
Zhang et al. Journal of Translational Medicine          (2021) 19:518  
https://doi.org/10.1186/s12967-021-03190-w

RESEARCH

Influence of the trajectory of the urine 
output for 24 h on the occurrence of AKI 
in patients with sepsis in intensive care unit
Luming Zhang1,2†, Fengshuo Xu2,3†, Didi Han2,3, Tao Huang2, Shaojin Li4, Haiyan Yin1* and Jun Lyu2*   

Abstract 

Background:  Sepsis-associated acute kidney injury (S-AKI) is a common and life-threatening complication in 
hospitalized and critically ill patients. This condition is an independent cause of death. This study was performed to 
investigate the correlation between the trajectory of urine output within 24 h and S-AKI.

Methods:  Patients with sepsis were studied retrospectively based on the Medical Information Mart for Intensive Care 
IV. Latent growth mixture modeling was used to classify the trajectory of urine output changes within 24 h of sepsis 
diagnosis. The outcome of this study is AKI that occurs 24 h after sepsis. Cox proportional hazard model, Fine–Gray 
subdistribution proportional hazard model, and doubly robust estimation method were used to explore the risk of AKI 
in patients with different trajectory classes.

Results:  A total of 9869 sepsis patients were included in this study, and their 24-h urine output trajectories were 
divided into five classes. The Cox proportional hazard model showed that compared with class 1, the HR (95% CI) val-
ues for classes 3, 4, and 5 were 1.460 (1.137–1.875), 1.532 (1.197–1.961), and 2.232 (1.795–2.774), respectively. Compet-
ing risk model and doubly robust estimation methods reached similar results.

Conclusions:  The trajectory of urine output within 24 h of sepsis patients has a certain impact on the occurrence of 
AKI. Therefore, in the early treatment of sepsis, close attention should be paid to changes in the patient’s urine output 
to prevent the occurrence of S-AKI.
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Introduction
Sepsis 3.0 defines sepsis as a life-threatening organ dys-
function caused by the host’s dysfunctional response 
to infection. Sepsis is one of the most common criti-
cal diseases in the emergency department and intensive 
care unit (ICU) [1]. According to reports, the number of 

patients diagnosed with sepsis worldwide in 2017 was as 
high as 48.9 million, of which 11 million patients died, 
accounting for 19.7% of the total deaths in the world, 
causing a great health burden [2]. Sepsis-associated acute 
kidney injury (S-AKI) is a common and life-threatening 
complication in hospitalized and critically ill patients. 
This condition is an independent cause of death, with 
septic kidney injury occurring in 50–70% of cases in the 
ICU [3, 4]. S-AKI is characterized by sepsis accompanied 
by the rapid deterioration of renal function. This com-
plication is difficult to treat and has high mortality rate, 
which greatly consumes public health resources [5].

Up to now, a large number of studies on sepsis have 
deepened the understanding of the risk factors, early 
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warning markers and pathobiological mechanisms of 
S-AKI. Zhang [6] mentioned in a narrative review that 
neutrophil gelatinase-associated lipocalin (NGAL), cys-
tatin C, b2-microglobulin and microalbuminuria are 
potential biomarkers that can predict the occurrence and 
development of S-AKI. In addition, there are many pub-
lished papers on serum biomarkers indicating that hep-
arin-binding protein, interleukin-6 (IL-6), interleukin-8 
(IL-8) etc. have a good predictive effect on AKI [7–10]. 
However, these biomarkers still need a lot of prospective 
studies and trials to prove, and there is still a gap in clini-
cal application and promotion [11].Most of the existing 
AKI diagnoses are based on the Kidney Disease: Improv-
ing Global Outcomes (KDIGO) Clinical Practice Guide-
lines [12], in which diagnosis and staging are based on 
changes in the urine output and creatinine. The change 
in the urine output plays a very important role in the 
development of AKI. Oliguria for more than 12 h and for 
3 or more instances have been associated with increased 
mortality [13]. Another study has used deep learning 
methods to continuously predict the occurrence of severe 
AKI based on changes in the urine output in critically ill 
patients [14]. However, the effect of the trajectory of the 
urine output on the occurrence of AKI in patients with 
sepsis has not been investigated.

In latent growth mixture modeling (LGMM), the popu-
lation is assumed to be heterogeneous and composed of 
several latent classes of subjects characterized by a num-
ber of mean profiles of trajectories [15]. In this study, we 
used the LGMM model to classify the 24-h urine output 
change trajectory of sepsis patients from the large public 
database Medical Information Mart for Intensive Care IV 
(MIMIC-IV). We also investigated the influence of sepsis 
with different trajectories of changes in the urine output 
on the occurrence of AKI to provide a basis for clinical 
treatment.

Methods
Data source
The MIMIC-IV database is a large, openly accessible, and 
relational database [16, 17]. It contains a comprehensive 
information on more than 250,000 electronic admission 
records of the Beth Israel Deaconess Medical Center in 
Boston, Massachusetts from 2008 to 2019. These records 
include the diagnosis, vital signs, laboratory tests, medi-
cation, and surgical information [18, 19]. The data used 
in this study were from the latest version of MIMI-IV 1.0, 
which was released in March 2021.

