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Abstract

The three-dimensional structure of the enzymes provides very relevant infor-

mation on the arrangement of the catalytic machinery and structural elements

gating the active site pocket. The recent success of the neural network Alpha-

fold2 in predicting the folded structure of proteins from the primary sequence

with high levels of accuracy has revolutionized the protein design field. How-

ever, the application of Alphafold2 for understanding and engineering func-

tion directly from the obtained single static picture is not straightforward.

Indeed, understanding enzymatic function requires the exploration of the

ensemble of thermally accessible conformations that enzymes adopt in solu-

tion. In the present study, we evaluate the potential of Alphafold2 in assessing

the effect of the mutations on the conformational landscape of the beta subunit

of tryptophan synthase (TrpB). Specifically, we develop a template-based

Alphafold2 approach for estimating the conformational heterogeneity of sev-

eral TrpB enzymes, which is needed for enhanced stand-alone activity. Our

results show the potential of Alphafold2, especially if combined with molecu-

lar dynamics simulations, for elucidating the changes induced by mutation in

the conformational landscapes at a rather reduced computational cost, thus

revealing its plausible application in computational enzyme design.
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1 | INTRODUCTION

“What are the features that make proteins evolvable?”
questioned Tokuriki and Tawfik in their seminal review
paper.1 As opposite to the traditional view of one well-
defined structure of proteins, a new “avant-garde view”

in which proteins display conformational variability key
for their evolvability was proposed. They described that
evolution operates by enriching pre-existing diversities,
which provide the protein the ability to acquire new
functions. These ensembles of pre-existing conformations
in thermal equilibrium with the so-called native state are
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the basis for proteins' evolutionary adaptability1–5 and
provide an explanation for the observed divergency origi-
nated from a few common ancestors,6 as well as their ver-
satility as shown by the enzymatic promiscuous side
activities.6 However, the ability of proteins and enzymes
to adopt multiple conformations might a priori seem to
counter with their characteristics of being proficient,
accurate, and specific. Indeed, the high catalytic activity
of enzymes is mostly attributed to their highly pre-
organized active site pockets presenting the catalytic
machinery well-positioned for efficiently stabilizing the
transition state(s) of the reactions.7,8 However, the impor-
tance of conformational flexibility was demonstrated
with the design of catalytic antibodies.9 Their modest effi-
ciencies as compared to enzymes were attributed to the
imperfect steric and electrostatic environment, but also to
their restricted conformational heterogeneity.10 This
shows that efficient catalysis requires a delicate balance
between active site pre-organization for transition state
stabilization, and also the optimization of the conforma-
tional ensemble along the catalytic itinerary. Following
an enzymatic cycle in detail, the major steps that take
place along a general catalytic itinerary are the following:
(1) binding of the substrate(s) in the catalytic pocket,
which often involves the exploration of additional confor-
mational states presenting properly positioned loops and
flexible domains gating the active site access,11,12 (2) acti-
vation of the substrate(s) for productive enzyme-substrate
(ES) formation; (3) stabilization of the transition state(s)
leading to the formation of the multiple reaction interme-
diates and product(s); (4) release of the product(s), which
again is often accompanied by conformational changes to
restart the catalytic cycle. All these steps are key players
for enhanced catalytic activity.

Since the proposal of Tokuriki and Tawfik of the
ensemble-based conformational diversity key for evolva-
bility, many experimental and computational studies
have been reported in the literature supporting this
idea.1,3–5,13 The study of the conformational landscape of
natural and laboratory-evolved enzymes showed that by
introducing mutations at the active site and also at
remote positions changes in the stabilities of the pre-
existing conformations can be induced. This was experi-
mentally demonstrated in the laboratory evolution of a
phosphotriesterase into an arylesterase (AE) enzyme.2,13

The AE activity was gradually increased by changing the
fluctuation of some key active site gating loops, as shown
by the B-factors of the multiple x-ray structures obtained
along the laboratory-evolution path. NMR and room-
temperature x-ray crystallography of several HG3 Kemp
eliminases also showed a change in the conformational
ensembles along laboratory evolution.14,15 From a com-
putational perspective, this ensemble view of enzymes

can be represented in the so-called free energy landscape
(FEL, Figure 1 for FELs at different reaction stages),4

