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Abstract

Background: An Escherichia coli O104:H4 outbreak in Germany in summer 2011 caused 53 deaths, over 4000 individual
infections across Europe, and considerable economic, social and political impact. This outbreak was the first in a position to
exploit rapid, benchtop high-throughput sequencing (HTS) technologies and crowdsourced data analysis early in its
investigation, establishing a new paradigm for rapid response to disease threats. We describe a novel strategy for design of
diagnostic PCR primers that exploited this rapid draft bacterial genome sequencing to distinguish between E. coli O104:H4
outbreak isolates and other pathogenic E. coli isolates, including the historical hæmolytic uræmic syndrome (HUSEC) E. coli
HUSEC041 O104:H4 strain, which possesses the same serotype as the outbreak isolates.

Methodology/Principal Findings: Primers were designed using a novel alignment-free strategy against eleven draft whole
genome assemblies of E. coli O104:H4 German outbreak isolates from the E. coli O104:H4 Genome Analysis Crowd-Sourcing
Consortium website, and a negative sequence set containing 69 E. coli chromosome and plasmid sequences from public
databases. Validation in vitro against 21 ‘positive’ E. coli O104:H4 outbreak and 32 ‘negative’ non-outbreak EHEC isolates
indicated that individual primer sets exhibited 100% sensitivity for outbreak isolates, with false positive rates of between 9%
and 22%. A minimal combination of two primers discriminated between outbreak and non-outbreak E. coli isolates with
100% sensitivity and 100% specificity.

Conclusions/Significance: Draft genomes of isolates of disease outbreak bacteria enable high throughput primer design
and enhanced diagnostic performance in comparison to traditional molecular assays. Future outbreak investigations will be
able to harness HTS rapidly to generate draft genome sequences and diagnostic primer sets, greatly facilitating
epidemiology and clinical diagnostics. We expect that high throughput primer design strategies will enable faster, more
precise responses to future disease outbreaks of bacterial origin, and help to mitigate their societal impact.
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Introduction

The German O104:H4 outbreak of Summer 2011 was notable

for several reasons. It represented in many ways a ‘worst-case’

scenario of an emerging pathogen with novel epidemiology and

pathological characteristics, and is representative of the increasing

burden of food-borne disease from contaminated fresh produce

[1]. A number of outbreak isolates were characterised very soon

after the outbreak by high-throughput sequencing technologies,

and several draft genomes were placed in a public repository as

part of a landmark open-source analysis [2–4]. The early

availability of reference and isolate genome sequences greatly

facilitated the identification of distinguishing sequence differences

of outbreak isolates and elucidation of its evolutionary history

[2,5]. However, despite the intensive and timely application of this

technology, and the contributions of many labs to this effort,

practical difficulties in tracking the source of the outbreak resulted

in significant social and political impact across several continents,

highlighting a critical need for rapid generation of accurate

diagnostics that can be used in the field, in public health outbreaks.

The ability of diagnostic techniques such as real-time quanti-

tative PCR (qPCR) to deliver sensitive and quantifiable results is

dependent on the availability of primer sets that distinguish a

target organism or organisms from non-target organisms.

Typically, design of discriminatory primer sets is rationally guided

in the sense that primers are chosen to amplify genes or other

defined sequences demonstrated to be common to target

organisms but divergent, or absent, in non-target organisms

[6,7]. Frequently used sequences include intergenic transcribed

spacer regions, ribosomal DNA, ‘housekeeping’ genes and
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virulence genes, e.g. Shiga-like toxins for E. coli [8–11]. Several

high-throughput variants of this approach to diagnostic primer

design have been described, and these may be characterised as the

identification of potentially discriminatory sequences, followed by

primer design against those sequences [12–17]. Here we

demonstrate an alternative, alignment-free strategy for primer

design that exploits incomplete and unordered draft genome

sequences to identify candidate primer sets that discriminate

between arbitrary subgroups of sequenced bacteria, without the

need to pre-screen for discriminatory sequence prior to primer

design. This approach can be characterised as the bulk design of

primers to all input genome sequences, followed by classification of

the discriminatory ability and specificity of those primers to

predefined groups of input sequences. The outputs of the strategy

are the sets of primers that are specific to each predefined group of

sequences. The alignment-free strategy avoids limitations resulting

from the need to identify a conserved signature of significant

length and common to all targets, prior to primer design, and

enables the simultaneous design of primers to discriminate

between several (potentially overlapping) groupings of sequences.