After completing the online course of the National 
Institutes of Health and passing the examination for 
the protection of human study participants, we were 
qualified to use the MIMI-IV database (Record ID: 
38601114;38455175).

Study population
We determined the study population based on the Sep-
sis 3.0 criteria, that is, on the basis of suspected or con-
firmed infection plus the Sequential Organ Failure 
Assessment (SOFA) score with an acute elevation greater 
than 2 points [17, 20]. In addition, patients younger than 
18  years old, characterized as in-hospital death or with 
AKI occurring within 24 h of diagnosis of sepsis, or with 
missing weight information were excluded. After deter-
mining the stay_id of the study population, we extracted 
their relevant information using the Structured Query 
Language (SQL) Programming by Navicat Premium 
11.2.7.0.

Exposure
The exposure in our study was the trajectory of changes in 
the urine output at the first, second, third, and fourth six-
hour interval after the diagnosis of sepsis. Urine output 
in this study was defined as the average urine output per 
kilogram of body weight per hour for each time period 
as follows: urine output in the first six hours = total urine 
output in the first six hours/(body weight × 6).

The LGMM model was used to classify the trajectory 
of changes in the urine output. A key factor in the gen-
eration of LGMM is that the number of potential classes 
should be specified. To select the best number of poten-
tial classes, we first set a quadratic growth model with a 
single class and then successively increase the number of 
classes to establish models corresponding to 2–6 classes. 
Indicators reflecting the goodness of fit of LGMM 
include log likelihood, entropy, and information criteria 
as follows: Akaike Information Criterion (AIC), Bayes-
ian Information Criteria (BIC), and sample-adjusted BIC 
(SABIC) [21]. We determined the optimal number of 
classes according to the principle that the goodness of 
fit of a model is better when the information criterion is 
lower, and the log likelihood and entropy are higher. In 
addition, to ensure the statistical power of subsequent 
analysis, we limited the sample size of each class to no 
less than 1% of the total study population. Finally, the fit-
ting effect of the model was evaluated by the means of the 
posterior probabilities in each class. The value of the pos-
terior probability was between 0 and 1, and the closer it 
was to 1, the more accurate the classification was. In this 
study, we limited the mean of the posterior probability in 
each class to no less than 70%. The simplicity and clinical 
interpretability of the model were also considered.

Outcome
The outcome of this study is AKI that occurs 24 h after 
the diagnosis of sepsis. The occurrence of AKI was an 
increase in the serum creatinine level or a decrease 
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in the urine output as defined by the KDIGO as fol-
lows: an increase in serum creatinine by ≥ 0.3  mg/dL 
(≥ 26.5 µmol/L) within 48 h; an increase in serum creati-
nine to ≥ 1.5 times baseline within the previous 7  days; 
urine volume ≤ 0.5  mL/kg/h for 6  h [12, 22]. Follow-up 
began with the diagnosis of sepsis and ended at which-
ever was the earliest of: onset of AKI, in-hospital death, 
or discharge. In subsequent analyses, cases of in-hospital 
death or without AKI occurrence until discharge were 
regarded as censored in the Cox model. In the compet-
ing risk model, cases of in-hospital death were regarded 
as competing events, and cases without AKI occurrence 
until discharge were regarded as censored.

Covariates
Any factors that might confuse the relationship between 
exposure and outcome were considered covariates and 
adjusted in subsequent studies. These factors included 
the demographic variables, disease severity scoring sys-
tems, laboratory test indicators, and treatment-related 
variables as follows: age, gender, ethnicity, first care unit 
type, Simplify Acute Physiological Scores II (SAPSII), 
Sequential Organ Failure Assessment (SOFA), Charl-
son comorbidity index, white blood cells (WBC), red 
blood cells (RBC), hemoglobin, red blood cell distribu-
tion width (RDW), platelet, sodium, potassium, chloride, 
bicarbonate, anion gap (AG), glucose, creatinine, blood 
urea nitrogen (BUN), usage of ventilator, use of vasopres-
sor, and continuous renal replacement therapy (CRRT). 
For all measures taken multiple times during hospitaliza-
tion, we used results from the first examination after the 
diagnosis of sepsis.

Statistical analysis
Missing data were very common in the MIMIC-IV 
database. We used the “mice” package of R software 
to deal with the missing values of covariables by multi-
ple imputation. In addition, to reduce information bias, 
no variables with a missing ratio of more than 10% were 
included in this study. Cases with a missing information 
ratio of more than 5% were excluded. Additional file  1: 
Fig. S1 shows the scenario of missing variables before 
imputation.

Ethnicity was divided into three categories, namely, 
white, black, and others. First care unit was also divided 
into three categories, namely, medical ICU (MICU)/sur-
gical ICU (SICU), coronary care unit (CCU), and others. 
Continuous variables subject to normal distribution were 
described by means and standard deviations, and the 
distribution differences between trajectory classes were 
tested by ANOVA. Those variables that did not follow 
the normal distribution were described by the median 
and interquartile range, and the distribution differences 

between classes were analyzed by Kruskal–Wallis test. 
Categorical variables were described by frequency and 
percentage, and χ2-test or Fisher’s exact test was used to 
test the distribution differences between classes.

