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As an emerging sub-field of music information retrieval (MIR), music imagery information

retrieval (MIIR) aims to retrieve information from brain activity recorded during music

cognition–such as listening to or imagining music pieces. This is a highly inter-

disciplinary endeavor that requires expertise in MIR as well as cognitive neuroscience

and psychology. The OpenMIIR initiative strives to foster collaborations between these

fields to advance the state of the art in MIIR. As a first step, electroencephalography

(EEG) recordings of music perception and imagination have beenmade publicly available,

enabling MIR researchers to easily test and adapt their existing approaches for music

analysis like fingerprinting, beat tracking or tempo estimation on this new kind of data.

This paper reports on first results of MIIR experiments using these OpenMIIR datasets

and points out how these findings could drive new research in cognitive neuroscience.

Keywords: music cognition, music perception, music information retrieval, deep learning, representation learning

1. INTRODUCTION

Music Information Retrieval (MIR) is a relatively young field of research that has emerged over
the course of the last two decades. It brings together researchers from a large variety of disciplines
who—in the broadest sense—investigate methods to retrieve and interact with music information.
As theMIR community has grown, research questions also have becomemore diverse. The different
kinds of data considered in MIR now comprise, for instance, symbolic representations, audio
recordings, sheet music, playlists, (social) web data such as reviews or tweets, and usage meta-data.

As a very recent development, MIR researchers also have started to explore ways to detect and
extract music information from brain activity recorded during listening to or imagining music
pieces–a sub-field of MIR introduced as Music Imagery Information Retrieval (MIIR) in Stober
and Thompson (2012). In the long term, research in this direction might lead to new ways of
searching for music along the line of existing MIR approaches that, for instance, allow query by
singing, humming, tapping, or beat-boxing. Inspired by recent successes in reconstructing visual
stimuli (Miyawaki et al., 2008; Nishimoto et al., 2011; Cowen et al., 2014) and even dream imagery
(Horikawa et al., 2013), it might eventually be possible to even reconstruct music stimuli from
recorded brain activity.

In a broader context, Kaneshiro and Dmochowski (2015), for instance, mention transcription,
tagging and annotation, audience following, and portable MIR applications as possible scenarios
that could benefit from neuroimaging data such as EEG. Findings from MIIR can further support
the development of Brain-Computer Interfaces (BCIs) that facilitate interaction with music in new
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Stober Lessons Learned from OpenMIIR Initiative

ways beyond basic search–such as Brain-Computer Music
Interfaces (BCMIs) used to generate and control music (Miranda
and Castet, 2014). Finally and most importantly, this paper
aims to motivate an MIIR-driven approach to music cognition
research that can lead to new insights about on how the human
brain processes and encoders music.

The challenge of retrieving music information from
recordings of brain activity can in principle be approached
in the following naïve way: One could argue that as the brain
processes perceived music or recreates this experience in
imagination, it generates a transformed representation which is
captured—to some extend—by the recording equipment. Hence,
the recorded signal could in principle be seen as a mid-level
representation of the original music piece that has been heavily
distorted by two consecutive black-box filters—the brain and
the recording equipment. This transformation involves and
intermingles with several other brain processes unrelated to
music perception and is further limited by the capabilities of the
recording equipment which might additionally introduces signal
artifacts.

This setting calls for sophisticated signal processing
techniques, ideally developed in an intense interdisciplinary
collaboration between MIR researchers and neuroscientists.
In order to facilitate such a collaboration and contribute to
new developments in this emerging field of research, the first
OpenMIIR dataset was released as public domain in 2015 (Stober
et al., 2015b). This article summarizes work over the course
of a year since its publication. To this end, a brief overview of
the dataset is provided in section 2. as well as related research
in section 3. As the main part of this paper, section 4 covers
our experiments. This is followed by a discussion in section 5.
Finally, we draw conclusions and point out directions for future
work in section 6.

2. THE OPENMIIR DATASET

The OpenMIIR dataset (Stober et al., 2015b) comprises
Electroencephalography (EEG) recordings taken during music
perception and imagination.1 These data were collected from
10 subjects who listened to and imagined 12 short music
fragments—each 7–16 s long—taken from well-known pieces.
EEG was chosen as recording technique because it is much
more accessible to MIR researchers thanMagnoencephalography
(MEG) and functional Magnetic Resonance Imaging (fMRI),
withmore andmore affordable consumer-level devices becoming
available. Furthermore, EEG has a good temporal resolution that
can capture how music perception and imagination unfold over
time and allows for analyzing temporal characteristics of the
signal such as rhythmic information. The stimuli were selected
from different genres and systematically span several musical
dimensions such as meter, tempo, and the presence of lyrics.
This way, various retrieval and classification scenarios can be
addressed. As shown in Table 1, there are 3 groups with 4 stimuli
each.

1The dataset is available at https://github.com/sstober/openmiir

1. Stimuli 1–4 are from recordings of songs where a singing voice
(lyrics) is present.

2. Stimuli 11–14 are from different recordings of the same
songs as stimuli 1–4. These recordings do not contain a
singing voice. Instead, the melody is played by one or more
instruments.

3. Stimuli 21–24 are from recordings of purely instrumental
pieces that do not have any lyrics and thus it is not possible
to sing along.

All stimuli were normalized in volume and kept as similar in
length as possible with care taken to ensure that they all contained
complete musical phrases starting from the beginning of the
piece. The pairs of recordings for the same song with and without
lyrics were tempo-matched. The stimuli were presented to the
participants in several conditions while EEG was recorded.

1. Stimulus perception with cue clicks
2. Stimulus imagination with cue clicks
3. Stimulus imagination without cue clicks
4. Stimulus imagination without cue clicks, with additional

feedback from participants after each trial

Condition 1–3 trials were recorded directly back-to-back. The
goal was to lock time and tempo between conditions 1 and
2 through the cue to help identifying overlapping features.
Conditions 3 and 4 simulate a more realistic query scenario
where the system cannot know the tempo and meter in advance.
The presentation was divided into 5 blocks that each comprised
all 12 stimuli in randomized order. In total, 60 trials (12
stimuli × 5 blocks) per condition were recorded for each
subject.

EEG was recorded from 10 participants (3 male), aged
19–36, with normal hearing and no history of brain injury.
A BioSemi Active-Two system was used with 64 + 2
EEG channels sampled at 512Hz. Horizontal and vertical
Electrooculography (EOG) channels were recorded to capture
eye movements. The following common-practice pre-processing
steps were applied to the raw EEG and EOG data using the
MNE-python toolbox by Gramfort et al. (2013) to remove
unwanted artifacts. We removed and interpolated bad EEG
channels (between 0 and 3 per subject) identified by manual
visual inspection. The data was then filtered with a bandpass
keeping a frequency range between 0.5 and 30Hz. This
also removed any slow signal drift in the EEG. To remove
artifacts caused by eye blinks, we computed independent
components using extended Infomax independent component
analysis (ICA) as described by Lee et al. (1999) and semi-
automatically removed components that had a high correlation
with the EOG channels. Afterwards, the 64 EEG channels were
reconstructed from the remaining independent components
without reducing dimensionality. Furthermore, the data of
one participant was excluded for the experiments described
in this paper because of a considerable number of trials
with movement artifacts due to coughing. Finally, all trial
channels were additionally normalized to zero mean and range
[−1, 1].
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TABLE 1 | Information about the tempo, meter, and length of the stimuli (without cue clicks).

