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Abstract

Background: As increasing numbers of older people are listed for solid organ transplantation, there is an urgent need to
better understand how aging modifies alloimmune responses. Here, we investigated whether aging impairs the ability of
donor dendritic cells or recipient immunity to prime alloimmune responses to organ transplantation.

Principal Findings: Using murine experimental models, we found that aging impaired the host environment to expand and
activate antigen specific CD8+ T cells. Additionally, aging impaired the ability of polyclonal T cells to induce acute allograft
rejection. However, the alloimmune priming capability of donor dendritic cells was preserved with aging.

Conclusion: Aging impairs recipient responses, both T cell intrinsic and extrinsic, in response to organ transplantation.
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Introduction

During the last decade, increasing numbers of people over 65

years of age are currently waiting for kidney transplants [1,2].

Since the number of older people in our society will continue to

grow and as many end stage organ disorders are associated with

increased age, it is likely that an even larger number of older

patients will receive solid and cellular transplants in the coming

years [2,3].

Clinical studies have indicated that older people have a reduced

immune response to infections as well as an impaired ability to

reject organ allografts [4–11]. Overall, it is not clear how aging

alters the response to organ transplantation. Some experimental

reports have indicated that reduced alloimmune responses may be

due to declining cellular immunity [12–14], while other reports

have shown that increasing donor age can negatively impact

allograft survival [15]. In contrast to these reports, there is

evidence that aging is associated with increased chronic rejection

[16]. Hence, aging may impact alloimunity via multiple effects,

although it is unclear whether altered cellular alloimmunity with

aging is due to impaired priming by dendritic cells (DCs) or due to

defective intrinsic T cell function.

Donor DCs, recipient DCs and T cells are some of the critical

cellular mediators of acute allograft rejection as defects in these

cells can significantly impair the ability of recipients to reject organ

transplants [17–19]. However, the impact of aging on the effect on

each of these cells in the setting of allotransplantation is not fully

elucidated and it is not clear if declining cellular alloimmunity with

aging is due to impaired priming by DCs or defective recipient

factors intrinsic or extrinsic to the T cell. Hence, the goal of the

present study was to determine whether aging impairs alloimmune

priming function of donor DCs, recipient DCs or T cell intrinsic

alloimmune responses. We provide evidence that factors both

intrinsic and extrinsic to recipient T cells are defective with aging

in response to skin transplantation, however aging does not impair

the ability of donor DCs to prime alloimmune responses in our

experimental systems.

Results

Aged donor bone marrow derived DCs (BMDCs) exhibit
similar alloimmune priming capabilities as compared to
young counterparts

Prior work has indicated that donor DCs are one of the main

cellular activators of acute allograft rejection [20]. Hence, we

examined the effect of age on the ability of BMDCs to stimulate

allo-reactive splenocytes. Young C57BL/6 mice were immunized

with young CBA spleen cells. Two weeks later, recipient spleen

cells were harvested and stimulated ex vivo with irradiated aged

(20–22 months of age) or young (2–4 months of age) CBA

BMDCs. The results show that aged BMDCs induced similar

production of IFN-c in allo-reactive spleen cells as compared to

young BMDCs (Figure 1A). These results are consistent with prior

work that demonstrated that aged and young allogeneic BMDCs

were equally able to activate naı̈ve T cells in vitro [21].

To examine the role of aging on the in vivo priming capabilities

of allogeneic BMDCs, aged or young CBA BMDCs were injected

into young C57BL/6 mice. Two weeks later the recipient spleens

were harvested and stimulated ex vivo with young, irradiated CBA

spleen cells. The results demonstrate that aged donor BMDCs
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exhibit a similar in vivo priming ability, as measured by IFN-c
produced by recipient spleen cells, compared to young counter-

parts (Figure 1B).