The primers designed using this strategy are intended to be

highly discriminatory, and to separate, where possible, closely

related strains or isolates. Traditionally, methods used in a clinical

diagnostic setting first identify bacteria to species level using

microbiology techniques (typically selective agar and biochemical

tests), followed by discrimination to the serotype level (e.g. by

serotyping agglutination tests). For epidemiological analysis,

isolates will typically be compared in more detail using techniques

that exploit changes at the DNA level, most usually of

‘housekeeping’ genes. Such techniques would include multi-locus

sequence typing (MLST) and multi-locus enzyme electrophoresis

(MLEE) [18,19] although, in general, these methods do not

provide a sufficient level of discrimination to distinguish closely

related isolates. Instead, techniques based on variable regions of

DNA, such as pulsed field electrophoresis (PFGE), random

amplified polymorphic DNA (RAPD) or multi-locus variable-

number tandem-repeat (VNTR) analysis are typically used

[20,21]. Over and above these typing techniques, pathogenicity

factors are also frequently included in the identification, e.g. the

Shiga toxin type for VTEC [22].

We used our design strategy to generate several primer sets that

discriminate in silico between outbreak isolates of E. coli O104:H4

and other E. coli isolates, including the historical and serotypically

identical hæmolytic uræmic syndrome (HUSEC) E. coli HU-

SEC041 O104:H4 strain. We validated these potentially discrim-

inatory primer sets against a bank of 21 ‘positive’ E. coli O104:H4

outbreak and 32 ‘negative’ non-outbreak EHEC isolates in vitro.

Our results showed that individual primers exhibited 100%

sensitivity and 82–94% specificity for outbreak isolates, with false

positive rates of between 9% and 22% for non-outbreak isolates.

However, a minimal combination of two primers was able to

discriminate between outbreak and non-outbreak E. coli isolates

with 100% sensitivity and 100% specificity.

Materials and Methods

Genome sequences
Eleven draft assemblies of nine E. coli isolates sampled from the

2011 German O104:H4 outbreak were downloaded from the E.

coli O104:H4 Genome Analysis Crowdsourcing site (https://

github.com/ehec-outbreak-crowdsourced/BGI-data-analysis/wiki;

see Supplementary Methods S1), including two assemblies for each

of the TY2482 and LB226692 isolates [2,4]. A single pseudochro-

mosome sequence was compiled where necessary for each draft

sequence by concatenating contigs (in arbitrary ordering and

orientation) using a spacer sequence [23]. These sequences

constituted the ‘positive’ sequence set for primer set generation.

A set of 31 completely sequenced E. coli and E. fergusonii

genomes were downloaded from GenBank (ftp://ftp.ncbi.nlm.nih.

gov/genomes/Bacteria/) for use as the ‘reference’ or ‘negative’

sequence set during primer set generation. Accession numbers for

all sequences are given in Supplementary Methods S1. Addition-

ally, all refseq_genomic database sequences beneath the Escherichia

taxonomic level (TaxID: 561) at the NCBI on 6/7/2011 were used

as the online screening database.

Primer prediction
Diagnostic primers were designed to the genome sequences

indicated above using a computational pipeline that implements

the design strategy outlined schematically in Figures 1 and 2. This

strategy can be implemented in several ways, using a choice of

broadly equivalent software tools. Our specific implementation is

described in detail in Supplementary Methods S1, and in

Supplementary Figure S1. The Python scripts and configuration

file used for this study are available at https://github.com/

widdowquinn/find_differential_primers.

Our pipeline takes as input a set of whole or draft genome

sequences. Each input sequence is assigned one or more labels.

These labels (groups I-V in Figure 1) denote membership of a

class, and may be based on any criterion or grouping for which

one wishes to generate a diagnostic set of primers. An input

genome sequence may be assigned multiple labels, indicating

different groups to which one might wish to design diagnostic

primers. This permits members of any class to be further

subclassified, for example as a nested hierarchy to represent

taxonomic assignments in which individual sequences may be

labelled with both the name of the genus and the species (and

pathovar, biovar or other subclass; Figure 1). This enables

simultaneous design of primers that distinguish between multiple

potentially overlapping groups of sequences, such as sets of primers

that distinguish between bacterial genera, and (distinct) sets of

primers that distinguish between species within a single genus.