which can be reconstructed by means of molecular
dynamics (MD) simulations and enhanced sampling
techniques.16–18 In the reconstructed FEL, the relative
stabilities of the thermally accessible conformations, as
well as the kinetic barriers separating them are repre-
sented. Depending on the barrier height that separates a
given pair of conformational states, the timescale associ-
ated to the transition is faster or slower. Conformational
changes that can directly impact catalytic function
include side-chain conformational changes in the fast
timescale, loop motions often playing a key role in sub-
strate binding/product release in slower timescales, and
in some cases allosteric transitions that usually corre-
spond to the slowest processes. The reconstruction of the
FEL and how this is shifted after mutation provides cru-
cial information for understanding and designing enzyme
function.4 The introduced mutations located at the active
site and many times at remote sites induce a long-range
effect affecting enzymatic catalysis. Induced by the muta-
tions introduced, catalytically productive conformational
states are stabilized, whereas the non-productive ones for
the novel functionality are disfavored, thus converting
computational enzyme design into a population shift
problem.19 These observations promoted the exploration
of enzyme conformational dynamics for enzyme
design.3,4,13 The reconstruction of ancestral enzymes dis-
playing a higher degree of flexibility with respect to the
modern counterparts and their use as initial scaffolds for
enzyme design yielded interesting new insights.20 The
higher flexibility of many ancestral variants was found to
be key for achieving higher levels of catalytic activity
with only a few mutations located at the active site. In
this direction, several ancestrally reconstructed enzymes
have been used as starting points for enzyme design, for
instance for enhancing some residual catalytic promiscu-
ity contained in an enzyme family, for altering the allo-
steric regulation of some heterodimeric enzymes, among
others.20–22

The recent success of the neural network Alphafold2
(AF2) in predicting the folded structure from the primary
sequence with high levels of accuracy has revolutionized
the field.23–26 The novel AF2 neuronal network incorpo-
rates information on the evolutionary, physical and geo-
metric constraints of existing protein structures. AF2 is
recognized as one of the milestones in protein structure
prediction, and has boosted the application of deep-
learning methods for many other applications.26 Despite
the impressive performance of AF2 algorithms in predict-
ing the native lowest in energy structure of proteins,
application of AF2 for understanding and engineering
function directly from the obtained single static picture is
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not straightforward. However, some recent studies have
suggested that AF2 can additionally predict multiple con-
formations of the same protein, and thus it can be poten-
tially used to elucidate the conformational plasticity of
biological systems.27,28 This is exciting as it suggests that
AF2 could be applied for assessing the effect of the intro-
duced mutations on the conformational landscape at a
rather reduced computational cost, which would boost
the development of conformationally driven enzyme
designs protocols.4,19

In this study, we evaluate the potential of AF2 in
assessing the effect of the mutations on the conforma-
tional landscape of tryptophan synthase (TrpS). TrpS is a
heterodimeric enzyme complex (based on TrpA and TrpB
subunits) that performs a multistep reaction mechanism
together with a sophisticated allosteric signal communi-
cation. TrpA catalyzes the retro-aldol cleavage of indole
glycerol phosphate producing glyceraldehyde
3-phosphate and indole, the latter being able to diffuse
through an internal TrpA-TrpB tunnel to reach the TrpB
subunit (Figure 1). For this enzyme, the allosteric

communication between TrpA and TrpB keeps the
proper conformations along the cycle optimizing the cat-
alytic steps, thus the absence of the protein partner leads
to a deficient conformational ensemble.17 In the case of
TrpB, this involves the change of conformation of a
COMM domain that covers the active site, which is
known to adapt closed, partially closed, and open confor-
mations (Figure 1).17,30,31 This fine-tuning of the confor-
mational ensemble induced by the binding partner
makes both TrpB and TrpA substantially less efficient
when isolated.32–37 By applying laboratory-evolution, the
Arnold lab enhanced the stand-alone activity of Pyrococ-
cus furiosus TrpB and generated a new variant named
0B2-pfTrpB exhibiting a 2.9-fold increase in kcat with
respect to the original complex.32,33 The reconstruction of
the last bacterial common ancestor (LBCA) TrpB by
means of ancestral sequence reconstruction showed a
high level of stand-alone activity, which was found to be
lost along evolution.22,38 We previously explored the FEL
of the ancestrally reconstructed LBCA TrpS in complex
and as stand-alone catalyst (LBCA-TrpB), as well as the

FIGURE 1 (a) Representation of the reconstructed conformational landscape (Source: Data from Ref. 17) of tryptophan synthase B

(TrpB) at several reaction intermediates along the catalytic itinerary. The enzyme displays a different conformation of the catalytically

relevant COMM domain that covers the active site (shown in pink in the structure displayed at the center of panel b): open (O) states are
adopted in the resting state E(Ain), partially closed (PC) at the reaction intermediates E(Aex1) and E(A-A), and closed (C) at E(Q2) states.