First, Kaplan–Meier (KM) method was used to draw 
a cumulative incidence curve to show the occurrence 
of AKI in patients with different trajectory classes, and 
log-rank test was used to compare the risk differences 
between classes. Then, four Cox proportional hazard 
models with increasing covariates were established to 
analyze the influence of the trajectory of changes in the 
urine output on the risk of AKI. Model 1 was univariate 
analysis without adjusting any covariates. In model 2, the 
age, gender, ethnicity, and first care unit were adjusted. In 
model 3, in addition to the covariables in model 2, Charl-
son comorbidity index, SAPSII, and SOFA were adjusted. 
In addition to adjusting the covariables in model 3, the 
WBC, RBC hemoglobin, RDW, platelet, sodium, chlo-
ride, bicarbonate, AG, glucose, creatinine, BUN, usage 
of ventilator, vasopressor, and CRRT were adjusted in 
model 4.

Patients who had died in the hospital would no longer 
experience AKI occurrence. Thus, in-hospital deaths 
could be considered as the competing events of AKI 
occurrence. Under such circumstances, the use of Cox 
proportional hazard models would treat in-hospital 
deaths as censored, which could lead to competing risk 
bias. Therefore, we also used Fine-Gray proportional sub-
distribution risk regression to construct the above four 
models to analyze the competing risk to evaluate the sta-
bility of the results. Similarly, cumulative incidence curve 
was also plotted using the cumulative incidence function 
(CIF), and differences in the risk of AKI between trajec-
tory classes were also compared using the Gray’s test.

Finally, the doubly robust estimation method was used 
to infer the independent association between the trajec-
tory of urine output change and the risk of AKI. Pro-
pensity scoring models of the above 23 covariables and 
trajectory classes were established using the multinomi-
nal logical regression and Extreme Gradient Boosting 
(XGBoost). The estimated propensity scores were used as 
weights to generate two cohorts of inverse probability of 
treatment weighting (IPTW), namely, pseudo population 
whose distribution of covariates is independent of trajec-
tory classes [20, 23]. XGBoost is an integrated machine 
learning algorithm based on a decision tree, which 
adopts gradient boosting framework. The contribution 
of each covariate to the XGBoost model and multinomi-
nal logical regression was also shown. The standardized 
mean differences (SMDs) of the original cohort were 
compared with those of the inverse probability weighted 
cohorts to test whether IPTW reduced the imbalance in 
the distribution of covariates between trajectory classes. 
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Similarly, cumulative incidence curves were also plot-
ted in the IPTW cohorts and log-rank test was also 
done. Univariate Cox regression was performed on the 
weighted cohort, and the IPTW model was adjusted for 
the still unbalanced variables between trajectory classes 
(variables with SMD > 0.1), thus achieving double robust 
analysis.

A stratified analysis was also performed according to 
age (< 65  years and ≥ 65  years), gender (male, female), 
first care unit (MICU/SICU, CCU, and others), use of 
ventilator (no, yes), use of vasopressor (no, yes), CRRT 
(no, yes), Charlson comorbidity index (< 5, ≥ 5), SAPSII 
(< 35, ≥ 35), and SOFA (< 3, ≥ 3) to assess the potential 
modified effect. The potential interactions were also eval-
uated by adding a cross product term of trajectory class 
with the above stratification variables to the model.

A two-tailed p value less than 0.05 was considered 
statistically significant. All statistical analyses were per-
formed using the R software (4.0.3). The R package used 
included DataExplorer, lattice, MASS, nnet, mice, dplyr, 
magrittr, data.table, tidyverse, tableone, survey, sur-
vival, survsim, Survminer, mstate, rms, cmprsk, foreign, 
Matching, lcmm, ipw, twang, and xgboost.

Results
LGMM analysis and baseline characteristics
The goodness of fit statistics of the LGMM models 
are shown in Table  1. AIC, BIC, and SABIC showed a 
decreasing trend from the one-class to five-class mod-
els, while the log likelihood was increasing. However, the 
change was opposite to the change in the six-class model. 
The entropy (> 0.9) of five-class model was lower than 
those of one-class to three-class models but higher than 
those of the four-class and six-class models. The sam-
ple proportion of the trajectory class with the minimum 
population of the five-class model was 1.469%, which also 
met the preset standard. In addition, one class in the six-
class model had the sample proportion of 0%. Therefore, 
the five-class model was the best.

The trajectory of the change in the urine output of the 
five-class model is shown in Fig. 1. Class 1 accounted for 
3.6%, and the urine output was stable and then increased. 
Class 2 accounted for 1.5%, and the urine output was 
consistently at a high level, showing an inverted V-shaped 
trend of increasing first and then decreasing. Class 3 
accounted for 7.1%, in which the urine output first rose 
and then stabilized. Class 4 accounted for 7.3%, in which 
the urine output was at a high level at the beginning and 
then decreased rapidly, with the final urine output level 
even lower than those of class 1 and class 3. Class 5 had 
the largest sample size, accounting for 80.6% of the total 
population, with the urine output at persistently low 
levels.

The means of the posterior probability of the five-class 
model were 87.56%, 97.08%, 82.49%, 83.06% and 95.74% 
for class 1, class 2, class 3, class 4, and class 5, respectively 
(Additional file  1: Table  S1). The means were all higher 
than 70%, indicating the reliability of these results. The 
coefficients of five second-order functions of the five-
class model are presented in Additional file 1: Table S2.