ID Group Name Meter Length Tempo in beats per minute (BPM)

1 Songs recorded with lyrics Chim Chim Cheree 3/4 13.3 s 212

2 Take Me Out to the Ballgame 3/4 7.7 s 189

3 Jingle Bells (lyrics) 4/4 9.7 s 200

4 Mary Had a Little Lamb 4/4 11.6 s 160

11 Songs recorded without lyrics Chim Chim Cheree 3/4 13.5 s 212

12 Take Me Out to the Ballgame 3/4 7.7 s 189

13 Jingle Bells 4/4 9.0 s 200

14 Mary Had a Little Lamb 4/4 12.2 s 160

21 Instrumental pieces Emperor Waltz 3/4 8.3 s 178

22 Hedwig’s Theme (Harry Potter) 3/4 16.0 s 166

23 Imperial March (Star Wars Theme) 4/4 9.2 s 104

24 Eine Kleine Nachtmusik 4/4 6.9 s 140

Mean 10.4 s 176

3. RELATED WORK

Retrieval based on brain wave recordings is still a very young
and largely unexplored domain. EEG signals have been used
to recognize emotions induced by music perception (Lin et al.,
2009; Cabredo et al., 2012) and to distinguish perceived rhythmic
stimuli (Stober et al., 2014). It has been shown that oscillatory
neural activity in the gamma frequency band (20–60Hz) is
sensitiv to accented tones in a rhythmic sequence (Snyder and
Large, 2005) and that oscillations in the beta band (20–30Hz)
increase in anticipation of strong tones in a non-isochronous
sequence (Fujioka et al., 2009, 2012; Iversen et al., 2009). While
listening to rhythmic sequences, the magnitude of steady state
evoked potentials (SSEPs), i.e., reflecting neural oscillations
entrained to the stimulus, changes for frequencies related to the
metrical structure of the rhythm as a sign of entrainment to beat
and meter (Nozaradan et al., 2011, 2012).

EEG studies by Geiser et al. (2009) have further shown that
perturbations of the rhythmic pattern lead to distinguishable
electrophysiological responses–commonly referred to as Event-
Related Potentials (ERPs). This effect appears to be independent
of the listener’s level of musical proficiency. Furthermore, Vlek
et al. (2011) showed that imagined auditory accents imposed on
top of a steady metronome click can be recognized from ERPs.
However, as usual for ERP analysis to deal with noise in the
EEG signal and reduce the impact of unrelated brain activity, this
requires averaging the brain responses recorded for many events.
In contrast, retrieval scenarios usually only consider single trials.
Nevertheless, findings from ERP studies can guide the design of
single-trial approaches as demonstrated in subsection 4.1.

EEG has also been successfully used to distinguish perceived
melodies. In a study conducted by Schaefer et al. (2011), 10
participants listened to 7 short melody clips with a length
between 3.26 and 4.36 s. For single-trial classification, each
stimulus was presented for a total of 140 trials in randomized
back-to-back sequences of all stimuli. Using quadratically

regularized linear logistic-regression classifier with 10-fold cross-
validation, they were able to successfully classify the ERPs of
single trials. Within subjects, the accuracy varied between 25 and
70%. Applying the same classification scheme across participants,
they obtained between 35 and 53% accuracy. In a further analysis,
they combined all trials from all subjects and stimuli into a
grand average ERP. Using singular-value decomposition, they
obtained a fronto-central component that explained 23% of the
total signal variance. The related time courses showed significant
differences between stimuli that were strong enough for cross-
participant classification. Furthermore, a correlation with the
stimulus envelopes of up to .48 was observed with the highest
value over all stimuli at a time lag of 70–100ms.

Results from fMRI studies by Herholz et al. (2012) and
Halpern et al. (2004) provide strong evidence that perception
and imagination of music share common processes in the
brain, which is beneficial for training MIIR systems. As
Hubbard (2010) concludes in his review of the literature on
auditory imagery, “auditory imagery preserves many structural
and temporal properties of auditory stimuli” and “involves many
of the same brain areas as auditory perception”. This is also
underlined by Schaefer (2011, p. 142) whose “most important
conclusion is that there is a substantial amount of overlap between
the two tasks [music perception and imagination], and that
‘internally’ creating a perceptual experience uses functionalities
of ‘normal’ perception.” Thus, brain signals recorded while
listening to a music piece could serve as reference data
for a retrieval system in order to detect salient elements
in the signal that could be expected during imagination as
well.

A recent meta-analysis of Schaefer et al. (2013) summarized
evidence that EEG is capable of detecting brain activity during
the imagination of music. Most notably, encouraging preliminary
results for recognizing purely imagined music fragments from
EEG recordings were reported in Schaefer et al. (2009) where 4
out of 8 participants produced imagery that was classifiable (in a
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binary comparison) with an accuracy between 70 and 90% after
11 trials.

Another closely related field of research is the reconstruction
of auditory stimuli from EEG recordings. Deng et al. (2013)
observed that EEG recorded during listening to natural speech
contains traces of the speech amplitude envelope. They used ICA
and a source localization technique to enhance the strength of
this signal and successfully identify heard sentences. Applying
their technique to imagined speech, they reported statistically
significant single-sentence classification performance for 2 of
8 subjects with performance increasing when several sentences
were combined for a longer trial duration.

More recently, O’Sullivan et al. (2015) proposed a method for
decoding attentional selection in a cocktail party environment
from single-trial EEG recordings of approximately one minute
length. In their experiment, 40 subjects were presented with 2
classic works of fiction at the same time—each one to a different
ear—for 30 trials. In order to determine which of the 2 stimuli
a subject attended to, they reconstructed both stimuli envelopes
from the recorded EEG. To this end, they trained two different
decoders per trial using a linear regression approach—one to
reconstruct the attended stimulus and the other to reconstruct
the unattended one. This resulted in 60 decoders per subject.
These decoders where then averaged in a leave-on-out cross-
validation scheme. During testing, each decoder would predict
the stimulus with the best reconstruction from the EEG using
the Pearson correlation of the envelopes as measure of quality.
Using subject-specific decoders averaged from 29 training trials,
the prediction of the attended stimulus decoder was correct for
89% of the trials whereas the mean accuracy of the unattended
stimulus decoder was 78.9%. Alternatively, using a grand-average
decoding method that combined the decoders from every other
subject and every other trial, they obtained a mean accuracy of 82
and 75% respectively.