Most stable conformations are represented in blue, whereas least stable ones in red. (b) Reaction mechanism of TrpB subunit.29 The

conformational states of the COMM domain according to available x-ray data at each reaction intermediate along the catalytic cycle are

displayed. Overlay of the different COMM domain conformational states: O highlighted in lilac, PC in pink, and C in brown. Pyridoxal

phosphate cofactor is shown in teal, L-Ser in pink and L-Trp in lilac. TrpB, tryptophan synthase B
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wild-type pfTrpS complex, isolated pfTrpB, and
laboratory-evolved stand-alone 0B2-pfTrpB enzyme.17

Our results showed that the low stand-alone activity of
isolated pfTrpB is due to the restricted conformational
heterogeneity of the COMM domain, and the inability to
adopt catalytically productive closed conformations. The
distal mutations introduced in 0B2-pfTrpB recovered the
conformational flexibility of the COMM domain to simi-
lar levels to those observed for the allosterically regulated
pfTrpS complex. However, the closed conformation of the
COMM domain was substantially more stable in the case
of 0B2-pfTrpB, which explains its superior catalytic activ-
ity with respect to pfTrpS. Similar observations were
found for LBCA-TrpB whose stand-alone activity was
mainly attributed to its conformational heterogeneity and
ability to adopt catalytically productive closed conforma-
tions of the COMM domain.39 These two works eluci-
dated the conformational ensemble that a stand-alone
catalyst has to display for being efficient, and revealed
dramatic changes in the COMM domain conformation,
which are important for the multi-step catalytic pathway
of TrpB (as shown in Figure 1).17,39 This information is
pivotal for designing new stand-alone TrpB variants,
which requires the fine-tuning of the conformational
ensemble. In a recent paper,39 we applied the Shortest
Path Map (SPM) methodology18,19 together with ancestral
sequence reconstruction to predict distal activity-
enhancing mutations and design a new TrpB variant, that
we named SPM6-TrpB. The experimental validation of
SPM6-TrpB design demonstrated its superior stand-alone
activity in the absence of TrpA to similar levels to those
achieved with laboratory evolution (seven-fold increase
in kcat with respect to the starting ancestral ANC3-TrpB
enzyme).39 Still the stand-alone activity of the designed
SPM6-TrpB was far from that of the reference LBCA-
TrpB (kcat of 0.5 and 0.2 s�1 for LBCA and SPM6, respec-
tively). This was mostly due again to a restricted confor-
mational heterogeneity and the lack of catalytically
productive closed conformations of the COMM domain,
as revealed by the FEL reconstruction.

In this work, we evaluate the potential of AF2 for
quickly estimating the conformational heterogeneity of
different TrpB displaying different levels of stand-alone
activity. We first evaluate the effect of using different
multiple sequence alignment (MSA) depths in the AF2
predictions for all TrpB systems. We then develop a
template-based AF2 approach consisting on providing a
set of either x-ray based templates or conformations
extracted from MD simulations to estimate the conforma-
tional heterogeneity of the different systems. Finally, we
run short nanosecond timescale MD simulations from
each AF2 prediction to quickly estimate the FEL. Our
results show the potential of AF2, especially if combined

with MD simulations, for elucidating the changes
induced by mutation in the conformational landscapes.

2 | RESULTS

2.1 | Exploring the conformational
heterogeneity by altering the multiple
sequence alignment depths in AF2

Inspired by recent pre-print papers in which the confor-
mational heterogeneity of some proteins was estimated
by reducing the depth of the input MSAs used in AF2
algorithm (as well as the number of recycles),27,28 we
decided to test this methodology in pfTrpB, 0B2-pfTrpB,
LBCA-TrpB, and SPM6-TrpB (see more details in
Section 4). For these systems, we have previously recon-
structed the FEL and have the experimental characteriza-
tion of the stand-alone activity.17,39 In Figure 2, the
previously reconstructed FEL of the 0B2-pfTrpB variant17