A total of 9,869 patients were included in this study, 
and their baseline characteristics are presented in 
Table  2. The incidence of AKI 24  h after the diagnosis 
of sepsis was 41.1%. The median age of the patients was 
65 years old, and most of the patients were males (58.9%) 
and white (67.2%). Compared with patients in the other 
classes, the patients in class 2 were younger, less serious, 
and had fewer comorbidities, a lower proportion of ven-
tilator and CRRT use, and the lowest incidence of AKI 
(17.2%). The specific urine output of each time period of 
the five classes is also shown in Table 2.

Univariate and multivariate analyses
The cumulative incidence curve drawn using the KM 
method is shown in Fig.  2A. The result of the log-rank 
test indicated that the risks of AKI were different among 
the five trajectory classes. The risk of class 5 was higher 
than those of the other classes at all time points. One 
interesting phenomenon was that the curve showed that 

Table 1  Statistics for choosing the best number of classes

AIC: Akaike information criterion; BIC: Bayesian information criteria; SABIC: sample-adjusted information criteria

Number 
of classes

Log likelihood AIC BIC SABIC Entropy %class1 %class2 %class3 %class4 %class5 %class6

1 − 56976.9 113961.8 113990.6 113977.9 1.0000000 100.000000

2 − 53114.0 106244.1 106301.7 106276.2 0.9311908 8.997872 91.002128

3 − 51704.9 103433.7 103520.1 103482.0 0.9430789 88.570271 4.731989 6.697740

4 − 50503.1 101038.1 101153.3 101102.4 0.9150838 7.427298 82.095450 1.459114 9.018138

5 − 49930.4 99900.8 100044.8 99981.2 0.9182471 7.285439 80.565407 7.123315 3.556591 1.469247

6 − 49987.6 100023.2 100196.0 100119.7 0.8380689 9.038403 1.499645 0.000000 78.873239 9.585571 1.003141
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the risk of AKI in class1 was higher than in class 2 before 
20  days, and then reversed after 20  days. Therefore, we 
used the "ComparisonSurv" package of R software to test 
the difference of short-term and long-term risks between 
the two classes with a limit of 20 days. The results showed 
that there was no significant difference in short-term and 
long-term risks between the two classes. The cumulative 
incidence curve drawn using the CIF method Fig. 2B and 
the Gray’s test presented similar results.

The results of the Cox proportional hazard model are 
shown in Table 3. In the four models with different covar-
iates adjusted, compared with class1, the hazard ratio 
(HR) of class 2 was lower than 1, but without statistical 
difference. Thus, class 2 did not have a significantly lower 
risk of AKI than class 1, but the other three classes had 
higher risks of AKI than class 1. In model 4 with the most 
adjusted covariates, HR (95% CI) values for class 3, class 

4, and class 5 were 1.460 (1.137–1.875), 1.532 (1.197–
1.961), and 2.232 (1.795–2.774), respectively. Hence, the 
order of the five types of AKI risks was class 5 > class 
4 > class 3 > class 1 = class 2.

From Table  2, the competing risk bias caused by in-
hospital death in this study was small (by the end of fol-
low-up, 41.1% of the patients had AKI occurrence, and 
only 3.0% of the patients died in the hospital). Therefore, 
the competing risk analysis using the Fine-Gray propor-
tional subdistribution risk model showed results simi-
lar to those of the Cox proportional hazard regression 
(Table 4).

Double robust analysis
The SMDs of the original dataset, the IPTW dataset 
based on multinomial logistic regression, and the IPTW 
dataset based on the XGBoost are shown in Additional 

Fig. 1  Five classes identified by trajectories of urine output. The shaded area indicates the 95% confidence interval for each mean trajectory. The 
percentages in the parentheses indicate the percentages of patients each class accounts for
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Table 2  Baseline characteristics of five classes

Variables Overall Class1 Class2 Class3 Class4 Class5 P-value

N 9869 351 145 703 719 7951

Age, year 65.00 [54.00, 
76.00]

61.00 [46.50, 
71.00]

50.00 [36.00, 
60.00]

60.00 [47.00, 
71.00]

62.00 [51.00, 
73.50]

66.00 [55.00, 
77.00]

< 0.001

Gender (%)

 Male 5812 (58.9) 155 (44.2) 65 (44.8) 382 (54.3) 363 (50.5) 4847 (61.0) < 0.001

 Female 4057 (41.1) 196 (55.8) 80 (55.2) 321 (45.7) 356 (49.5) 3104 (39.0)

Ethnicity (%)

 White 6631 (67.2) 224 (63.8) 64 (44.1) 438 (62.3) 455 (63.3) 5450 (68.5) < 0.001

 Black 873 (8.8) 31 (8.8) 23 (15.9) 63 (9.0) 66 (9.2) 690 (8.7)

 Others 2365 (24.0) 96 (27.4) 58 (40.0) 202 (28.7) 198 (27.5) 1811 (22.8)

First_careunit (%)

 MICU/SICU 7113 (72.1) 245 (69.8) 121 (83.4) 512 (72.8) 413 (57.4) 5822 (73.2) < 0.001

 CCU​ 2433 (24.7) 95 (27.1) 20 (13.8) 163 (23.2) 284 (39.5) 1871 (23.5)