A large number (typically 1000 or more, for a bacterial

chromosome) of plausible primer sequence sets, compliant with

thermodynamic or structural parameters specified when running

the pipeline, such as melting temperature (Tm) or 39 GC content, is

designed to each input genome sequence. These primer sets are

expected, by definition, to amplify a region of the genome to which

they were designed. The predicted primer sets may then be filtered

to exclude those that lie wholly or partially outwith gene coding

regions, so to focus on genomic regions that are more likely to be

evolutionarily stable. The surviving primer sets are tested in silico

for their ability to amplify each of the other input genome

sequences. Primer sets are retained as being potentially diagnostic

of a class of sequences only if they are predicted in silico to amplify

a similarly-sized amplicon product from all genomes from the

input set which share that label, but not from those genomes that

do not possess the label. These primers may then be screened

against a larger set of sequences that do not belong to the

predicted class, and discarded if they exhibit significant sequence

similarity. The primer sets that survive this screen are the output of

the pipeline, and are considered to be potentially diagnostic of

members of the class, pending experimental validation.

For this study, our ‘positive’ sequence set contained eleven draft

assemblies of nine E. coli O104:H4 German outbreak isolates

downloaded from the E. coli O104:H4 Genome Analysis Crowd-

Sourcing Consortium website [2,4] labelled as ‘outbreak

O104:H4’, and the ‘negative’ genome set comprised 69 E. coli
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chromosome and plasmid sequences downloaded from the public

databases at NCBI [24,25], labelled as ‘not outbreak O104:H4’.

Contigs from the draft bacterial genomes assembled by HTS were

combined in arbitrary order into a single pseudochromosome

sequence using a standard spacer sequence [23].

One thousand thermodynamically plausible primers were

predicted across the whole genome or pseudochromosome for all

members of the positive ‘outbreak O104:H4’ sequence set using

ePrimer3 [26,27]. To save time, primers were not designed to the

‘negative’ genome set. To enhance the expected evolutionary

stability of primer sets, predicted primers that did not amplify

within predicted coding sequences (CDS) on a chromosome were

discarded. CDS prediction was carried out using the Prodigal [28]

genecaller where required, otherwise existing CDS annotations

from public annotations were used. The primer sets located within

predicted CDS were tested in silico for their ability to produce

amplicons of a desired size range from all members of the positive

and negative sequence sets using PrimerSearch, to identify

potential cross-amplification [27]. We retained only primer sets

that amplified sequences of approximately 100 bp length from all

members of the ‘outbreak O104:H4’ set, but did not amplify

members of the ‘negative’ sequence set. The surviving discrimi-

natory primer pairs and their amplified sequences were filtered

again using BLAST [29] to exclude those primers that may not be

specific to the targets on the basis of sequence similarity to the set

of E. coli sequences contained in the NCBI RefSeq database [25].

On a desktop machine (8-core Mac Pro, 32GB RAM, OSX 10.6)

the entire pipeline took approximately 90 hours, of which all but

two hours were spent on the PrimerSearch step for detection of

cross-amplification.

Primer evaluation
The optimum annealing temperature for the complete primer

set was first determined to be 58uC, using the sequenced E. coli

isolate LB226692 as a positive control between 54uC and 58uC.

Group1 (outbreak) and group 2 (non-outbreak) bacterial isolates

were screened with each primer set under the determined

optimum conditions. PCR reactions of 25 ml contained 500 nM

of each primer pair, 800 mM dNTPs, 16 buffer solution, 16
enhancer solution, 2 mM MgCl2, 0.5 units/mL peqGOLD Taq

polymerase (peqlab Gold PCR kit, peqlab ltd., Germany) and 1 ml

DNA (,100 pg). Standard cycling conditions were used: one cycle

of 94uC for 5 minutes; 30 cycles of 94uC for 30 seconds, 58uC for

1 minute, 72uC for 1 minute; one cycle of 72uC for five minutes.

Products were resolved on a 1% agarose gel in tris-acetate-EDTA

(TAE) buffer at 16concentration, alongside a 100 bp ladder. The

images were captured under standard conditions in a gel

documentation system (AlphaImager, Labtech) at 300 dpi and

saved in TIFF format. Image manipulations (combination of

multiple gel results into a single figure) were carried out using

Adobe Illustrator.