4. EXPERIMENTS

Our initial analyses of the OpenMIIR recordings was largely
exploratory. Hence, the following subsections cover three very
different approaches:

1. ERP-inspired single-trial analysis (subsection 4.1),
2. reconstruction of the audio stimulus envelope from the EEG

(subsection 4.2), and
3. extraction of stimulus-related brain activity from the EEG

recordings (subsection 4.3).

These approaches increase in complexity, ranging from hand-
crafted design to representation learning, i.e., a machine learning
pipeline that also includes learning suitable features from the raw
EEG data.2

The experiments were implemented in Python with the
exception of the Matlab code for the tempo estimation
experiment described in subsubsection 4.3.5. For neural network
training, the framework Theano (Al-Rfou et al., 2016) was used in

2An introduction and overview of representation learning is, for instance, provided
by Bengio et al. (2013).

combination with Blocks and Fuel (vanMerriënboer et al., 2015).
The code to run the experiments and to generate the plots shown
in this paper is made available as open source and linked from the
OpenMIIR website. As the OpenMIIR dataset is public domain,
this assures full reproducibility of the results presented here.

4.1. ERP-Inspired Single-Trial Tempo
Analysis
Our first experiment was inspired by traditional ERP analysis but
also incorporated autocorrelation as a common MIR approach
to tempo estimation (e.g., Ellis, 2007). This experiment has been
described in detail in Sternin et al. (2015). Recordings from 5
participants were used that were available at this point in time.
Additionally to the pre-processing steps described in section 2,
the EEG recordings were down-sampled to 64Hz.

4.1.1. Initial ERP-Analysis
We started with a basic ERP analysis and focused on the trials
recorded for conditions 1–3. Beat annotations were obtain for
all beats within the audio stimuli using the dynamic beat tracker
described in Ellis (2007) and provided by the librosa library.3 To
this end, the beat tracker was initialized with the known tempo
of each stimulus. The quality of the automatic annotations was
verified through sonification.

Given the beat annotations of the stimuli and assuming that
the participants would imagine the stimuli at a similar tempo in
conditions 2 and 3, we computed bar-aligned ERPs using non-
overlapping epochs from 100ms before to 2.4 s after a downbeat
annotation. This length was required to capture slightly more
than a single bar for the slowest stimulus–number 23 with a bar
length of more than 2.3 s. As expected, the resulting averaged
ERPs differed considerably between participants, stimuli, and
conditions. Nevertheless, we often observed a periodicity in the
averaged signal proportional to the bar length. Figure 1 shows
example ERPs for a specific participant and stimulus where this
is clearly visible in all conditions.

In order to analyze this periodicity, we computed the
autocorrelation curves by comparing each signal with itself at a
range of time lags. To this end, we aggregated all 64 EEG channels
into a mean signal. We further chose time lags corresponding to
the bar tempo range of the stimuli. The lower end of 24 BPM
was determined by the choice of the epoch length. Using longer
epochs would allow for extending the tempo range to slower
tempi, but this would be at the expense of fewer epochs available
for averaging.

4.1.2. Limitations and Potential Pitfalls
In general, more distinct peaks in the autocorrelation were
observed in the perception condition. For the two imagination
conditions, peaks were more blurred as can also be seen in
Figure 1. This is most likely caused by the lack of a time
locking mechanism, which allows the imagination tempo to
vary—causing bar onsets to deviate from the stimulus-based
annotations. This hypothesis is also backed by the observation

3https://github.com/bmcfee/librosa
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FIGURE 1 | (Top) Mean and standard deviation over all 64 EEG channels of the bar-aligned ERPs (without epochs overlap) for “Chim Chim Cheree (lyrics)” in

conditions 1–3 for participant P01. Each ERP was averaged over 25 epochs (5 from each trial). (Bottom) Corresponding autocorrelation scores in the relevant tempo

range. Dashed lines indicate downbeats (Top) and the approximate bar tempo of the stimulus plus its lower tempo harmonic (Bottom). Originally published in Sternin

et al. (2015).

that artificially jittering the bar onsets results in a decrease in
autocorrelation.

The computation of the ERPs benefits from a constant
stimulus tempo. The tempo values provided in Table 1 refer
to the initial tempo which is also used by the tempo cue. In
some stimuli, however, the tempo is not exactly constant but
changes slightly over time. In stimulus 22, for instance, the tempo
temporarily drops after the first half of the theme at around 8 s.
Such deviations further impact the quality of bar-aligned ERPs
because of the variable timing within the individual bars.

As a very important detail of the bar-aligned ERP analysis, it
is essential to ensure that the bar-aligned epochs do not overlap
by rejecting some of the epochs. If they overlap, a single data
segment can contribute to multiple epochs at different time
points. This can induce misleading autocorrelation peaks that are
not supported by the raw data.

4.1.3. Analyzing Single Trials
Based on the ERP-based observations, the question was whether
the tempo could similarly be estimated through autocorrelation
from single trials. This posed several challenges. First, there were
too few bar-aligned epochs in a single trial to use ERPs. Second,
neither the tempo of the stimulus nor the beat annotations should
be known a priori in a realistic setting. Therefore, there were
no reference points for extracting bar-aligned epochs. Moreover,
the problem of possible tempo variance in the imagination
conditions needed to be addressed.

Figure 2 illustrates our proposed solution to this problem. A
2.5-seconds sliding window is moved over the mean EEG signal
aggregated over all channels. At each position with a hop size of
5 samples at 64Hz, an autocorrelation curve is computed. The
curves for the individual window segments are stacked into a
two-dimensional matrix with the first dimension corresponding
to the window offset in the trial signal and the second dimension

corresponding to the possible tempo values. Hence, each matrix
value holds the score for a certain tempo at one specific point in
the trial. The scores in the matrix are finally aggregated deriving
an estimated tempo value for the trial. While the mean and
maximum over all matrix rows often produced significant peaks
in the aggregated autocorrelation curve as illustrated in Figure 2,
the following heuristic has led to slightly more stable results:

1. In each row, find the pair of tempo values with the maximal
combined score.

2. Select the median of all selected pairs.
3. From this pair, return the tempo value with the higher mean

value over all rows.

For the evaluation of our approach, we computed the mean
absolute error of the estimated tempo and the actual tempo.
We also considered the tempo harmonic below and above the
correct value, i.e., half or twice the tempo, as a correct result. The
prediction error, averaged across all stimuli, varied considerably
between participants ranging from 7.07, 7.15, and 8.11 in the
three conditions for participant P14 up to 9.81, 10.04, and
12.58 for P12. Furthermore, the results clearly showed a trend
that tempo was easier to predict for some stimuli, such as
“Chim Chim Cheree” (ID 1 and 11) and “Mary had a little
lamb” (ID 4 and 14), than for others. The slowest stimulus, the
“Imperial March” (ID 23) had the highest variation of prediction
accuracy. These initial results eventually encouraged further
research into estimating the stimulus tempo from the EEG using
more sophisticated signal processing techniques. This is further
described in subsubsection 4.3.5.