 Others 323 (3.3) 11 (3.1) 4 (2.8) 28 (4.0) 22 (3.1) 258 (3.2)

Ventilator (%)

 No 3006 (30.5) 95 (27.1) 73 (50.3) 222 (31.6) 156 (21.7) 2460 (30.9) < 0.001

 Yes 6863 (69.5) 256 (72.9) 72 (49.7) 481 (68.4) 563 (78.3) 5491 (69.1)

Vasopressor (%)

 No 6558 (66.5) 224 (63.8) 76 (52.4) 436 (62.0) 441 (61.3) 5381 (67.7) < 0.001

 Yes 3311 (33.5) 127 (36.2) 69 (47.6) 267 (38.0) 278 (38.7) 2570 (32.3)

CRRT (%)

 No 9761 (98.9) 349 (99.4) 145 (100.0) 695 (98.9) 713 (99.2) 7859 (98.8) 0.517

 Yes 108 (1.1) 2 (0.6) 0 (0.0) 8 (1.1) 6 (0.8) 92 (1.2)

 SAPSII 35.00 [28.00, 
43.00]

34.00 [26.00, 
40.00]

31.00 [23.00, 
40.00]

33.00 [26.00, 
42.00]

34.00 [27.00, 
41.00]

36.00 [29.00, 
43.00]

< 0.001

SOFA 3.00 [2.00, 4.00] 3.00 [2.00, 4.00] 3.00 [2.00, 4.00] 3.00 [2.00, 4.00] 3.00 [2.00, 4.00] 3.00 [2.00, 4.00] 0.011

Charlson comor-
bidity index

5.00 [3.00, 7.00] 5.00 [2.00, 7.00] 3.00 [1.00, 6.00] 5.00 [3.00, 7.00] 5.00 [3.00, 7.00] 6.00 [4.00, 8.00] < 0.001

Laboratory tests

 WBC (k/uL) 11.00 [7.70, 15.30] 10.90 [7.55, 15.05] 11.30 [7.60, 16.30] 10.70 [7.30, 14.90] 11.30 [7.90, 15.10] 11.00 [7.70, 15.30] 0.354

 RBC (m/uL) 3.38 [2.94, 3.84] 3.25 [2.95, 3.75] 3.42 [2.88, 3.95] 3.37 [2.95, 3.87] 3.36 [3.00, 3.84] 3.39 [2.94, 3.84] 0.427

 Hemoglobin 
(g/dL)

10.10 [8.80, 11.50] 9.60 [8.60, 10.90] 10.10 [8.70, 11.60] 10.00 [8.80, 11.55] 10.20 [9.00, 11.50] 10.10 [8.80, 11.50] 0.015

 RDW (%) 14.70 [13.60, 
16.30]

14.70 [13.60, 
16.35]

14.40 [13.50, 
16.30]

14.60 [13.60, 
16.50]

14.30 [13.40, 
15.70]

14.70 [13.60, 
16.30]

< 0.001

 Platelet (k/uL) 178.00 [124.00, 
249.00]

178.00 [118.50, 
258.00]

196.00 [137.00, 
258.00]

181.00 [124.00, 
256.00]

171.00 [122.00, 
232.50]

178.00 [124.00, 
249.00]

0.296

 Sodium 
(mEq/L)

139.00 [136.00, 
141.00]

139.00 [135.00, 
142.00]

140.00 [135.00, 
142.00]

139.00 [136.00, 
141.00]

139.00 [136.00, 
141.00]

139.00 [136.00, 
141.00]

0.579

 Potassium 
(mEq/L)

4.10 [3.70, 4.50] 4.00 [3.60, 4.30] 3.80 [3.40, 4.30] 4.00 [3.60, 4.30] 4.00 [3.60, 4.40] 4.10 [3.70, 4.50] < 0.001

 Chloride 
(mEq/L)

106.00 [101.00, 
109.00]

105.00 [101.50, 
109.00]

107.00 [103.00, 
112.00]

106.00 [101.00, 
109.00]

106.00 [102.00, 
110.00]

105.00 [101.00, 
109.00]

0.001

 Bicarbonate 
(mEq/L)

23.00 [20.00, 
26.00]

23.00 [20.00, 
26.00]

22.00 [18.00, 
24.00]

23.00 [20.00, 
25.00]

24.00 [21.00, 
26.00]

23.00 [20.00, 
26.00]

< 0.001

 AG (mEq/L) 13.00 [11.00, 
16.00]

13.00 [11.00, 
15.50]

14.00 [11.00, 
16.00]

14.00 [11.00, 
16.00]

13.00 [11.00, 
15.00]

13.00 [11.00, 
16.00]

0.006

 Glucose (mg/
dL)

124.00 [103.00, 
156.00]

123.00 [100.50, 
159.00]

128.00 [103.00, 
158.00]

119.00 [100.00, 
150.00]

120.00 [103.00, 
147.00]

125.00 [104.00, 
157.00]

0.006

 Creatinine (g/
dL)

0.90 [0.70, 1.40] 0.80 [0.60, 1.10] 0.80 [0.60, 1.40] 0.90 [0.60, 1.40] 0.80 [0.60, 1.10] 1.00 [0.70, 1.40] < 0.001