Splenic APCs and DCs exhibit a preserved ability to prime
allogeneic T cells with aging

In the above experiments, we employed BMDCs, which were

expanded ex vivo with GM-CSF. As this may have masked a defect

with aging, we next performed experiments with antigen

presenting cells (APCs) and DCs that were purified directly from

mice, without any further ex vivo expansion. Splenic APCs and

DCs purified from aged (18–20 months of age) mice exhibited a

similar ability to induce allogeneic T cell proliferation and IFN-c
production in vitro as compared to young cells (Figure 2A).

Furthermore, DCs purified from aged mice exhibited a similar

alloimmune priming response in vivo (Figure 2B) as compared to

young cells. Additionally, aged DCs manifested similar surface

expression of MHC class II, CD40, CD54 and CD86 at rest and

after culture with allogeneic T cells as compared to young DCs

(data not shown).

Graft originating APCs exhibit a similar ability to prime
allogeneic T cell responses and induce a similar tempo of
allograft rejection with aging

To investigate whether aging influenced the ability of graft

originating, donor APCs to prime alloimmune responses, aged or

young C57BL/6 allografts were transplanted onto young CBA

recipients. In this experimental design, all the recipient DCs and T

cells are young and the experimental variable is the age of the

donor APC. Two weeks later, recipient spleen cells were harvested

and stimulated ex vivo with irradiated donor (i.e., C57BL/6) spleen

cells. The results show that aged allografts induced similar IFN-c
responses in young recipients as compared to young recipients

transplanted with a young allograft (Figure 3A). Finally, aged

C57BL/6 allografts underwent a similar tempo of allograft

rejection when transplanted onto young CBA recipients as

compared to young allografts transplanted onto young recipients

(Figure 3B). In sum, these data indicate that aging does not impair

the ability of donor, graft originating APCs to prime T cell

responses in our experimental systems.

The aged host environment impairs the activation and
expansion of transplant specific CD8+ T cells

We next examined the impact of aging on recipient APCs to

prime and expand alloreactive T cells. Hence, aged or young

CD45.2+, Thy1.2+ C57BL/6 mice were adoptively transferred

with young naı̈ve (CD44lo, CD62Lhi) CD45.1+ TCR transgenic T

cells that are reactive to the SINFEKL OVA257–264 peptide

presented by MHC class I (cells denoted as OTI) and young naı̈ve

Thy1.1+ transgenic T cells that are reactive to OVA323–339 peptide

presented by MHC class II (cells denoted as OTII). Two days

later, aged or young adoptively transferred mice received a young

B6 OVA-expressing skin transplant (Act-mOVA). These mice

express a membrane-bound form of OVA that is expressed under

the control of b-actin promoter. This is an established minor-

mismatched transplant model, which allows one to track the fate of

graft-specific T cells in vivo [22]. Thus, in this experimental design

the variable is the recipient age, which contains recipient APCs.

At various time points post transplantation, spleen cells were

harvested and the cytokine function and expansion of young OTI

(CD8+) and OTII (CD4+) T cells in either aged or young recipients

were measured. We found that the peak expansion of young

antigen specific CD8+T cells was reduced in an aged environment

as compared to a young environment (Figure 4). However, young

antigen specific CD8+T cells produced similar cytokine responses

for IFN-c, IL-2 and TNFa regardless of the age of the host

environment (Figure 5A). Nevertheless, the activation status

(measured by the up-regulation of CD27 and down-regulation of

CD62L) of antigen specific CD8+ T cells was higher in young hosts

than in aged hosts (Figure 5B). We noted that CD4+ T cell

responses were generally a log-fold lower than CD8+ T cell

responses in this experimental model and with similar responses in

either an aged or young environment (data not shown). These data

indicate that aging impairs the recipient host environment

(containing APCs) to activate and expand antigen specific CD8+

T cell responses in vivo, although the aged host environment

allows effective cytokine responses in these T cells.