Figure 1. Schematic diagram of the primer design process. A
training set of whole (complete or draft) genome sequences is divided
into positive and negative sequence groups. Members of the positive
sequence group are placed into classes as appropriate (here as classes

I–V on the basis of a nested hierarchical relationship). Primer sets are
designed to all positive sequences in bulk (.1000 primer sets, black
markers), and tested for cross-hybridisation in silico. Primer sets that
amplify only members of a prescribed class (indicated by coloured
markers, one for each class; black markers indicate non-specific primers)
but do not amplify negative examples are retained as being potentially
diagnostic of that class. Predicted discriminatory primers are validated
against bacterial isolates that were not part of the training set. An
expected mock PCR result is indicated for primers specific to group II
against individual samples belonging to classes II, IV and V. A detailed
description of the method is given in Supplementary Methods.
doi:10.1371/journal.pone.0034498.g001
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Results

Primer design
Seven non-degenerate primer sets were predicted using the

strategy outlined in Figure 1 to be capable of discriminating

between the positive outbreak and negative non-outbreak E. coli

sequence sets in silico (Supplementary Table S1). On filtering these

primers against the RefSeq database [30], three primer sets (0237,

0396 and 0781) were found to have sequence similarity either to

the impB gene on the pEC_Bactec b-lactamase plasmid or a

hypothetical protein in at least one other recently sequenced non-

outbreak (O127:H6) E. coli isolate. The remaining four primer sets

(three overlapping: 0220, 0376, and 0393; and 0901) amplify two

regions within a putative prophage gp20 transfer protein. The

predicted amplicon for the 0393 primer set encompassed only

sequence that would have been amplified from a combination of

0220 and 0376 pairs. Hence, of these sets, only 0393 was carried

forward for validation.

Five primer sets (0237, 0393, 0396, 0781, 0901) were taken

forward for experimental validation of their discriminatory ability

under standard PCR conditions. Validation took place against two

groups of pathogenic E. coli: group 1 was a ‘positive’ set comprising

21 clinical O104:H4 isolates from the recent German outbreak,

collected from Universitätsklinikum Münster [31]; group 2 was a

‘negative’ set and comprised 28 HUSEC isolates from the

Universitätsklinikum Münster collection [32], and four additional

EPEC and/or HUSEC isolates (Supplementary Table S2). The

sequenced outbreak isolate LB226692 [3] served as a positive

control.

Each of the primer sets exhibited 100% sensitivity for the 21

‘positive’ outbreak isolates in group 1, with 82–94% specificity,

and false discovery rates between 9% and 22% (Figure 3; Table 1;

Supplementary Table S3). It was possible, using a minimal

combination of two primer sets (e.g. 0393 and 0237) to

discriminate between the 21 outbreak O104:H4 isolates and all

32 non-outbreak E. coli isolates in our validation dataset with

absolute sensitivity and specificity. Thus, on the basis of draft

bacterial genome sequences, our strategy rapidly generated a bank

of PCR primers that were able to discriminate absolutely between

the recent German outbreak E. coli O104:H4 isolates and other E.

coli, including a historical isolate with the same serotype.

Discussion

The E. coli O104:H4 outbreak in the summer of 2011 caused

significant loss of life and incurred financial and political

consequences affecting countries on more than one continent. At

that time, the discriminatory primer set for E. coli O104:H4

comprised a bank of four primers, targeted to specific functional

sequences: the O-antigen (rfbO104), the flagellar locus (fliC H4), the

tellurite resistance gene (terD), and the toxin gene stx2, which was

Figure 2. Flowchart of the primer design process. The locations
of input training set sequence files, and their classifications, are read
from a configuration file. Input sequences comprising several smaller
sequences (e.g. contigs of a draft genome) are concatenated using a
spacer sequence. Locations of coding sequences (CDS) are obtained
from a GenBank file if available, or predicted using a genecaller. A large
number (.1000) of primers is then designed to each input sequence.
Primers that lie within CDS are tested in silico for their ability to cross-
amplify other members of the training set, and compared against a
larger set of off-target sequences to discard non-specific primers. The
surviving primers are classified according to their ability to amplify
specific classes of sequence from the training set. A more detailed
flowchart of the pipeline is given in Supplementary Figure S1.
doi:10.1371/journal.pone.0034498.g002
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unable to discriminate the historical HUSEC041 isolate from the

outbreak strain [3,22,33]. The primers designed in this study

improve on this, as fewer primers are required to distinguish with

greater specificity between outbreak and non-outbreak strains,

including the historical HUSEC041 O104:H4 strain.