is shown together with the predictions of AF2 for the dif-
ferent analyzed systems considering different MSAs
depths (represented with vertical lines colored from
orange to dark blue depending on the MSA depth). The
x axis denotes the open-to-closed transition of the COMM
domain, which ranges from 1–5 (open, O), 6–10 (par-
tially-closed, PC), and 11–15 (closed, C). The predictions
obtained by AF2 for pfTrpB and 0B2-pfTrpB are very sim-
ilar: in both cases PC conformations of the COMM
domain are predicted when the MSA depth is higher than
512 (teal lines). Indeed, by increasing the MSA depth
more structures closer to the native PC state as predicted
by the original AF2 are obtained (Table S1). O structures
are also predicted when a reduced number of MSA (32–
64) is used instead (the standard deviation of the O-to-C
path of the predicted structures is ca. 2 for both systems
at low MSA depths of 32–64 indicating that several levels
of closure of the COMM domain are predicted, Table S1).
For these variants no C conformations are obtained. This
is completely changed in the case of LBCA-TrpB and
SPM6-TrpB. In both cases, C conformations of the
COMM domain are predicted when high MSA depths are
used (256–5120), and by reducing the MSA depth to 32–
64 only PC structures (no O structures) are instead
obtained (Table S1). Although most of the predicted
structures for LBCA and SPM6 TrpB (with high MSAs)
fall in the range of C conformations (mean value of 11 in
the O-to-C pathway in Figure 2 and Table S1), a higher
flexibility of the COMM domain is predicted for the
ancestral enzyme: LBCA-TrpB predictions have O-to-C
values in the 11–15 range, whereas SPM6-TrpB in the
13–15 (see x axis in Figure 2, and larger deviation in
Table S1). It should be emphasized that the native state
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predicted by the default AF2 for both LBCA and SPM6
TrpB has a C conformation of the COMM domain. Alto-
gether these results obtained by reducing the MSA depths
suggest that 0B2-pfTrpB and pfTrpB have a higher ability
to visit O and PC conformations, whereas LBCA and
SPM6 TrpB PC and C structures. Interestingly, a higher
conformational flexibility is predicted for LBCA-TrpB,
especially if compared with SPM6-TrpB, which is in line
with our previous reconstructed FELs that show a much-
limited conformational heterogeneity of the designed
SPM6 variant with respect to LBCA TrpB.39 Finally, to
quantitatively assess the AF2 predicted conformational
heterogeneity in the context of structural variance as
observed in x-ray data, we applied Principal Component
Analysis (PCA, Figure S3). We focused on the carbon
alpha distances of the conserved amino acids of the set of
x-ray structures used. The first two components describe
74% and 12.5% of the total variance. The projection of the

predicted AF2 structures with different depths of MSA
shows no major deviations from the space generated with
experimentally determined structures, thus providing evi-
dence for the validity of the predictions even with a low
MSA depth.

2.2 | Exploring the conformational
heterogeneity by altering the multiple
sequence alignment depths and using x-
rays as templates

The inputs for AF2 calculation are the primary sequence
of the enzyme, a MSA generated with information of evo-
lutionary related proteins, and the three-dimensional
(3D) coordinates of a small number of homologous struc-
tures named templates. In the previous section, we
reduced the depth of the input MSAs used in AF2

FIGURE 2 Representation of the previously reconstructed FEL of the 0B2-pfTrpB variant.17 The x axis denotes the open-to-closed

transition of the COMM domain, which ranges from 1–5 (open, O), 6–10 (partially closed, PC), to 11–15 (closed, C), the y axis is the MSD

deviation from the path of O-to-C structures generated. Most stable conformations are shown in blue, whereas higher in energy regions in

red.17 The predictions of AF2 for the different analyzed systems are represented on the 2D-FEL representation using vertical lines colored

from orange to dark blue depending on the MSA depth: AF2 predictions obtained with a 32 MSA depth are shown with a vertical orange

line, 64 in light orange, 128 in light brown, 256 in light cyan, 512 in cyan, 1024 in teal, and 5120 in dark blue. Black dots indicate some

representative available x-ray structures, the size of the spheres is proportional to the sequence identity of the x-ray with respect to the

studied TrpB system. FEL, free energy landscape; MSD, mean square deviation
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algorithm to evaluate the conformational heterogeneity
of four TrpB enzymes displaying different levels of stand-
alone activity, and found mostly C conformations for the
ancestral and designed TrpB, whereas PC for pfTrpB
based variants. Our hypothesis is that by additionally
fine-tuning the other input parameter of AF2, that is, the
set of templates used to extract the 3D information, more
information regarding the enzyme ability to adopt O, PC,
and C conformations can be derived. In fact, in the origi-
nal formulation of AF2 five models are provided that use
different number of MSA depths and template structures
to encourage diversity in the predictions.25 It should be
also noted that in a recent paper the effect of including
different x-ray templates on AF2 predictions was tested
only for a specific protein target that was exclusively
modeled in only one of the conformations (even with low
MSA depths).27 Different decoy structures were used as
templates in a recent pre-print paper based on assessing
the coevolution dependency of the AF2 learned potential
function for scoring protein structures.40 In this study, we