The above results indicate that factors within the aged host

extrinsic to the T cell impair the expansion of antigen specific

CD8+ T cells. To examine if aging impaired the ability of DCs to

process and present cognate peptides to antigen specific CD8+ T

Figure 1. Aged BMDCs exhibit a similar alloimmune priming ability as compared to young BMDCs. A: Young C57BL/6 mice were
immunized (via i.p. injection) with 16107 young CBA spleen cells. After two weeks, recipient spleen cells were harvested and cultured ex vivo
overnight with increasing numbers of either aged or young irradiated CBA BMDCs and IFN-c responses measured (ELISPOT). B: Aged or young CBA
BMDCs were i.p. injected into young C57BL/6 mice. Two weeks later, recipient spleen cells were harvested and cultured ex vivo overnight with young
irradiated CBA spleen cells. IFN-c responses measured via ELISPOT. Similar results were obtained when the re-stimulating irradiated donor spleen cells
were aged (data not shown).
doi:10.1371/journal.pone.0004097.g001
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cells, we measured the ability of young or aged splenic DCs to

activate OTI CD8+ T cells in vitro. Our results demonstrate that

aged splenic DCs, cultured with OVA peptides, were able to

induce a similar degree of proliferation in OTI CD8+ T cells in

comparison to young splenic DCs (Figure 6A). We next examined

the ability of aged and young splenic DCs, which were pulsed with

OVA peptides and then adoptively transferred into young

syngeneic recipients, to expand and activate OTI CD8+ T cells

in vivo. The results demonstrate that OTI T CD8+ T cells

transferred with aged splenic DCs into young recipients exhibited

a similar expansion and inflammatory cytokine response as

compared to young OTI CD8+ T cells transferred with young

splenic DCs into young recipients (Figure 6B–C).

Aging impairs T cell responses to allotransplantation
Our results above indicate that aging does not impair the ability

of either donor or recipient DCs to prime transplant specific T cell

responses. We next examined if aging impairs T cell alloimmune

responses, by adoptively transferred magnetically purified aged or

young T cells into young T cell deficient mice, which received a

skin allograft two days earlier. We found that young recipients that

received aged T cells manifested a slightly delayed time to allograft

rejection as compared to young recipients that received young T

cells (Figure 7A).

To examine whether aging affects recipient T cell responses

primed by young, donor APCs in vivo, young or aged CBA recipients

were transplanted with a young C57BL/6 allograft. Two weeks post

transplantation, recipient T cells were enriched and CD4+ T cells

purified via magnetic sorting. The purified CD4+ T cells, which we

confirmed by flow cytometry were devoid of recipient APCs (data

not shown), were subsequently stimulated ex vivo with irradiated

donor spleen cells. The results show that aging significantly impaired

the ability of CD4+ T cells to respond to young donor APCs as

compared to young CD4+ T cells (Figure 7B).

Figure 2. Aged splenic DCs and APCs exhibit a similar ability to prime allogeneic T cell responses both in vitro and in vivo. A: Splenic
APCs and CD11c+ DCs, purified from aged or young CBA mice, were cultured with C57BL/6 T cells and cellular proliferation and IFN-c measured.
Similar results were noted in two independent experiments and with an alternate donor (C57BL/6) and recipient T cell (BALB/C) combination. B: Aged
or young splenic CBA DCs were injected into C57BL/6 mice. 10 days later spleens were harvested from the groups and cultured with irradiated CBA
spleen cells, and cellular proliferation and IFN-c measured. The change from T cells from mice that were not immunized is shown. There were no
significant differences noted between mice injected with either young or aged allogeneic DCs. Representative data from one experiment, which was
repeated with consistent results.
doi:10.1371/journal.pone.0004097.g002
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Finally, in vitro stimulation with allogeneic BMDCs, revealed

that aged polyclonal T cells did not upregulate certain T cell

activation markers, CD25 and CD28, to the same degree as young

polyclonal T cells, although the upregulation of other activation

markers, e.g., ICOS, was preserved with aging (Figure 7C). Prior

work has shown that aged T cells manifest impaired IL-2 and IFN-

c responses in this assay [21]. In summary, the above data indicate

that aging impairs T cells to respond to allostimulation.