At the time of writing, the E. coli O104:H4 outbreak isolate

reservoir remains to be determined, but our primer sets support

recent conclusions that the sequenced outbreak E. coli LB226692

isolate belongs to the HUSEC complex [2,3,5,33]. HUSEC041

was unique amongst our negative set of validation bacteria in that

a positive result was seen with all primer sets other than 0237. This

result is indicative of differences in the TEM-1 plasmid harbouring

CTX-M-15 on the Tn3 transposon. It is notable that primer set

0237 also amplifies four HUSEC isolates and two additional E. coli

O104 isolates (Figure 3; Table 1).

Rapid generation of draft genome sequences for bacterial

pathogens involved in disease outbreaks presents an opportunity

for the generation of powerful discriminatory diagnostics that has

not previously been available. There have been several proposals

for strategies to exploit such data for diagnostic primer design,

each of which involves the pre-identification of sequence regions

common to a set of target sequences, and the design of primers

that amplify those regions [12–17]. A recent such study has used

draft genome sequences to design discriminatory primers to

outbreak O104:H4 isolates [17]. Our strategy avoids limitations of

these methods in the following key ways.

Methods such as KPATH [16] that depend on the construction

of consensus regions from whole genome multiple alignments are

particularly computationally intensive due to the whole genome

alignment step. This has a heavy scaling penalty when more than a

small number of genomes are aligned that is avoided by methods

such as TOFI, Insignia, and ssGeneFinder, by the use of pairwise

genome alignment or progressive sequence subtraction, which is

computationally more efficient [12,13,15,17]. However, as has

been noted elsewhere [12], TOFI and Insignia are limited in their

application, by design. Insignia restricts the design of primers to

sequences that are already present in the server’s database, and

TOFI is only capable of designing features for microarray-based

diagnostic assays [13,15].

The ssGeneFinder package uses progressive alignment and

subtraction of regions of similarity to off-target sequence in order

to restrict primer design to potentially discriminatory regions of

the target sequences [17]. Similarly, TOPSI identifies common

regions of target genomes that are not shared with off-target

genomes to design primer sequences that are predicted to amplify

only target sequences [12]. By contrast, our strategy is alignment-

free in that no genome alignment takes place prior to primer

Figure 3. PCR amplicons from the E. coli clinical isolates,
grouped by primer set. Composite (negative) images from multiple
agarose gels have been aligned against the matching isolate
designation (left hand column) and below the primer names (top
row). The image has been split so that Group 1 isolates are located in
the top section, Group 2 isolates in the second and the positive and
negative controls at the bottom. The HUSEC isolates within Group 2 are
bounded by dashed lines and E. coli HUSEC041 indicated in red font.
doi:10.1371/journal.pone.0034498.g003

Table 1. Statistical performance metrics for diagnostic primer
sets.

Primer set: 393 901 781 396 237

TP: 21 21 21 21 21

FP: 3 4 2 2 6

TN: 30 29 31 31 27

FN: 0 0 0 0 0

Sensitivity (recall): 1.00 1.00 1.00 1.00 1.00

Specificity: 0.91 0.88 0.94 0.94 0.82

PPV (precision): 0.88 0.84 0.91 0.91 0.78

FPR: 0.09 0.12 0.06 0.06 0.18

FDR: 0.13 0.16 0.09 0.09 0.22

F-measure: 0.93 0.91 0.95 0.95 0.88

The confusion matrix counts (TP: true positive; FP: false positive; TN: true
negative; FN: false negative) derived from the experimental validation tests
against unseen isolates of E. coli are presented. No false negatives were
identified by any individual primer set. Derived performance measures are also
indicated (PPV: positive predictive value; FPR: false positive rate; FDR: false
discovery rate; F-measure: 26recall6precision/(recall+precision)). All primer sets
amplify all positive examples, and have specificity between 82–94%, with 9–
22% false discovery rate.
doi:10.1371/journal.pone.0034498.t001
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design. This has two advantages over pairwise alignment. It

eliminates a computationally intensive step from the pipeline, and

it enables the simultaneous design of primers that discriminate

between several subclasses of input sequence.