 BUN (mg/dL) 18.00 [12.00, 
32.00]

14.00 [9.00, 25.00] 12.00 [7.00, 24.00] 16.00 [9.00, 30.00] 14.00 [10.00, 
21.00]

20.00 [13.00, 
34.00]

< 0.001
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MICU: medical intensive care unit; SICU: surgical intensive care unit; CCU: coronary care unit; CRRT: continuous renal replacement therapy; SAPSII: Simplify Acute 
Physiological Scores II; SOFA: Sequential Organ Failure Assessment; WBC: white blood cells; RBC: red blood cells; RDW: red blood cell distribution width; AG: anion gap; 
BUN: blood urea nitrogen; AKI: acute kidney injury

Table 2  (continued)

Variables Overall Class1 Class2 Class3 Class4 Class5 P-value

 Mean total 
urine output 
(mL/(kg h))

1.29 [0.95, 1.78] 2.30 [2.04, 2.66] 4.32 [3.97, 5.03] 2.38 [2.15, 2.75] 2.32 [2.04, 2.76] 1.15 [0.89, 1.46]  < 0.001

 First six-hour 
urine output 
(mL/(kg h))

1.28 [0.83, 2.04] 1.58 [1.04, 2.12] 4.25 [3.28, 5.49] 1.98 [1.31, 2.53] 4.05 [3.54, 4.82] 1.12 [0.77, 1.67] < 0.001

 Second six-
hour urine 
output (mL/
(kg h))

1.16 [0.80, 1.77] 1.51 [0.97, 2.05] 4.99 [4.05, 6.20] 2.72 [2.15, 3.53] 2.04 [1.42, 2.74] 1.03 [0.75, 1.46] < 0.001

 Third six-hour 
urine output 
(mL/(kg h))

1.12 [0.78, 1.72] 2.05 [1.41, 2.85] 4.37 [3.36, 5.62] 2.88 [2.25, 3.59] 1.35 [0.98, 1.97] 1.01 [0.74, 1.44] < 0.001

 Fourth six-hour 
urine output 
(mL/(kg h))

1.12 [0.75, 1.75] 3.80 [3.39, 4.38] 3.67 [2.70, 4.90] 1.97 [1.44, 2.61] 1.45 [0.97, 2.19] 1.00 [0.70, 1.48] < 0.001

AKI (%)

 No 5815 (58.9) 267 (76.1) 120 (82.8) 472 (67.1) 462 (64.3) 4494 (56.5) < 0.001

 Yes 4054 (41.1) 84 (23.9) 25 (17.2) 231 (32.9) 257 (35.7) 3457 (43.5)

Endpoints (%)

 Alive 5515 (55.9) 251 (71.5) 115 (79.3) 446 (63.4) 448 (62.3) 4255 (53.5) < 0.001

 AKI 4054 (41.1) 84 (23.9) 25 (17.2) 231 (32.9) 257 (35.7) 3457 (43.5)

 In-hospital 
Death

300 (3.0) 16 (4.6) 5 (3.4) 26 (3.7) 14 (1.9) 239 (3.0)

 Follow-up time 4.21 [1.96, 7.72] 5.27 [3.19, 8.85] 5.56 [3.60, 9.58] 5.13 [2.74, 8.82] 4.82 [2.25, 8.17] 4.08 [1.83, 7.53] < 0.001

Fig. 2  Cumulative incidence curves. A By Kaplan–Meier method, B by cumulative incidence function
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file 1: Fig. S2. The covariates between classes were well-
balanced after IPTW, and XGBoost had a better effect 
than multinomial logistic regression. After the IPTW by 
multinomial logistic regression, the distribution of three 
covariables, namely, BUN, creatinine, and AG, remained 
unbalanced. By contrast, the distribution of only ethnic-
ity was unbalanced after IPTW by XGBoost. In general, 
the IPTW dataset based on XGBoost also had lower 
SMDs compared with the IPTW dataset based on the 
multinomial logistic regression.

Additional file 1: Fig. S3 shows the degree of contribu-
tion of each covariable to the propensity score in the pro-
pensity score matching model based on XGBoost. They 
reflected the degree of influence of the different covari-
ables on the classification or the degree of imbalance 
between classes. The top five variables with the highest 
contributions according to order were platelet, glucose, 
WBC, BUN, and RBC. The result of multinomial logi-
cal regression was shown in Additional file  1: Table  S3. 
The cumulative incidence curves in IPTW cohorts were 
shown in Additional file 1: Fig. S4.

Table  5 presents the results of double robust analysis. 
No statistically significant difference was found between 
class 1 and class 3 in the risk of AKI, whether multino-
mial logistic regression or XGBoost was used, whether 
in univariate Cox analysis after IPTW, or multivariate 
Cox analysis in which only unbalanced covariates were 
adjusted or all covariates were adjusted. The risks of class 

3, class 4, and class 5 were significantly higher than that 
of class 1, reflecting the stability of the results.

Subgroup analysis
Subgroup analysis was also conducted, and the results are 
shown in Additional file 1: Table S4. No statistical signifi-
cance was found in the cross-product terms of all strati-
fied variables with the trajectory class, indicating the 
absence of interaction. The correlation between the clas-
sification of the trajectory of urine output and the risk of 
AKI in the population of sepsis patients with different 
characteristics was consistent.