have tested the hypothesis that by altering the set of AF2
templates the conformational heterogeneity of the target
enzymes can be estimated. We have used a reduced num-
ber of template structures based on the available x-ray
structures presenting a sequence identity larger than 70%
with respect to all systems (Table S2 and Figure S1). The
side-chain conformation was kept in the template, how-
ever, as done in a previous study40 we also run the simu-
lations by hiding side-chain information from the
template and providing only the coordinates of the carbon
beta (or carbon alpha in the case of glycine, Figures S4
and S5 for the results without side-chain). In Figures 3
and S6, the results from this template-based AF2 strategy
are displayed. For the same primary sequence, the predic-
tion from this template-based AF2 approach suggests a
different level of closure of the COMM domain depending
on the x-ray template structures used (either in a C, PC,
or O conformation, Figures 3 and S6). When C and PC x-
ray templates are used, AF2 prediction for pfTrpB and
0B2-pfTrpB mostly suggests PC conformations of the

FIGURE 3 Representation of the previously reconstructed FEL of the 0B2-pfTrpB variant,17 and the predictions of the x-ray template-

based AF2 approach for the different analyzed systems: pfTrpB (a), (b) 0B2-pfTrpB, (c) LBCA-TrpB, (d) SPM6-TrpB. The x axis denotes the

open-to-closed transition of the COMM domain, which ranges from 1–5 (open, O), 6–10 (partially closed, PC), to 11–15 (closed, C), the y axis
is the MSD deviation from the path of O-to-C structures generated. Most stable conformations are shown in blue, whereas higher in energy

regions in red.17 The predictions of the x-ray template-based AF2 for the different analyzed systems are represented on the 2D-FEL

representation using vertical lines colored from orange to dark blue depending on the MSA depth: AF2 predictions obtained with a 16 MSA

depth are shown with a vertical orange line, 32 in light orange, 64 in light brown, 128 in light cyan, 256 in cyan, 512 in teal, and 1024 in dark

blue. For each studied case, the predictions obtained by AF2 using x-ray templates with O-PC conformations of the COMM domain are

shown in the left, whereas the results with x-ray templates presenting PC-C conformations in the right. Black dots indicate the used x-ray

structures as input templates, and the size of the spheres is proportional to the sequence identity of the x-ray with respect to the studied

TrpB system. FEL, free energy landscape; MSD, mean square deviation
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COMM domain, especially at high MSA depths (ca. 72%
of PC and C structures are predicted, Table S3). The dif-
ferences between the predicted structures for both systems
are small (they only differ in six mutations), although a
slightly higher number of C conformations are suggested
for 0B2-pfTrpB (74 vs. 71% for 0B2-pfTrpB and pfTrpB,
respectively, Table S3). When O and PC templates are
used instead, PC conformations are predicted similarly
for both cases (79 and 21% of O-PC and PC-C, respec-
tively, for both cases). The same strategy when applied in
the case of LBCA and SPM6 TrpB shows that
C conformations of the COMM domain are most fre-
quently predicted irrespectively of the x-ray template
structure used and the MSA depth applied, as shown in
the previous section (Table S3). As discussed in the previ-
ous section, the conformational variance of the obtained
predictions with this x-ray template-based approach is in
line with the structural variance observed in x-ray data
(Figure S3).

2.3 | Exploring the conformational
heterogeneity by altering the multiple
sequence alignment depths and using
molecular dynamics conformations as
templates

In the specific case of TrpB multiple x-ray structures dis-
playing different conformations of the COMM domain
are actually available (Figure S1). However, this is not
the case for most of the systems. In this section, we
assessed and compared the outcome of the template-
based AF2 using conformations extracted from MD simu-
lations instead of x-ray structures. As far as we know, this
was not tested in any of the previously mentioned studies
based on using AF2 to extract information of the confor-
mational landscape.27,28 In particular, we used as input a
reduced number of conformations displaying either C,
PC, or O conformations of the COMM domain extracted
from our recently published FELs at the Q2-bound state