For example, consider a set of input sequences that comprises

several isolates of two species within the same genus (‘Bacterium

alpha’ and ‘Bacterium beta’), and a set of related isolates that are not

from that genus (‘Anabacterium spp.’). In order to design primer sets

that discriminate at the genus level and positively identify each

species, a method that relies on genome alignment to generate a

consensus sequence specific to each target group would need to be

applied three times: once to generate primers specific to the genus,

and twice more to generate primers that target each species. By

avoiding pairwise genome alignment and generating a single large

set of thermodynamically plausible and potentially discriminatory

primers (a relatively cheap process, computationally) we are able

to test each primer for the ability to discriminate between arbitrary

groupings of the input sequences on a single application of the

method. We have applied our strategy successfully to the draft

genomes of 25 bacterial isolates for simultaneous design of primers

that discriminate between six species within a single bacterial

genus, and that distinguish members of the genus from non-

members of the genus, in a single pass (LP, unpublished data).

Alignment-based methods typically require substantial similarity

between target sequences in order to raise potentially discrimina-

tory primer predictions. This is not the case for our alignment-free

method, which may help eliminate another limitation of those

methods: the difficulty of designing signatures for viral genomes.

These are small and highly variable, posing a particular problem

for whole genome alignment [12,14]. We have as yet no data for

the design of primers to viral sequences using our approach, but a

comparison with alignment-based methods would potentially be

informative, as for short sequences our strategy encompasses the

possibility of exhaustive design and explicit in silico cross-

amplification testing of thermodynamically plausible primers. This

may reveal diagnostic primer sets, or panels, that would not be

found when focusing on aligned regions of high sequence

similarity.

The central limitation of alignment-based primer design

methods is their reliance on the presence of a conserved signature

of sufficient length to which primers may be designed. If such a

region is shared by some, but not all, sequences in the target set,

that region is excluded from consideration for primer design. This

is a particular issue for the design of primer sets to draft or

incomplete bacterial genome sequences, as regions of potentially

high discriminatory capacity may be eliminated because of a single

low-quality or incomplete sequence [12]. Our alignment-free

approach does not exclude these regions so that, where it arises

that one or more incomplete or low-quality sequences would

prevent alignment methods from identifying a consensus region for

primer design, it would still be possible to identify primers, or sets

of primers, that amplify only members of the target sequence set.

Our implementation of the primer design strategy for this study

suffered from known scaling issues associated with the Primer-

Search software chosen for the in silico cross-validation prediction

step. Of the total 90 hour running time, 88 hours was spent on this

calculation (see Supplementary Figure S2). Our primer design

strategy is modular, and it would be possible to exchange the

PrimerSearch package for any equivalent, faster approach that

identified potential cross-amplification. We identified no direct

replacement for this package during the study, but alternative

algorithms based on established approaches to short read mapping

(e.g. [34–36]), or that exclude candidate primer sets from

consideration at the first indication that they amplify an off-target

sequence, or fail to identify any possible target class, may result in

a shorter run time at this step.

Primer validation in vitro against isolates that were not used in

the primer design process is an essential step to establish the

efficacy of the designs, regardless of the primer design strategy. Ho

et al., who also designed discriminatory primers to E. coli O104:H4

using ssGeneFinder, described three primer pairs that were

validated in vitro on a collection of 65 E. coli isolates, 25 culture-

negative stool samples, and 7 environmental soil samples, but the

nature and pathogenic or clinical relevance of those isolates is

otherwise unclear [17]. We applied a more comprehensive and

rigorous validation test to our primer sets, using a robust bank of

serotyped outbreak and non-outbreak clinical E. coli isolates, and

were able to establish that our predicted primers could be used to

discriminate between isolates from different outbreaks, but with

the same serotype. Some differences in the intensity of the PCR

bands were evident, although the vast majority were strongly

positive, indicative of a high concentration of amplified product.

There was evidence of low specificity binding, in particular with

primer set 0781. Although it is not always possible to circumvent

such issues with PCR, and quantitative (q)PCR could be used to

define the response more precisely, our use of conventional PCR

showed clear differences in the ‘positive’ and non-specific signals

that were deemed ‘negative’ (Fig. 2).

PCR-based methods for diagnostic identification of bacterial

isolates on a large scale are likely to remain a robustly useful

technology, even in a potential future of very cheap bacterial

genome sequencing. Arguably, high-throughput sequencing is

already the most economic approach to typing a bacterium and,

given current trends of increasing pervasiveness and falling cost of

the technology, this is unlikely to change. However, high-

throughput sequencing technology is not yet sufficiently wide-

spread or cheap to enable rapid sequencing of each bacterial

isolate, every suspected case of infection, or all samples collected

from every potential source of infection. In situations such as the

tracking of a disease outbreak, or prophylactic screening, there will

remain a place for molecular diagnostic tests on economic grounds

alone, as costs (and downstream analysis effort) for diagnostic PCR

test of a bacterial sample are likely to remain favourably

comparable that of sequencing for some time to come.