Discussion
Urine output is one of the most important indicators in 
critically ill patients. Changes in urine output are closely 
related to physiological responses, changes in tissue per-
fusion, renal dysfunction, and clinical treatment [24]. 
This parameter is now widely used as one of the crite-
ria for the diagnosis and staging of AKI [12]. Oliguria is 
also a cause of adverse after-effects in severe patients. As 
several studies have demonstrated very clearly, the dura-
tion of oliguria in the ICU patients is associated with the 
initiation of dialysis and an increased risk of death [25]. 
Urine output is a dynamic and continuous indicator. 
In this study, LGMM was used to study the correlation 
between the trajectory of urine output within 24  h and 
S-AKI. Various methods, such as competitive risk model 

Table 3  Results of Cox proportional hazard models

HR: hazard ratio; CI: confidence interval

Class Model1 Model2 Model3 Model4

HR (95% CI) P value HR (95% CI) P value HR (95% CI) P value HR (95% CI) P value

Class1 Reference Reference Reference Reference

Class2 0.693 (0.443–1.083) 0.107 0.759 (0.485–1.187) 0.227 0.750 (0.479–1.172) 0.207 0.844(0.540–1.321) 0.458

Class3 1.416 (1.103–1.818) 0.006 1.438 (1.120–1.846) 0.004 1.442 (1.123–1.852) 0.004 1.460 (1.137–1.875) 0.003

Class4 1.638 (1.280–2.095) < 0.001 1.565 (1.223–2.002) < 0.001 1.572 (1.228–2.011) < 0.001 1.532 (1.197–1.961) < 0.001

Class5 2.144 (1.727–2.663) < 0.001 2.108 (1.696–2.619) < 0.001 2.144 (1.726–2.664) < 0.001 2.232 (1.795–2.774) < 0.001

Table 4  Results of Fine-Gray proportional subdistribution hazard models

HR: hazard ratio; CI: confidence interval

Class Model1 Model2 Model3 Model4

HR (95% CI) P value HR (95% CI) P value HR (95% CI) P value HR (95% CI) P value

Class1 Reference Reference Reference Reference

Class2 0.693 (0.449–1.070) 0.098 0.760 (0.492–1.173) 0.215 0.750 (0.486–1.158) 0.194 0.843 (0.552–1.287) 0.429

Class3 1.420 (1.112–1.812) 0.005 1.441 (1.129–1.840) 0.003 1.446 (1.134–1.845) 0.003 1.462 (1.150–1.859) 0.002

Class4 1.644 (1.291–2.096) < 0.001 1.572 (1.233–2.005) < 0.001 1.579 (1.239–2.013) < 0.001 1.539 (1.212–1.955) < 0.001

Class5 2.149 (1.738–2.658) < 0.001 2.115 (1.709–2.618) < 0.001 2.153 (1.740–2.664) < 0.001 2.239 (1.815–2.761) < 0.001
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and inverse probability weighting, were adopted to ver-
ify the results. All results showed that when the patient 
was diagnosed with sepsis, compared with patients 
whose urine output was stabilized and then rose (class 1), 
patients with consistently high urine output (class 2) did 
not have a higher risk of AKI. At the same time, patients’ 
whose urine output first increased and then stabilized 
(class 3), rapidly declined (class 4), and was persistently 
at low levels (class 5) had an increased risk of AKI. In 
general, the order of the five types of AKI risks was class 
5 > class 4 > class 3 > class 1 = class 2. Moreover, among 
the five different 24-h urine volume trajectories, none of 
the patients has a urine volume ≤ 0.5 mL/kg/h, which is 
the most valuable point in this study, it can help clinicians 
identify the risk of AKI before patients meet the diagnos-
tic criteria of AKI, so as to take corresponding clinical 
measures and interventions to prevent the occurrence of 
S-AKI and improve the prognosis of patients with sepsis.

Next, we will explain the results step by step, compared 
with class 1, the results of class 4 and class 5 were not 
surprising. The rapid drop in the urine level or a consist-
ently low urine output indicated that such patients may 
not have received further treatment, or the urine output 
has continued to be low even after taking fluid rehydra-
tion therapy [26]. The pathophysiology of S-AKI involves 
complex processes including ischemia/reperfusion injury 
and inflammation [27]. Severe inflammatory responses 
in sepsis lead to endothelial failure, increased vascular 
permeability, and hypovolemia, resulting in renal per-
fusion and rapid decrease in urination [28]. The results 
demonstrated that early renal perfusion in patients with 
sepsis was closely related to the occurrence of AKI. In 
addition, studies in recent years have supported the view 
that organ dysfunction in these patients is not secondary 
only to hypoperfusion. Given the intense inflammatory 
response and microvascular dysfunction, the concentra-
tion of cytokines, chemokines, and complement frag-
ments in the kidney area greatly increases [29], which 
may damage the renal tubules, leading to the deteriora-
tion of renal function and reduced urination. This phe-
nomenon also supports that reduced urination is the 
result of early kidney injury, and such patients are at 
increased risk of AKI [27].