4.2. Audio Stimulus Envelope
Reconstruction
In our second experiment, we attempted to reconstruct the audio
stimulus envelopes from the EEG signals, i.e., reversing the
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FIGURE 2 | Schema of the proposed tempo estimation technique. All plots refer to the first of the five trials contributing to the imagination ERP of “Chim Chim Cheree

(lyrics)” in Figure 1, middle. Left top: EEG waveform (mean of all 64 channels) for the whole trial with the red box indicating the sliding window of 2.5 s. Left bottom:

Autocorrelation curve for this specific segment of the trial. Middle: Vertically stacked autocorrelation curves for the whole trial with the red horizontal line indicating the

position of the sliding window shown on the left. Right: Aggregated autocorrelation scores (mean and max) for the whole trial. Dashed vertical lines indicate the

stimulus bar tempo. Dotted vertical lines refer to half the bar tempo. Originally published in Sternin et al. (2015).

black-box signal transformations by the brain and the recording
equipment. An approximate reconstruction of the envelopes
would be a very useful feature for further retrieval steps such
as beat tracking, tempo prediction or stimulus identification.
Furthermore, it could also be directly sonified—for instance by
shaping a white-noise base signal with the up-sampled envelope.
This would be helpful for analysis and for interactive scenarios
like brain-computer interfacing where (auditory) feedback is
desirable.

Using the method described by O’Sullivan et al. (2015),
we attempted to reconstruct and classify the audio envelopes
shown in Figure 3. These envelopes were computed by applying
the Hilbert transform to the mono audio signal of the
stimuli, down-sampling to 64Hz and low-pass filtering at
8Hz. The EEG recordings were also down-sampled to 64Hz
matching the envelope sample rate. This rate was chosen to
reduce dimensionality and thus limit the number of regression
parameters.

The linear reconstruction technique used in O’Sullivan et al.
(2015) learns a filter matrix with individual weights for each
channel at a range of time lags based on the cross-correlation
between the EEG channels and the stimulus envelope. This
matrix is then used to convolve the EEG signal to produce the
reconstructed stimulus envelope. The size of the matrix and thus
the number of parameters to be fit depends on the number of
EEG channels and the maximum time lag to be considered.

Directly applying this technique did unfortunately not lead to
satisfying results. For the trial-specific decoders, the correlation
of the reconstruction and the stimulus envelope was only 0.11
on average with a very high variance of 0.52. Results were also
very unstable, i.e., minimally changing the length of the time-lag
window generally resulted in very different decoder weights. This
eventually produced very poor results when decoder matrices
were added together during training, rendering them useless for
classification.

We suspect two main reasons for this outcome: Firstly,
the trials might be too short for the algorithm to produce
stable decoder matrices and secondly, the music envelopes
differ significantly from those for speech. We tried to address

the second point by using envelopes computed from filtered
stimuli versions that emphasized the main voice (using an
“inverse-karaoke” filter as described in Duda et al., 2007) and
artificial “beat envelopes” derived from the beat and downbeat
annotations shown in Figure 3. However, this did not lead to an
improvement.

Limiting the maximum time lag to 375ms and reducing the
number of channels through PCA, we were able to reduce the
number of parameters and the resulting tendency of over-fitting
the filter matrix to the training data. However, the envelope
reconstruction quality remained very poor and the resulting
(leave-one-out) classification accuracy was not statistically
significant. Based on these observations, we concluded that the
tested approach which worked well for speech reconstruction is
not transferable to our music stimuli. We hypothesize that this is
caused by the lack of signal sparsity of the music stimuli.

4.3. Extracting Music-Related Brain Activity
This experiment aimed to extract brain activity that is related
to stimulus perception and imagination using techniques from
the field of deep representation learning. Note that this is
a much broader focus than the attempted stimulus envelope
reconstruction from the previous experiment. Naturally, any
EEG signal component correlated with the stimulus envelope
would be related to stimulus perception or imagination. But there
is potentially much more brain activity that is also related to the
music stimuli but not directly helpful for their reconstruction.

The basic pre-processing steps briefly described in section 2
aimed to improve the general signal quality by removing
common EEG artifacts. However, there is still the problem that
the EEG naturally also records brain activity that is unrelated
to music perception or imagination. These signals can be
considered as noise with respect to the specific focus of interest.
Separating this background noise from the music-related brain
activity is a very challenging task. Figuratively speaking, this
could be compared to a cocktail-party situation where a listener
would like to attend to a specific speaker in a room with
many independently ongoing conversations. As an additional
complication, the listener is not in the same room as the speakers
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FIGURE 3 | Stimulus envelopes (sampled at 64 Hz, low-pass filtered at 8Hz) with markers for beats (dashed lines) and downbeats (solid lines) obtained using the

dynamic beat tracker by Ellis (2007) as part of the librosa library.

but in the next room separated by a thick wall—analogously to
the EEG equipment that can only measure brain activity from the
outside with the skull in between.

This challenge calls for sophisticted signal processing
techniques. One newly emerging option is using so-called
deep artificial neural networks that over the last decade have
become very popular in various application domains such as
computer vision, automatic speech recognition, natural language
processing, and bioinformatics where they produce state-of-
the-art results on various tasks. These networks are able to
learn (hierarchies of increasingly) complex features from raw
data which is referred to as (deep) representation learning. The
learned feature representations can then be used to solvemachine
learning problems such as a classification tasks. We hypothesized
that this approach could also be applied to EEG analysis.

The main problem with applying deep neural networks for
EEG analysis is the limited amount of data for training. If all
perception trials are clipped to match the length of the shortest
stimulus, excluding the cue clicks, the total amount of EEG data
recorded for the perception conditions is 63min from 540 trials.
At the same time, each trial has more than 225,000 dimensions
at the original sampling rate of 512Hz. This is very unlike the
typical scenarios where deep neural networks are successful.4 In
such a setting with potentially many network parameters (due to
the number of input dimensions) and only a small set of training
instances, the neural net is very likely to overfit. I.e., it adapts too
much to the training data which results in a poor generalization
performance.

We addressed this challenge by focusing on small nets
that have few model parameters and by developing a special

4For comparison, a 224-by-224 RGB image in the Imagenet dataset has roughly
150,000 dimensions—about two-thirds of the size of the EEG trials. However,
Imagenet contains millions of labeled images for training.

pre-training technique called similarity-constraint encoding for
representation learning. The series of representation learning
experiments that eventually led to this technique is described in
detail in Stober et al. (2015a). In the following, we summarize the
main idea.