The increasing global footprint and reducing cost of high-

throughput sequencing is, however, an extremely important

component of the potential future applicability of our strategy

for primer design, which rests on the availability of a sufficient

number of well-chosen example genome sequences. The E. coli

O104:H7 outbreak was highly unusual in this regard, as there

already existed a large number of publicly available reference

genome sequences, and high-throughput sequencing was rapidly

applied to generate a reasonable number of genomes for outbreak

isolates. This fortunate situation might not have occurred in 2011

for an outbreak of any other pathogenic bacterium that had not

been the focus of a great deal of historical sequencing effort. We

expect that future outbreaks of bacterial contamination and

infection will be in a better position to exploit modern sequencing

technologies, both for outbreak strains and for reference strains

held in bacterial collections. A future $10–$50 bacterial genome

sequence may in this way underpin the design of extremely

inexpensive and rapid, but robust, PCR-based diagnostic tests for

application ‘in the field’.

By our method, the predicted specificity of diagnostic PCR

primers is determined by the size, coverage and composition of the

training and screening sequence sets used to generate them, and

by the nature of the differences between the classes one aims to

distinguish. The purpose of diagnostic primer sets such as those
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designed in this study is to classify previously unseen samples,

ideally with a quantifiable degree of confidence, but classifications

can be drawn along arbitrary lines that may or may not coincide

with taxonomic class or biochemical capability. Where the

differences between classes are such that they cannot be detected

using PCR primers, such as for genomes with extremely low

sequence diversity, the approach described here is inappropriate.

Previous applications of our primer design strategy have,

unsurprisingly, failed when attempting to discriminate between

nearly clonal isolates of the same bacterial species (LP,

unpublished data).

Horizontal gene transfer is a key contributor to the evolutionary

dynamics of pathogenic bacteria [1,37,38], and has particular

implications for the ability to generate diagnostic primers specific

to a novel outbreak. Where an emergent pathogen has obtained

virulence factors in this manner, it may be distinguished from its

close phylogenetic relatives by primers that amplify the laterally

acquired region. However, such primers will likely produce false

positives against the bacteria from which the region was acquired,

if applied in isolation. Careful choice of training classes, screening

database, validation strains, and the use of panels of several

diagnostic primers (perhaps specific to different classes) can help

overcome this issue. On a practical level, although all primer sets

designed in this study were predicted to be specific to outbreak

O104:H4 isolates, we found in experimental validation that a

combination of at least two primer sets was required for absolute

specificity. (Cross)-validation is a key step in the production of any

classifier, and is especially important here, where the background

variation is likely to be great in comparison with the sequences

chosen for the training and primer discovery step.

Training and screening sequence datasets are necessarily

incomplete and biased, as they cannot reasonably contain

sequences for every isolate that is known or may be encountered

in the field, and nor can they encompass the full range of variation

across bacteria. The rate of addition of complete and draft

sequences to the public databases is however very rapid, and offers

an opportunity for continued monitoring of primer specificity in

silico as new sequences become publicly available. Identification of

potential off-target amplification against newly published sequenc-

es in silico may be automated to flag a need for revision of primer

specificity, and possible primer redesign. Subsequent to the

experimental validation of the predicted primers in this study,

the complete sequence of a novel E. coli isolate (UMNF18;

GenBank CP002890.1) that was unavailable during our training

and validation process was entered into public repositories. This

genome exhibits in silico potential off target amplification by the

four primers that target the gp20 transfer sequence (0220, 0376,

0393, and 0901), highlighting the necessity for continued

monitoring of primer specificity as new sequences become

available.

Our results demonstrate that timely sequencing of representa-

tive isolates of disease outbreak bacteria enables high throughput

diagnostic primer design that exceeds the discriminatory capabil-

ities achieved using restricted sets of known ‘housekeeping’ genes,

or contributors to virulence, that typically characterise molecular

assays. In combination with the genome-wide alignment-free

diagnostic primer design strategy described here, the rapid

sequencing of representative O104:H4 outbreak isolates enabled

precise molecular diagnostics to be designed that were targeted

directly to the outbreak isolates.
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