Interestingly, patients in class 3 had an increased risk 
of AKI compared with class 1. The possible mechanism 
may be related to the early treatment of patients with 
sepsis. Similar to the updated “1 h bundle” in the Surviv-
ing Sepsis Campaign [30], the rapid circulation of resus-
citation through intravenous fluids is a key component 
of sepsis management [31]. Studies have demonstrated 
that positive fluid balance is associated with an increased 
risk of AKI and is a negative predictor of renal function 
recovery [32]. The effect of fluid resuscitation on renal Ta
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injury stems from the high vulnerability of the kidney 
to hypoxic injury. In fact, with poor oxygen solubility of 
fluids, hemodilution reduces blood viscosity, promotes 
intra-renal shunt and heterogeneity, decreases capil-
lary density, and increases hypoxia in the renal cortex 
and medulla [24]. The reasons for the low perfusion in 
patients are not only related to insufficient blood out-
put but also to decreased systemic vascular resistance 
[33]. Therefore, attention should be given to the rational 
use of vasopressor. That is, the early urine output of sep-
sis patients increased in a certain trajectory, which may 
reflect excessive fluid replacement or unreasonable use of 
vasopressors, which are all related to the increased risk 
of AKI. However, the risk of class 3 is still slightly lower 
than that of class5 and class4, indicating that the risk of 
AKI in patients with positive response to clinical treat-
ment measures is still lower than that in patients without 
treatment or no response to treatment measures. In the 
course of clinical treatment, early identification of sepsis 
patients’ response to fluid replacement, and rational use 
of fluid replacement and vasopressors after initial resus-
citation is of great significance [34].

Strengths and limitations of the study
This study has several advantages. In addition to LGMM, 
which was used to explore and classify the trajectory of 
urine output for 24  h in patients with sepsis, Cox pro-
portional hazard model, competing risk model, dou-
ble robust estimation and other methods were used to 
analyze the influence of urine output trajectory on the 
occurrence of AKI in patients with sepsis. The results 
are reliable and stable, providing the basis for the clini-
cal treatment of patients with sepsis. Another signifi-
cant point is that compared with the criteria of AKI, 
the results of this study can help predict the risk of AKI 
before diagnosis, so as to help clinical treatment and 
decision-making. However, this study also had several 
limitations. Firstly, MIMIC-IV is a single-center data-
base, and selection bias exists in this study, which lim-
its the extrapolation of our conclusions. Secondly, our 
study only explored the risk of AKI in patients with sepsis 
after entering the ICU 24 h later, and did not study the 
population who did not enter the ICU, which is related 
to the MIMIC database missing information on patients 
who are not admitted to the ICU. Thirdly, urine vol-
ume is the result of a combination of many factors, all 
of which could not be taken into account in this study. 
Furthermore, our baseline table and results of multino-
mial logical regression and XGBoost show the imbalance 
and the degree of covariate among the trajectory classifi-
cation. However, whether these factors affect the trajec-
tory of the dynamic change in the urine output and the 
mechanism of action still need further discussion in the 

follow-up studies. Finally, we only discussed the influence 
of the trajectory in the changes in urine output of a single 
indicator on the occurrence of AKI. In future studies, the 
occurrence of disease can be predicted by combining the 
common trend of changes in other related indicators.

Conclusion
The trajectory of urine output within 24  h of sepsis 
patients has a certain impact on the occurrence of AKI. 
Compared with patients whose urine output was stable 
at the early stage and slightly increased at the later stage, 
patients with urine output that first increased and then 
stabilized and those with urine output that decreased 
rapidly or remained at a low level had an increased risk 
of AKI. Therefore, in the early treatment of sepsis, close 
attention should be paid to changes in the patient’s urine 
output to prevent the occurrence of S-AKI.
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Additional file 1: Figure S1. Data missing before multiple imputation. 
SOFA, Sequential Organ Failure Assessment; SAPSII, Simplify Acute Physi-
ological Scores II; CRRT, continuous renal replacement therapy; AG, anion 
gap; BUN, blood urea nitrogen; RBC, red blood cells; WBC, white blood 
cells; RDW, red blood cell distribution width. Figure S2. SMD of covariable 
before and after IPTW. SMD, standardized mean difference; IPTW, inverse 
probability of treatment weighting; BUN, blood urea nitrogen; SAPSII, 
Simplify Acute Physiological Scores II; RDW, red blood cell distribution 
width; SOFA, Sequential Organ Failure Assessment; CRRT, continuous renal 
replacement therapy;; AG, anion gap; RBC, red blood cells; WBC, white 
blood cells. Figure S3. The contribution of each covariate to the XGBoost 
model. WBC, white blood cells; BUN, blood urea nitrogen; RBC, red 
blood cells; RDW, red blood cell distribution width; SAPSII, Simplify Acute 
Physiological Scores II; AG, anion gap; SOFA, Sequential Organ Failure 
Assessment; CRRT, continuous renal replacement therapy. Figure S4. 
Cumulative incidence curves of IPTW cohorts. (A) by multinomial logistic 
regression, (B) by XGBoost. Table S1.  Mean of posterior probabilities in 
each class. Table S2.  Fixed effects in the longitudinal five classes model. 
Table S3. Results of multinomial logistic regression. Table S4. Results of 
subgroup analysis
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