FIGURE 4 Representation of the previously reconstructed FEL of the 0B2-pfTrpB variant,17 and the predictions of the MD extracted

template-based AF2 approach for the different analyzed systems: pfTrpB (a), (b) 0B2-pfTrpB, (c) LBCA-TrpB, and (d) SPM6-TrpB. The x axis

denotes the open-to-closed transition of the COMM domain, which ranges from 1–5 (open, O), 6–10 (partially closed, PC), to 11–15 (closed,

C), the y axis is the MSD deviation from the path of O-to-C structures generated. Most stable conformations are shown in blue, whereas

higher in energy regions in red.17 The predictions of the MD template-based AF2 for the different analyzed systems are represented on the

2D-FEL representation using vertical lines colored from orange to dark blue depending on the MSA depth: AF2 predictions obtained with a

16 MSA depth are shown with a vertical orange line, 32 in light orange, 64 in light brown, 128 in light cyan, 256 in cyan, 512 in teal, and

1024 in dark blue. For each studied case, the predictions obtained by AF2 using as templates conformations extracted from MD simulations

with O-PC conformations of the COMM domain are shown in the left, whereas the results with MD templates presenting PC-C
conformations in the right. (a–d) With vertical lines colored from yellow to teal depending on the MSA depth. The x axis denotes the open-

to-closed transition of the COMM domain, which ranges from 1–5 (open, O), 6–10 (partially closed, PC), to 11–15 (closed, C). Black dots

indicate the used representative MD conformations as input templates. FEL, free energy landscape; MD, molecular dynamics; MSD, mean

square deviation; MSA, multiple sequence alignment
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of the most evolved 0B2-pfTrpB variant (gray dots in
Figure 4).17 Similarly to what was done with x-ray-based
templates, the side-chain conformation was included in
the 3D template (Figures S9 and S10 for the results with-
out side-chain information). When MD-extracted
C conformations are used as input templates, the pre-
dicted structures for pfTrpB and 0B2-pfTrpB present PC
conformations of the COMM, especially if high MSA
depths are used (green lines in Figures 4 and S11). This is
in line with the results obtained in the previous sections
where either the MSA depths were only altered or differ-
ent x-ray templates combined with different levels of
MSA were used. Interestingly, by comparing the range of
predicted structures at high MSA depths for both pfTrpB
and 0B2-pfTrpB systems, which differ only in six distal
active site mutations, a slightly higher ability to adapt
C conformations of the COMM domain is predicted for
the stand-alone 0B2-pfTrpB variant (74% of the predicted
structures adopt PC-C conformations, whereas 67% in
the case of pfTrpB, Table S3). Indeed, some structures
present O-to-C values in the 12–15 range for 0B2 instead
of the 10–13 for pfTrpB with MSA depths higher than
256 (teal vertical lines in Figures 4 and S11). As expected,
the use of O and PC conformations of the COMM
domain as input templates generate mostly PC conforma-
tions for both pfTrpB systems irrespective of the MSA
depth (ca. 85% of the predicted structures present O-PC
conformations for both systems, Table S3). Altogether
these results suggest that AF2 predicts as the lowest in
energy conformation PC structures for pfTrpB and
0B2-pfTrpB. However, by altering the MSA depths and
providing as input templates different conformations of
the COMM domain taken from MD simulations some
hints about the conformational heterogeneity can be
extracted: a higher ability to adopt the catalytically pro-
ductive C conformation is predicted for the stand-alone
0B2-pfTrpB, if compared to pfTrpB.

The same analysis was performed on the ancestral
LBCA-TrpB and SPM6-TrpB design. When
O conformations are used as input templates, PC and
C structures are predicted for LBCA at high MSA
levels, whereas for SPM6 more C conformations are
obtained (Table S3). At low MSA (brown colored lines
in Figure 4), O, PC, and C structures are similarly pre-
dicted for both cases. These results are again suggesting
a higher conformational flexibility for the ancestral
LBCA-TrpB as compared to the SPM6 design, which is
accordance with our previously computed FELs. By
using C conformations as templates, the predictions for
both systems at either high and low levels of MSA
depths yield C structures of the COMM domain
(ca. 91% of the predicted structures present PC-C con-
formations of the COMM domain in both systems,

Table S3). As found for the x-ray template-based AF2
predictions, the conformational variance of the struc-
tures generated with this MD template-based approach
is in line with the structural variance observed in x-ray
data (Figure S3).