4.3.1. Similarity-Constraint Encoding
The idea of similarity-constraint encoding (SCE) is derived from
auto-encoder pre-training (Bengio et al., 2007). An auto-encoder
is a neural network that is trained to reconstruct its inputs
while its internal representation is limited to make this a non-
trivial task—for instance, through a structural bottleneck or
regularization of weights or activations. Additionally, the inputs
can be corrupted by adding random noise which can result
in more robust features (Vincent et al., 2010). This approach
has been successfully applied for learning compressed feature
representations—usually during an unsupervised pre-training
phase—in many domains such as for learning high-level image
features (Le, 2013), coding speech spectrograms (Deng et al.,
2010) or sentiment analysis (Socher et al., 2011).

EEG data already contain noise from various sources.
Furthermore, only a small portion of the recorded brain activity
is usually relevant in the context of an experiment. Given only
a small dataset, a basic auto-encoder would learn features that
represent the full EEG data including noise and irrelevant brain
activity. This limits the usefulness of the learned features. For
better features, the encoding needs to be more selective. To
this end, side information can be used. Demanding that trials
belonging to the same class5 are encoded similarly facilitates
learning features representing brain activity that is stable
across trials. Features to be used in classification tasks should

5There are several ways to assign the trials to classes based on the stimulus
meta-data such as the stimulus id, the meter, or the presence or absence of lyrics.
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furthermore allow for distinguishing between the respective
classes. This can be achieved by a training objective that also
considers how trials from other classes are encoded.

In the most basic form, the encoded representations of
two trials belonging to the same class are compared with an
encoded trial from a different class. The desired outcome of this
comparison can be expressed as a relative similarity constraint as
introduced in Schultz and Joachims (2003). A relative similarity
constraint (a, b, c) describes a relative comparison of the trials
a, b, and c in the form “a is more similar to b than a is to c.”
Here, a is the reference trial for the comparison. There exists
a vast literature on using such constraints to learn similarity
measures in general and for applications within MIR specifically
(Lübbers and Jarke, 2009; McFee and Lanckriet, 2010; Stober,
2011; Wolff and Weyde, 2014). Based on this formalization,
we define a cost function for learning a feature encoding by
combining all pairs of trials (a, b) from the same class with all
trials c belonging to different classes and demanding that a and
b are more similar. The resulting set of trial triplets is then used
to train a similarity-constraint encoder network as illustrated in
Figure 4.

All trials within a triplet that constitutes a similarity constraint
are processed using the same encoder pipeline. This results
in three internal feature representations. Based on these, the
reference trial is compared with the paired trial and the
trial from the other class resulting in two similarity scores.
We use the dot product as similarity measure because this
matches the way patterns are compared in a neural network
classifier and it is also suitable to compare time series. More
complex approaches are possible as well, as long as they
allow training through backpropagation. The output layer
of the similarity constraint encoder finally predicts the trial
with the highest similarity score without further applying
any additional affine transformations. The whole network
can be trained like a common binary classifier, minimizing
the error of predicting the wrong trial as belonging to
the same class as the reference. The only trainable part is
the shared encoder pipeline. This pipeline can be arbitrarily
complex—e.g., also include recurrent connections within the
pipeline.

After pre-training, the output of the encoder pipeline can be
used as feature representation to train a classifier for identifying
the actual classes (in contrast to the artificially constructed binary
classification problem for pre-training). Alternatively, as we will
show later, the features could also be used to train a classifier for
different classes than the ones originally used to construct the
triplets during pre-training.

4.3.2. Encoder Pipeline and Classifiers
For all SCE experiments described in the following, the encoder
pipeline consisted of a single convolutional layer with a single
filter and without a bias term. This filter aggregated the 64 raw
EEG channels into a single waveform processing one sample
(over all channels) at a time. I.e. it had the shape 64× 1 (channels
× samples) and thus a very small number of parameters. The
hyperbolic tangent (tanh) was used as activation function because
its output range matched the value range of the network inputs

([−1,1]). No pooling was applied. The number of network
and learning hyper parameters was kept as low as possible to
minimize their impact.

A linear support vector machine classifier (SVC) was trained
using Liblinear (Fan et al., 2008) on

• baseline (1): the raw EEG data,
• baseline (2): the averaged EEG data (mean over all channels as

a naïve filter), and
• the output of the pre-trained encoder pipeline.

With this setting, an increase in the stimulus classification
accuracy over the baselines can be attributed to a reduction of the
signal-to-noise ratio by the encoder pipeline. This could then be
interpreted as evidence that the encoder has successfully picked
up music-related brain activity.

As additional classifier, a simple neural network (NN) was
trained on the encoder pipeline output. This network consisted
of a single fully-connected layer with a Softmax non-linearity. No
bias term was used. This resulted in one temporal pattern learned
for each of the classes, which could then be analyzed. For further
comparison, we also trained and end-to-end neural network that
had the same structure as the encoder pipeline combined with the
neural network classifier but was initialized randomly instead of
pre-training. All tested methods are listed in Table 2.

4.3.3. Training and Evaluation Scheme
A nested cross-validation scheme as shown in Figure 5 was
chosen that allowed for using each one of the 540 trials for testing
once. The outer 9-fold cross-validation was performed across
subjects, training on 8 and testing on the 9th subject. The inner
5-fold cross-validation was used for model selection based on 1
of the 5 trial blocks. Training was divided into two phases.

In the first phase, the encoder pipeline was trained using
the proposed similarity-constraint encoding technique with the
hinge loss as cost function. Stochastic gradient descent (SGD)
with a batch size of 1,000 and the Adam (Kingma and Ba, 2014)
step rule was used. Training was stopped after 10 epochs and
the model with the lowest binary classification error on the
validation triplets was selected. Triplets were constructed such
that all trials within a triplet belonged to the same subject as
the simple encoder pipeline likely could not easily compensate
inter-subject differences. The validation triplets consisted of a
reference trial from the validation trials and the other two trials
drawn from the combined training and validation set of the inner
cross-validation. This way, a reasonable number of validation
triplets could be generated without sacrificing too many trials
for validation.6 The final encoder filter weights were computed
as mean of the 5-fold models. The output of this filter was used to
compute the features for the second training phase.

In the second phase, the two classifiers were trained. For
the SVC, the optimal value for the parameter C that controls
the trade-off between the model complexity and the proportion
of non-separable training instance was determined through a
grid search during the inner cross-validation. For the neural

6At least 2 of the 5 trials per class and subject are required to construct within-
subject triplets.
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FIGURE 4 | Processing scheme of a similarity-constraint encoder. Originally published in Stober (2017).

TABLE 2 | Accuracies for the three classification tasks: stimulus (12 classes), group (3 classes) and meter (2 classes).

