmonary edema [71], pulmonary
vasoconstriction [72], fibroblast proliferation mediated by AT1
receptors [73], and AT1 mediated apoptosis of alveolar epithelial
cells in vitro [74]. A recent study showed that renin released by mast
cell degranulation, possibly in concert with concurrent chymase
release [75], leads to local generation of Ang II which then promotes
bronchoconstriction via the AT1 receptor on bronchial smooth muscle
cells [76]. This study highlights the interplay between different tissue
types in the functional use of angiotensin II as a paracrine hormone.
The novel Ang II/Ang III binding site maymediate more typical actions
of angiotensins II and III, or it may participate in novel and complex
regulatory pathways in the lung, see also reviews [77,78].

Of the eight mouse tissues analyzed, significant specific binding of
125I-SI Ang II was not reliably observed in the heart, seminal vesicles,
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and skeletal muscle. The undetectability of the novel Ang II/Ang III
binding site in heart was surprising given the preponderance of
evidence which attributes a significant direct role of Ang II on cardiac
function and pathophysiology, see review [20]. Cardiac tissue has
been shown to express ACE, as well as AT1 and AT2 receptors, however
expression of angiotensinogen, and renin are still uncertain [20,44]. In
contrast, increased expression of ACE2 has been noted following
myocardial infarction, heart failure, and treatmentwith ACE inhibitors
or ARBs [44]. It has been proposed that locally produced Ang II is not
responsible for ventricular hypertrophy but may have a significant
role in fibrosis induction [21].

The low level of binding to the novel Ang II/Ang III binding site in
skeletal muscle and seminal vesicles is in accord with the minimal
evidence available describing a functional RAS in both of these tissues
in adulthood.

4.2. Membrane localization

Although we have previously established that the binding site is
present in plasma membrane-enriched fraction of brain homogenates
[13,15,16], those studies did not distinguish between a membrane-
associated protein and a membrane bound protein. It should be
further noted that in the current binding study the cellular fraction
used included total cellular membranes, not solely plasmamembrane.
To address the possibility that this novel Ang II/Ang III binding protein
is membrane associated rather than an integral membrane protein,
the concentration of NaCl in the assay buffer was increased to 400 mM
so as to dissociate membrane-associated proteins from the mem-
branes. Specific binding of 125I-SI Ang II remained constant between
control and high-salt treated membranes, suggesting that the novel
Ang II/Ang III binding site protein is not a membrane-associated
protein, and is instead embedded within the plasma membrane. The
cellular localization of this novel binding site as an integral protein of
the plasma membrane ascribes it several possible roles: in signaling
(as a receptor), as a transporter (to internalize these angiotensins into
cells), or as a peptidase that could function as a highly specific
angiotensinase that modulates the availability of Ang II and Ang III
[13,15].

4.3. Protein identification inferred from the tissue distribution patterns in
the mouse

At present the identity of this novel binding protein is unknown.
However, one available method for identifying its structure is to find
complementary data on protein expression patterns in the mouse. A
search of global tissue expression patterns using Mouse Genome
Informatics MGI database (www.informatics.jax.org) revealed several
candidate proteins, which were chosen based on similarities with the
novel Ang II/Ang III binding site. The criteria for inclusion included:
tissue distribution in adult mice (present in testis and brain, the
tissues with the highest observed binding; see Table 1), cellular
localization (plasma membrane integral protein), protein size
(approx. 80 kDa) and absence of glycosylation sites [79]. The search
returned eight proteins of interest: Cldn 17, Emp1, Fbox2, Maged1,
Mmp24, Rxfp2, Septin 3, and St8sia3. These candidate proteins were
then arbitrarily scored to determine which best fit the criteria set
described above. Three of the eight proteins, Maged1, Mmp24, and
Rxfp2, showed good concordance with characteristics of the novel
Ang II/Ang III binding protein.

MAGE-D1 (also known as NRAGE or Dlxin-1) is a plasma mem-
brane protein which functions as an adapter protein mediating
various pathways including neuronal growth factor receptor (NGFR,
p75NTR) and UNCD5H1-induced apoptosis and Dlx/Msx-mediated
transcription [80]. It has been detected in most adult tissues, and is
predominantly expressed in the brain, but has not been observed in
liver and lung (www.informatics.jax.org) [80].
Rxfp2 is a cell surface receptor for the peptide relaxin and may also
serve as a receptor for Leydig insulin-like peptide (INSL3). Its expression
pattern extends from fetus to adult in male and female gonads and the
brain, but has not been detected in the kidney, spleen, or heart (www.
informatics.jax.org; MGI – uniprot.org).

The metalloproteinase Mmp24 (MT5-MMP) most closely parallels
reported biochemical characteristics of the novel Ang II/Ang III
binding site [15,79]. According to data from MGI, Mmp24 has been
detected in the plasma membranes of adult mouse brain and testis,
but not in heart, skeletal muscle, liver, kidney, and lung (www.
informatics.jax.org). One striking difference between the novel Ang II/
Ang III binding site and Mmp24 is that expression of Mmp24 in the
brain is predominantly located in the cerebellum [81], whereas
autoradiographic analysis of the novel Ang II/Ang III binding site in the
rat brain shows low levels of binding in the cerebellum and highest
density in the forebrain, specifically the olfactory bulb [14].

The concordance of the novel Ang II/Ang III binding site to Mmp24
is not entirely surprising given the ability of PCMB to inhibit
metalloendopeptidases EC 3.4.24.15, thimet oligopeptidase and EC
3.4.24.16, neurolysin [82,83] and the abundance of EC 3.4.24.15 in
brain and testis [13]. Additional correlates between angiotensins and
metalloproteinases include ACE/ACE2 and IRAP (AT4 receptor; EC
3.4.11.3) [84], see also reviews [3,85]. The functions of several brain
metalloproteinases have been correlated to pathological sequelae in
neuroinflammatory events and to beneficial roles in angio- and
neurogenesis [86]. These pathological consequences of metallopro-
teinase activation are most directly a result of increased blood-brain
barrier permeability but also include extracellular matrix (ECM)
regulation in Alzheimer's and Parkinson's disease. If the novel Ang II/
III binding site is interacting with a metalloproteinase it suggests that
there could be other substrates besides Ang II and Ang III whose
functionality is affected by this binding site. Future studies, directed at
sequence identification of the novel Ang II/Ang III binding protein and
characterization of its physiological functions and possible involve-
ment in pathophysiological processes will be needed.
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