2.4 | Exploring the conformational
heterogeneity by short nanosecond
timescale molecular dynamics simulations
from the x-ray template-based AF2
predicted structures

The previous sections have shown that by altering the
MSA depth and providing different sets of templates
(either based on x-ray structures or conformations
extracted from MD simulations) the conformational
landscape of different TrpB systems can be estimated.
To further validate AF2 predictions and assess its
potential application for rapidly estimating the confor-
mational heterogeneity, we decided to run multiple
replica short nanosecond timescale MD simulations
starting from the set of AF2 structures predicted in
Section 2 (2 replicas of 10 ns MD simulations starting
from the ca. 60 different AF2 outputs obtained in the x-
ray template based AF2 approach, that is, ca. 1200 ns
of accumulated MD simulation time for each TrpB var-
iant). In Figure 5, the reconstructed FEL from the set
of MD simulations performed starting from AF2 output
structures is shown on top of the previously recon-
structed FELs of pfTrpB, 0B2-pfTrpB, LBCA-TrpB, and
SPM6-TrpB.17,39 As discussed in the previous sections,
a higher conformational heterogeneity is predicted for
0B2-pfTrpB and pfTrpB with respect to LBCA and
SPM6-TrpB that mostly adopt C conformations of the
COMM domain. Interestingly, larger differences are
observed when comparing 0B2-pfTrpB and pfTrpB that
only differ in six mutations (98.4% of sequence iden-
tity): although there is only one minimum at
C conformations of the COMM domain in both cases,
the estimation of the FEL for 0B2-pfTrpB suggest the
existence of an additional minima at O conformations.
The O-to-C value of the COMM domain at the
C minima is ca. 9 in pfTrpB, whereas ca. 10.5 in
0B2-pfTrpB, thus suggesting a higher ability for adopt-
ing the catalytically productive C conformation in
0B2-pfTrpB, as found in our previous study.17 In the
case of LBCA and SPM6-TrpB a much more restricted
conformational heterogeneity is found, in line with the
previously reconstructed FELs.39 In fact, in our previ-
ous study we found that at the Q2 intermediate LBCA-
TrpB has a wide energy minima at C conformations
(mostly presenting a larger deviation along the y axis),
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which confers the enzyme the ability to visit both cata-
lytically productive and unproductive conformations of
the COMM domain. The estimated FEL obtained here
from the ensemble of short MD simulations starting at
the different AF2 structures also suggest a higher devi-
ation along the y axis, and the ability to visit
C conformation of the COMM domain (O-to-C values
of ca. 11) in line with its high stand-alone activity. The
estimated FEL for LBCA and SPM6-TrpB are similar
(Figure 5), although the C minima for SPM6-TrpB is
wider along the O-to-C axis as it ranges between 9.5
and 12. Although the estimated FELs from this rather
short MD simulations present some deviations from
the previously reconstructed FELs based on well-
tempered multiple-walker metadynamics simulations,
the conformational heterogeneity of the different sys-
tems can be estimated, which suggests its potential
application for rapidly evaluating the effect of muta-
tions into the conformational landscape of enzymes.
Finally, the projection of the accumulated MD dataset
into the principal component space generated based on
the ensemble of available x-ray structures shows no
major deviations with experimentally determined
structures (Figure S12).

3 | DISCUSSION AND
CONCLUSIONS

Tryptophan synthase is a heterodimeric enzyme that fea-
tures a mechanistically complex reaction mechanism
(as shown in Figure 1), together with a fine-tuned confor-
mational ensemble that needs to be optimized for
enhanced function.17,32–37,39 Our previously recon-
structed conformational landscapes of the heterodimeric
complex as well as several isolated TrpB enzymes showed
that by altering the relative stabilities of the open, par-
tially closed, and closed conformations of the catalytically
relevant COMM domain, the reaction steps along the cat-
alytic itinerary are optimized.17 Such conformational
changes play an important role in pre-organizing the
active site for efficient catalysis, for the binding of the
two substrates and for product release. By computation-
ally analyzing multiple TrpBs displaying different stand-
alone activities, we found that enhanced stand-alone
activity requires the ability to adopt closed conformations
of the COMM domain in the absence of the binding part-
ner, as well as a high conformational flexibility to allow
substrate binding and product release.39 The high compu-
tational cost associated to FEL reconstruction limits the