Classifier Features Classification Accuracy & Significance

Stimulus (12)

(%)

Group (3)

(%)

Meter (2)

(%)

Chance of correct classification for a single trial 8.33 33.33 50.00

Chance accuracy at p = 0.001 for 560 trials w.r.t. cumulative binomial distribution 12.22 39.63 56.67

SVC Raw EEG 18.52 *** 40.37 ** 62.04 **

SVC Raw EEG channel mean 12.41 **** 38.70 *** 58.52 ****

End-to-end NN Raw EEG 18.15 *** 37.41 **** 60.56 ***

Dummy Output of stimulus classifier 38.89 *** 59.63 ***

SVC (reference) Stimulus SCE features 27.59 48.89 69.44

NN Stimulus SCE features 27.22 48.89 67.78

SVC Group SCE features 35.37 ****

NN Group SCE features 34.63 ****

SVC Meter SCE features 60.19 ***

NN Meter SCE features 58.88 ****

Chance accuracy values are provided for comparison. Significance levels are indicated against the best performing approach (highlighted in red) using McNemar’s tests (n = 540,

mid-p). **p < 0.01, ***p < 0.001, ****p < 0.0001.

network classifier, 5 fold models were trained for 100 epochs
using SGD with batch size 120, the Adam step rule, and the hinge
loss as cost function. The best models were selected based on
the classification performance on the validation trials and then
averaged to obtain the final classifier.

4.3.4. Stimulus Identification
As first classification task, we investigated stimulus identification.
There are 12 perfectly balanced classes–one for each stimulus.
Figure 6 shows the filters learned in the pre-training phase of
each outer cross-validation fold as well as the standard deviation
and ranges for the weights within the 5 inner cross-validation
folds. The filter weights only differed in small details across folds.
However, sometimes the polarity of the weights had flipped. To
avoid cancellation effects during aggregation, the polarity was
normalized based on the sign of the weight for channel T7 (next
to the left ear), which always had a high absolute value.

Themagnitude of the channel weights in the pre-trained filters
(which are further aggregated in Figure 7) indicates how much
the respective EEG channels are contributing to the aggregated
signal. The electrodes within the dark red areas that appear
bilaterally towards the back of the head lie directly over the
auditory cortex. These electrodes may be picking up on brain
activation from the auditory cortex that is modulated by the
perception of the stimuli. The electrodes within the blue areas
that appear more centrally may be picking up on the cognitive
processes that occur as a result of the brain processing the music
at a higher level.

However, as pointed out by Haufe et al. (2014), model
parameters for classification or decoding should not be directly
interpreted in terms of the brain activity as they depend on all
noise components in the data, too. Instead, a forward model
should be derived that explains how the measured signals were
generated from the neural sources. We applied the proposed
regression approach and trained a deconvolutional filter that
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FIGURE 5 | Nested cross-validation scheme with pre-training and supervised training phase. Triplet numbers for SCE pre-training refer to the 12-class stimulus

identification task.

FIGURE 6 | Topographic visualization of the learned filter weights aggregated over the 5 inner cross-validation folds within each outer cross-validation fold. (Top)

mean. (Middle) standard deviation. (Bottom) range (maximum–minimum). Columns correspond to outer cross-validation folds with the id of the test subject as

column label. The mean filters in the top row were used to compute the features for the supervised training phase. All plots use the same color map and range.

FIGURE 7 | Visualization of the average neural network parameters (from the 9 outer cross-validation folds) for stimulus classification. Layer 1: mean of convolutional

layers from the pre-trained encoders (SCE), i.e., mean over the top row in Figure 6. The filter weights only differed in small details across folds. Layer 2: mean of

classifier layers trained in the supervised phase.
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FIGURE 8 | Visualization of the forward model (deconvolutional filter) trained to

reconstruct the originally recorded EEG signals from the encoder output over

all perception trials.

reconstructs the original EEG signal from the encoder output by
minimizing the mean squared error between the reconstructed
and the actual signal over all trials. For each trial, we used
the encoder from the respective outer cross-validation fold. The
resulting deconvolutional filter is shown in Figure 8.

Table 2 (column “stimulus”) lists the classification accuracy
for the tested approaches. Remarkably, all values were
significantly above chance. Even for baseline 2, the value of
12.41% was significant at p= 0.001. This significance value was
determined by using the cumulative binomial distribution to
estimate the likelihood of observing a given classification rate by
chance. To evaluate whether the differences in the classification
accuracies produced by the different methods are statistically
significant, McNemar’s tests using the “mid-p” variant suggested
in Fagerland et al. (2013) were applied. The obtained significance
levels are indicated in Table 2 for a comparison with the best
performing approach—using SVC in combination with the
SCE features learned for stimulus identification. The very
significant improvement of the classification accuracy over the
two baselines and the neural network trained end-to-end is a
strong indicator for a reduction of the signal-to-noise ratio.
Notably, the pre-trained filter is very superior to the naïve filter
of baseline 2 that was actually harmful judging from the drop in
accuracy.

The confusion matrices for the classifiers trained on the
encoder output are shown in Figure 9. Apart from the main
diagonal, two parallel diagonals can be seen that indicate
confusion between stimuli 1–4 and their corresponding stimuli
11–14, which are tempo-matched recordings of songs 1–
4 without lyrics. Analyzing the averaged neural network
parameters visualized in Figure 7 shows similar temporal
patterns for these stimuli pairs.7 A detailed analysis of the

7The average model is only for illustration and analysis. For testing, the respective
outer cross-validation fold model was used for each trial.

network layer activations as shown in Figure 10 reveals
noticeable peaks in the encoder output and matching weights
with high magnitude in the classifier layer that often coincide
with downbeats–i.e., the first beat within each measure, usually
with special musical emphasis. These peaks are not visible
in the channel-averaged EEG (baseline 2). Thus, it can be
concluded that the encoder filter has successfully extracted
a component from the EEG signal that contains musically
meaningful information.

Both, the systematic confusion of stimuli 1–4 with their
corresponding tempo-matched versions without lyrics (stimuli
11–14) as well as the temporal patterns learned by the neural
network classifier are strong indicators against a possible
“horse” classifier. Sturm (2014) defines a “horse” as “a system
appearing capable of a remarkable human feat [...] but actually
working by using irrelevant characteristics (confounds).” In
this specific context, a “horse” might base the classification on
signal components unrelated to music cognition. An additional
behavioral experiment where 8 subjects judged the similarity of
each stimulus pair confirmed the parallel diagonals observed in
the confusionmatrices. Measuring the time required to recognize
the individual music stimuli yielded average values of 1–3 s that
did not correlate with the third-downbeat peaks in the temporal
patterns of the classifier. This suggests that the peak is not related
to brain activity caused by stimulus recognition but rather by
musical features of the stimuli.

4.3.5. Tempo Estimation Revisited
In a follow-up experiment published in Stober et al. (2016) that
also picks up the thread from our tempo analysis experiment
described in subsection 4.1, we used the stimulus SCE features
as input to a sophisticated tempo estimation technique provided
by the Tempogram Toolbox.8 This technique has been originally
developed for analyzing audio recordings. To compute a
tempogram, a given music audio signal is first transformed into a
novelty curve that captures note onset information—for instance,
as the positive part of a spectral flux as described in Grosche
and Müller (2011a). Through a short-time Fourier analysis of the
novelty curve, the audio tempogram is derived that reveals how
dominant different tempi are at a given time point in the audio
signal. Aggregating a tempo histogram along the time axis yields
a tempo histogram where peaks indicate the predominant tempo
within the piece.