Discussion

Aging has been associated with lower frequencies of acute

allograft rejection, yet it has not been clear if such a phenotype is

due to impaired donor or recipient APC priming of alloreactive T

cells. Our study has provided evidence that aging impairs the

ability of the recipient host environment, both intrinsic and

extrinsic to the T cell, to respond to skin transplants. However, the

alloimmune priming capabilities of donor APCs are preserved

with aging in our experimental systems. Other work has indicated

that aging augments immune priming by donor DCs [23] and our

study does not exclude that aging may play important roles of the

function of donor DCs, especially when DCs originate from

vascularized allografts. Overall, our study indicates that aging

impairs recipient immune responses to allostransplantation,

whereas donor APC and DC responses remain preserved in our

experimental systems.

We determined that aging also impaired the ability of the

recipient host environment, extrinsic to the T cell, to expand and

activate antigen specific naı̈ve CD8+ T cells in response to skin

transplantation (Figure 2 and 3B). We directly examined whether

aging led to a defective ability of recipient splenic DCs to prime

and activate antigen specific T cells. In our experimental system,

the antigen in this case, an OVA peptide, was also a transplant

antigen. However, we did not discern that aged splenic DCs

exhibited a defective ability to expand and activate antigen specific

CD8+ T cells as compared to young DCs. It is not clear what

factors within the aged host impair the ability of antigen specific

CD8+ T cells to expand, although possibilities include heightened

BCL-2 and type I interferon levels. This is because a prior study,

which employed non-transplant experimental models, found that

the aged host environment impaired the turnover of memory

CD44hi CD8+ T cells via heightened BCL-2 expression and higher

type I interferon levels [24]. Future studies are warranted to

determine the factors within the aged host environment that

impair the expansion of antigen-specific, naı̈ve CD8+ T cells.

In conclusion, our study provides evidence that aging impairs

recipient factors, both intrinsic and extrinsic to the T cell during

transplantation. This information may provide a foundation for

further mechanistic studies investigating how aging modifies

alloimmunity, as well as translational studies that investigate how

older people respond differently to solid organ allografts.

Materials and Methods

Mice
Aged (18–22 months) and young (2–4 months) CBA (H2k) and

C57BL/6 (H2b) mice were purchased from the NIA rodent facility.

B6.129P2-Tcrbtm1MomTcrdtm1Mom (designated as T cell deficient

mice), BALB/c and B6 Act-mOVA mice were purchased from the

Jackson Laboratories, Bar Harbor, ME. B6.CD45.1+ OT1 and

B6.Thy1.1+ OTII mice were generously provided by Dr. Richard

Flavell and Dr. Lauren Cohn, respectively (Yale University). Yale

University IACUC approved the use of animals in this study. All

mice were kept in pathogen free conditions. No animals were used in

the study if they had evidence of skin lesions, weight loss or

lymphadenopathy. Additionally, sentinel mice were regularly tested

Figure 3. Aging does not impair the ability of graft originating APCs to prime alloimmunity. C: Young CBA recipients received either
aged or young C57BL/6 skin allografts. Two weeks after transplantation, recipient spleens were removed and then restimulated overnight in the
presence of irradiated donor spleen cells. (No differences were noted if aged or young donor irradiated stimulators were used, data not shown). D:
Young CBA recipients were transplanted with either an aged or young C57BL/6 skin allograft and the time to rejection was monitored. Young
recipients of aged allografts manifest similar rejection kinetics compared to young counterparts that received young allografts (p = 0.5; Log rank).
doi:10.1371/journal.pone.0004097.g003
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by Yale Rodent Services and found to be negative for common

murine pathogens in the serum, nasopharynx and the gastrointes-

tinal tract (pathogens tested included mouse hepatitis virus,

parvovirus, mycoplasma pneumonia, sendai virus, lymphocytic

choriomengitis virus, ectromelia virus, pneumonia virus and

epizootic diarrhea of infant mice).

Skin transplantation
Full-thickness trunk skin was transplanted from donor mice and

stapled on recipients as previously described [25]. Rejection was

defined as graft necrosis .90% of the graft area.

Cell purification, and in vitro T cell cultures
The generation of BMDCs has been described in our previous

work [26]. Splenic DCs were purified by positive selection (anti-

phycoerythrin-CD11c monoclonal antibody) using EasySep

(StemCell Technologies, Vancouver, BC, Canada). Splenic APCs

were purified by depleting spleen cells of T cells, using reagents

from EasySep. T cells were purified via negative magnetic

selection using EasySep reagents. To perform the primary mixed

lymphocyte reaction (MLR), 16105 purified CBA T cells/well

were cultured with irradiated (28Gy) allogeneic C57BL/6 BMDCs

(16105/well), splenic DCs (16104/well), splenic APCs or whole

splenic cells (16105/well) and incubated in 96 well plates at 37uC
in a 5% CO2 incubator for 4 days. To perform ex vivo analysis from

immunized mice, T cells were cultured with the indicated

irradiated donor cells for 2 days. For ex vivo analysis from

transplanted mice, T cells were cultured ex vivo with the indicated

number of irradiated donor cells ,24 h. For in vitro culture of OTI

CD8+ T cells, 16105 purified OTI T cells/well were cultured with

26104/well irradiated (30Gy) aged or young splenic DCs in the

presence of OVA peptide at the indicated dose for 72 h.

Thymidine incorporation assay was used to measure cellular

proliferation according to our prior work [27].

ELISPOT and ELISA
ELISPOT analysis was performed as per our previously

published work [26]. ELISA of culture supernatants was

performed using reagents from BD Biosciences (San Diego, CA),

according to manufacturer’s instructions.

Figure 4. Recipient age impairs the expansion of transplant reactive CD8+ T cells. C57BL/6 aged and young CD45.2+, Thy1.2+ mice were
adoptively transferred with 56105 CD45.1+, OTI T cells 2 days prior to receiving a B6.Act-mOVA skin transplant. A: At various points after
transplantation, recipient spleen cells were harvested and the number of OTI T cells or OTI T cells that produced IFN-c calculated. Expansion of
transplant/antigen specific T cells was reduced in an aged environment as compared to a young environment. (*P,0.02; T test at day +7 post
transplantation). Representative data of three independent experiments with N = 2–3/experiment. B: Representative flow cytometric dot plots are
shown at day +7 post transplantation in young and aged mice. A representative, non-transplanted recipient that received OTI T cells is shown. The
transferred cells (CD45.1+, CD8+) are shown in the rectangle. Representative data of three independent experiments with N = 2–3/experiment.
doi:10.1371/journal.pone.0004097.g004
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Figure 5. Transplant specific CD8+ T cells produced similar cytokine profiles but impaired activation in aged transplant recipients
as compared to young recipients. A: Representative flow cytometric plots on day +7 post transplantation are shown along with isotype controls
(IgG2b for IFNc, IgG1 for IL-2 and TNFa). Young antigen specific CD8+ T cells produced similar amounts of TNFa, IL-2 and IFN-c during ex vivo culture
with OVA peptide regardless of the age of the recipient environment (cytokines were not produced if peptide was not added, data not shown).
Proportions are shown in right upper quadrant. Note, that cytokines were not detected in either aged or young mice that were adoptively transferred
but did not receive an OVA expressing skin transplant (data not shown). Similar results were noted at day +14 post transplantation (data not shown).
Flow cytometric plots are gated on CD45.1+ cells. N = 3/group, representative data from three independent experiments with consistent results. B:
Representative flow cytometric plots of adoptively transferred CD45.1+, OTI young T cells on day +7 post transplantation. Young antigen specific
CD8+ T cells upregulated CD27 and downregulated CD62L to a greater degree in young transplant recipients compared to antigen specific CD8+ T
cells in aged transplant recipients.
doi:10.1371/journal.pone.0004097.g005
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Figure 7. Aging impairs T cell alloimmune responses. A: Young C57BL/6 T cell deficient mice reconstituted with 56106 aged (20 mths)
syngeneic, polyclonal T cells rejected BALB/c skin allografts at a slower tempo than counterparts reconstituted with young (2–4 mths) T cells.
(*p = 0.007; Log rank). B: Aged or young CBA recipients were transplanted with young C57BL/6 skin transplants. At two weeks post transplantation,
recipient spleen cells were harvested and CD4+ T cells purified. The results demonstrate that aged CD4+ T cells that were stimulated ex vivo with
irradiated donor spleen cells manifest impaired IFNc (*p,0.0001; T test) and IL-2 (**p,0.0001; T test) responses (ELISPOT) compared to young CD4+ T
cells. N = 3/group, representative data from two independent experiments with consistent results. C: Aged and young purified, polyclonal T cells were
stimulated with C57BL/6 BMDCs and the upregulation of indicated activation markers shown after 96 h of culture. N = 3/group, representative data
three independent experiments with consistent results.
doi:10.1371/journal.pone.0004097.g007