We applied the same processing pipeline for the perception
EEG data of participants P09 to P14 by directly interpreting the
EEG signal filtered by the SCE encoder pipeline as novelty curve.
We were able to observe peaks in the derived tempo histograms
that sometimes highly correlated with the stimulus tempo.
Averaging tempogram histograms over trials and participants
overall stabilized the tempo estimation. Remarkably, results
seemed to strongly depend on the music stimuli. For the first
8 stimuli (1–4 and 11–14), i.e., the songs recorded with and

8The Tempogram Toolbox contains MATLAB implementations for extracting
various types of tempo and pulse related audio representations (Grosche and
Müller, 2011b) A free implementation can be obtained at https://www.audiolabs-
erlangen.de/resources/MIR/tempogramtoolbox.
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FIGURE 9 | 12-class confusion matrices for the music stimuli (listed on the left) for the classifiers trained on the stimulus SCE output. Middle: SVC. Right: Neural

network classifier (NN). Results were aggregated from the 9 outer cross-validation folds (n = 540). Originally published in Stober (2017).

FIGURE 10 | Detailed analysis of all trials belonging to stimulus 1. Vertical marker lines indicate beats (dotted) and downbeats (dashed). The horizontal axis in rows

1–5 corresponds with the time in seconds or samples (row 5). (Top) Audio stimulus (green) and envelope (cyan). (2nd row) Raw EEG averaged over all 64 channels

per trial (gray) and overall mean (red). This is identical to the SVC input for baseline 2. (3rd row) Encoder output (activation) for the individual trials (gray) and overall

mean (red). (4th row) Patterns learned by the neural network classifier for this class in the 9 folds of the outer cross-validation (gray) and overall mean (blue). (5th row)

Alternative visualization (as in Figure 7) of the averaged pattern from row 4. (Bottom) Softmax output of the neural network classifier for the individual trials (gray) and

overall mean (red) with class labels on the horizontal axis. All outputs were generated using the respective test trials for each fold model in the outer cross-validation.

without lyrics, the tempo extraction seemed to work better
than for the last 4 (21–24), i.e., the instrumental pieces.
Exploring this effect was beyond the scope of this small
study. To uncover and properly understand the underlying

factors, a large-scale music perception experiment using stimuli
with systematically adapted tempi would be needed. Possible
reasons might be the complexity of the music stimuli, the
presence of lyrics, the participants, or the applied methodology
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FIGURE 11 | Visualization of the average neural network parameters (from the 9 outer cross-validation folds) for group classification (stimuli 1–4: songs recorded with

lyrics, stimuli 11–14: songs recorded without lyrics, stimuli 21–24: instrumental pieces). Layer 1: mean of convolutional layers from the pre-trained encoders (SCE)

using the stimuli labels. Layer 2: mean of classifier layers trained in the supervised phase.

FIGURE 12 | Visualization of the average neural network parameters (from the 9 outer cross-validation folds) for meter classification. Layer 1: mean of convolutional

layers from the pre-trained encoders (SCE) using the stimuli labels. Layer 2: mean of classifier layers trained in the supervised phase.

and techniques. Investigating these issues could be a starting
point for interdisciplinary research between MIR and music
cognition.

4.3.6. Group Classification
As described in section 2 and shown in Table 1, the 12 music
stimuli can be grouped into 3 groups of 4 stimuli each: songs
recorded with lyrics (stimuli 1–4), songs recorded without lyrics
(stimuli 11–14), and instrumental pieces (stimuli 21–24). Using
these three perfectly balanced classes, 184,320 training triplets
and 72,960 validation triplets were available for each inner cross-
validation fold during SCE pre-training. Here, the SCE pre-
training did not result in a suitable feature representation as
indicated by the inferior classification accuracy compared to
the baselines shown in Table 2 (column “groups”). As a likely
reason, the SCE learning problem may me ill-posed, i.e., the
encoder pipeline may not have been sufficiently complex to learn
a transformation of the raw EEG that makes trials within groups
more similar to each other than to trials from the other groups.

As an alternative, we trained the group classifiers on the
feature representation from the stimulus classification task. This
resulted in a substantial increase in classification accuracy of
roughly 10%. We further added a “dummy” baseline classifier
that just derived the group class labels from the predicted
stimulus labels. The difference in accuracy indicates that the
stimulus SCE features seem to capture some relevant information
for the group classification task beyond what is necessary to
recognize the stimuli. Similarly to Figures 7 and 9 for the
stimulus classification task, Figure 11 shows the parameters of
the neural network classifier averaged over the 9 outer cross-
validation folds as well as the confusion matrices for the two
group classifiers trained on the stimulus SCE features. The
temporal patterns learned by the classifier are currently subject
of further analysis.

4.3.7. Meter Classification
There are two perfectly balanced classes with respect to meter
as half of the stimuli are in 3/4 meter and the others are in
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1. Select features of interest and determine their respective values for the stimuli

a. based on MIR feature extraction tools
b. defined by experts
c. determined in behavioral experiments

2. Compute a similarity matrix from pairwise stimulus similarities
3. Derive similarity constraints for training
4. Define an encoder pipeline based on hypotheses about the cognitive processes of interest. This can include:

a. applying pre-processing techniques like transforming the signal into a time-frequency representation or
computing signal components using ICA

b. focusing on specific data such as selecting specific channels, signal components or frequency bands
c. determining the encoder hyper parameters such as the number and kind of layers for artificial neural

networks

5. Train the retrieval model (such as the encoder combined with a classifier)
6. Analyze the trained model and its performance including

a. error and misclassification patterns (like the confusion matrices in Figure 9)
b. emerging encoder parameters (like the filters visualized in Figure 7) as well as corresponding forward

models (such as Figure 8)
c. patterns in encoder output (as shown in Figure 10)

7. Iterate with revised features (step 1) or hypotheses about the cognitive processes (step 4)

FIGURE 13 | Outline of the proposed MIR-driven research approach using similarity-constraint encoding as a specific example.

4/4 meter. With these class labels, 211,968 training triplets and
83,520 validation triplets are available for each inner cross-
validation fold during SCE pre-training. As for the group
classification, the resulting feature representation is not helpful
for this classification task. Instead, using the stimulus SCE
features again results in the best performance that is roughly 9%
higher. Figure 12 shows the parameters of the neural network
classifier averaged over the 9 outer cross-validation folds as well
as the confusion matrices for the two group classifiers trained on
the stimulus SCE features.

The inferior performance of the meter SCE features
may again be attributed to complexity limitations of the
simple convolutional encoder pipeline. We are currently
investigating more complex encoders that also incorporate
recurrent components to capture temporal patterns within the
encoder already.