Figure 6. Aged splenic DCs loaded with cognate peptide exhibit a similar ability to prime antigen specific CD8+ T cells as compared
to young splenic DCs. A: Aged and young splenic DCs were cultured with OTI T cells in the presence of OVA peptide and proliferation measured.
Representative from one experiment, which was repeated with similar results. B: Young hosts (N = 3/group) were adoptively transferred with young
CD45.1+ OTI T cells and either young or aged splenic DCs that had been pulsed with OVA peptide (or irrelevant peptide, GP33, as a control). After 5
days, expansion of transferred young OTI T cells was assessed. Proportion of transferred T cells is shown in the box in each flow plot. Representative
data from one experiment, which was repeated with similar results. C: Same experiment as B except that cytokine production by the transferred OTI T
cells (gated on CD45.1+ population) is measured by intracellular cytokine staining. Proportion % is shown in each flow plot.
doi:10.1371/journal.pone.0004097.g006
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Adoptive transfer of cells and cellular immunizations
56105 OTI (CD45.1+) and 56105 OTII (Thy1.1+) were

adoptively transferred via i.v. tail vein injection into either aged

or young syngeneic CD45.2+, Thy1.2+ C57BL/6 mice. Two days

after adoptive transfer, mice received a skin graft from a B6.Act-

mOVA donor. The absolute number of OTI/OTII T cells was

calculated by multiplying the proportion of positive cells by the

total number of splenocytes. Mice were immunized with 16107

BMDCs via i.p. injection. For immunization with allogeneic

splenic DCs, mice received 36105 splenic DCs via i.v. tail vein

injection. For adoptive transfer of syngeneic splenic DCs, pulsed

with OVA257–264 peptide, DCs were 1st incubated overnight with

50 ng/ml LPS. The cells were then washed and pulsed with

10 g m/ml of OVA peptide for 2 h at 37uC and then washed three

times prior to adoptive transfer into young hosts. Splenic DCs

pulsed with an irrelevant peptide (GP33) acted as control. 56105

splenic DCs were transferred via i.v. tail vein injection along with

56105 CD45.1+ OTI T cells. Five days later, spleen cells were

harvested from adoptively transferred mice for flow cytometric

analysis.

Cell sorting and flow cytometry
CD4, CD8, CD45.1, CD25, CD27, CD28, ICOS CD62L,

Thy1.1/1.2, CD45.1, IL-2, TNFa and IFN-c fluorescently labeled

monoclonal antibodies and isotype controls were purchased from

eBiosciences (San Diego, CA). Intracellular cytokine staining was

achieved by harvesting spleen cells post transplantation and

stimulating the cells ex-vivo with cognate peptide (for OTI and

OTII TCR transgenic T cells) in the presence of cell permeability

agents and golgi stop (eBiosciences). T cells were identified during

the MLR by staining with Thy1.2 fluorescently labeled monoclo-

nal antibody. All analysis was performed on a FACS CALIBUR

flow cytometer and analyzed with Flow Jo software.

Statistical analysis
Survival analysis between groups was calculated using the Log-

rank method. Comparison of means was performed using a 2-

tailed T-test and repeated measures using analysis of variance. All

results were generated using GraphPad prism software (San Diego,

CA). Statistical significance was considered a p value ,0.05.
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