4.3.8. Classifying EEG from the Imagination

Conditions
All SCE-based experiments described above focused on
perception data. Applying the same pre-training technique to
the data from the imagination conditions has so far not led to
significant classification results or to the discovery of meaningful
or interesting patterns. Also, using the encoder trained on the
perception data to filter the imagination trials before training
the classifier was not successful. As possible reason for this, we
suspect—at least for the current encoder design—that timing
and synchronization in the imagination trials are insufficiently
accurate. This makes it hard to learn an encoder that produced
similar temporal patterns or—given a successfully pre-trained
encoder—to learn temporal patterns for classification that

generalize well. Different encoder designs that can compensate
temporal variance may lead to better results. This needs to be
further investigated. However, focusing on the perception data
for now in order to improve the analysis methods appears to be
more promising.

5. DISCUSSION

5.1. Proposal of an MIR-Driven Research
Approach
Based on the findings from our representation learning
experiments described in subsection 4.3, we can derive the
following general MIR-driven approach to analyzing music
perception and imagination data as outlined in Figure 13. We
start by choosing a specific music feature—that necessarily has
to be present in the respective music stimuli—and attempt
to retrieve it from the recorded brain signals. Representation
learning techniques like similarity-constraint encoding allow for
finding signal filters that extract relevant components from the
recorded brain signals given that we have chosen a suitable
encoder pipeline. This choice should be hypothesis-driven
and informed by findings from cognitive neuroscience. If the
trained encoder pipeline indeed improves the signal-to-noise
ratio and consequently the retrieval performance, this can be
seen as supporting evidence for the hypothesis that guided the
encoder design. Analyzing the emerging network parameters and
activation patterns might further allow for learning more about
the underlying cognitive processes. Failure could be attributed
to poor encoder design choices and question the underlying
hypothesis, or it could be caused by limitations of the dataset.
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(For instance, there might be a bias within the dataset caused by
the choice of the stimuli or the participants.) The impact of the
latter should naturally be minimized through the study design.

5.2. Interpretation of Temporal Classifier
and Activation Patterns
The neural networks trained so far seem still simple enough to
allow for interpretation of the learned parameters by domain
experts and facilitate findings about the cognitive processes. Most
remarkably, the temporal patterns learned by the neural network
classifier for the stimulus identification task show prominent
signal peaks at the third downbeat (i.e., the beginning of the third
bar) for almost all stimuli. They can be clearly recognized in
the visualization of the averaged model parameters in Figure 7.
There are also noticeable matching peaks in the encoder filter
activation as shown in Figure 10 for one of the stimuli. This raises
the question which cognitive process could explain these patterns
and calls for further investigation by domain experts from music
cognition.

5.3. Lessons Learned from the OpenMIIR
Study Design
In the way it has been used so far, similarity-constraint
encoding imposes a strong regularization assumption that
requires a very tight synchronization of the trials to identify
good filter parameters. This is problematic if synchronization
between the stimuli and the recorded EEG signals is poor like
in the imagination conditions. Different encoder designs–for
instance including temporal pooling operations–might be able
to compensate the lack of tight synchronizations. But generally,
it seems very desirable for representation learning to ensure
synchronization by experimental design in the first place. In the
design of our study to collect the first OpenMIIR dataset, we
decided against having a metronome click for synchronization
during imagination trials in order to avoid artifacts caused
by the audio stimulation. It seems now like the downside of
having such artifacts is outweighed by the possible benefits of
tightly controlling the imagination tempo. Of course, the added
metronome clicks in the background would have to be exactly
identical in tempo, loudness etc. for all stimuli. Otherwise, they
would easily allow for distinguishing the stimuli by a “horse”
classifier.9 Hence, all stimuli would need to be in the same tempo
(or multiples) as the click.

Another issue is the variable length of the stimuli caused
by using full musical phrases in the original study. We ended
up cutting all trials to the length of the shortest one for our
representation learning approach. Zero-padding the shorter trials
instead would have easily given away their identity leading to
useless feature representations. To avoid recording likely unused
EEG data, it seems more desirable to have equal-length trials–
even as this means to stop in the middle of a musical phrase.
Having tempo-synced stimuli makes finding good cut points
already easier.

Furthermore, switching to imagination trials with a
metronome click would also rule out conditions 3 and 4 as

9Cf. Section 4.3.4 for a discussion of the “horse” phenomenon.

listed in section 2. With half as many conditions, already twice
as many trials could be recorded in the same time. Additionally
reducing the number of stimuli and the stimuli length would
allow for further increasing the number of trials per class and
condition. This could allow us to collect enough data for learning
within-subject feature representations and retrieval models.
Based on these considerations, we are currently designing a
follow-up OpenMIIR study to collect another EEG dataset.

6. CONCLUSIONS AND OUTLOOK

Less than four years have passed since the subject of MIIR
was first discussed during the “Unconference” (Anglade et al.,
2013) at the International Society of Music Information Retrieval
Conference (ISMIR) in 2012. ISMIR 2016 already featured a
well-attended tutorial on the “Introduction to EEG Decoding for
Music Information Retrieval Research” and for the first time, the
annual seminar onCognitively basedMusic Informatics Research
(CogMIR) was co-located as a satellite event which drew the
attention of many main-conference attendees. This is evidence
for the increasing interest within theMIR community to combine
MIR and music cognition research.

The goal of the OpenMIIR initiative is to foster
interdisciplinary exchange and collaborations between these
two fields. To this end, we introduced the OpenMIIR dataset
in 2015—an public-domain EEG dataset intended to enable
MIR researchers to venture into the domain of music imagery
and develop novel methods without the need for special EEG
equipment. This paper summarized our findings from a first
series of largely exploratory experiments addressing several MIIR
tasks with this dataset. For some tasks—especially when working
with data from the imagination conditions—our approaches
failed or did not perform as expected. We have hypothesized
why this might be the case and derived ideas for a follow-up EEG
study to collect a second dataset.

A first success of our efforts is our proposed similarity-
constraint encoding approach for extracting music-related
brain activity of EEG recordings. Using this technique, we
were able to train simple spatial filters that significantly
improve the signal-to-noise ratio for the perception data in
several classification tasks. There is a lot of potential for
improving the classification accuracy by using more complex
encoders that possibly comprise multiple layers of neurons
and recurrent connections. Investigating such options is one
major direction of our ongoing research efforts. We have also
obtained encouraging first results by applying MIR techniques
from the Tempogram Toolbox for estimating the stimulus
tempo from the perception EEG recordings. This experiment
nicely showcases how well-established MIR techniques for
music audio analysis can also be applied to music cognition
data.

We hope that our work described here inspires other
MIR researchers to try their methods in this emerging
interdisciplinary field and encourages music cognition
researchers to share their datasets and engage in an exchange
with the MIR community. Everybody interested is invited to
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contribute and collaborate within the OpenMIIR initiative.
Further information about the OpenMIIR initiative can be found
at https://openmiir.github.io where apart from the OpenMIIR
dataset itself, the code to run the described experiments is shared
and constantly being updated.
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