FIGURE 5 Representation of the previously reconstructed FELs of the pfTrpB, 0B2-pfTrpB, LBCA-TrpB, and SPM6-TrpB (shown in

gray scale).17,39 The estimated FEL from multiple replica short nanosecond timescale MD simulations performed starting at the x-ray

template-based AF2 predictions for the different analyzed systems is shown in color on top of the previously reconstructed FELs. The x axis

denotes the open-to-closed transition of the COMM domain, which ranges from 1–5 (open, O), 6–10 (partially closed, PC), to 11–15 (closed,

C), the y axis is the MSD deviation from the path of O-to-C structures generated. Most stable conformations are shown in blue, whereas

higher in energy regions in red.17 FEL, free energy landscape; MD, molecular dynamics; MSD, mean square deviation

CASADEVALL ET AL. 9 of 13



exploration of such conformational changes to only a few
selected enzyme systems, which is a clear limitation for
the routine computational design of new stand-alone var-
iants.19 In this study, we aimed to test the ability of AF2
to quickly estimate the conformational heterogeneity and
changes in the conformational landscapes induced by
mutations. We focused on the following systems: the allo-
sterically regulated pfTrpB enzyme that in the absence of
its binding TrpA partner has restricted conformational
heterogeneity and thus low catalytic activity; the
laboratory-evolved 0B2-pfTrpB that presents stand-alone
activity thanks to the six distal mutations introduced that
recover the allosterically regulated conformational
ensemble; the ancestrally reconstructed LBCA TrpB that
does not require TrpA to operate efficiently as it presents
the ability adopt different levels of closed conformations
of the COMM; and our recently designed SPM6 TrpB var-
iant displaying some stand-alone activity.17,39 By chang-
ing the depth of the MSA used and altering the input
template structures (either from x-ray data or conforma-
tions taken from MD simulations), the conformational
heterogeneity of the systems can be estimated. This is
particularly evidenced by running multiple short nano-
second timescale MD simulations from the provided set
of structures by this tuned AF2 approach and recon-
structing the associated conformational landscapes.

Interestingly, by altering the MSA depth and includ-
ing either x-ray or MD-based structures as templates,
AF2 predicts mostly partially closed (PC) conformations
of the COMM domain for 0B2 and pfTrpB, whereas
closed (C) structures for the ancestral LBCA and SPM6
TrpB design. By further analyzing the output structures
provided by using either C or O templates in the different
systems, one can estimate a higher conformational het-
erogeneity for pfTrpB-based systems, as O, PC, and
C conformations can be generated at both higher and
lower MSA depths. In contrast, LBCA and SPM6 TrpB
predictions are much more restricted to the PC and
C ensemble. The lack of O structures for LBCA-TrpB and
SPM6-TrpB is also in accordance with our previous calcu-
lations at the Q2 intermediate that suggested an infre-
quent transition towards O states as the reaction
progresses, thus suggesting that product release might be
rate-limiting.39 A high similitude in the predictions is
observed when comparing 0B2 and pfTrpB systems,
which is attributed to the high sequence identity between
both systems (only six mutations are introduced in 0B2,
that is, 98.4% of sequence identity). However, AF2 predic-
tions suggest a higher number of C conformations of the
COMM domain for 0B2-pfTrpB variant (74% vs. 67% of
PC-C structures when using C MD templates). This
increased number of C structures for the evolved variant
is in accordance with the reconstructed FELs that show

that at the Q2 intermediate the C conformation of the
COMM is much more accessible for 0B2 than for pfTrpB
in the presence of TrpA (i.e., for pfTrpS complex).17 The
estimation of the conformational landscapes from multi-
ple replica short nanosecond timescale MD simulations
starting at the different x-ray template-based AF2 predic-
tions are in line with the previously reconstructed com-
putationally expensive FELs obtained from well-
tempered multiple-walker metadynamics simulations.39

This suggests that the developed tuned AF2 approach
combined with short MD simulations could be poten-
tially applied for rapidly estimating changes on the con-
formational landscape at a rather reduced
computational cost.

Altogether, the distribution of the AF2 predictions in
the reconstructed FEL highlights how AF2 learned to
locate the global minimum for the input sequence. In this
regard, the increase of co-evolutionary information from
the MSA forces the network to predict structures close to
the global minimum, even if a deviated template is pro-
vided. As it can be rationalized from Figures S4 and S6,
AF2 predicted as the most probable FEL regions those
containing the templates with the highest sequence iden-
tities (see largest spheres in Figures S4 and S6). Thus,
including co-evolutionary information limits the confor-
mational exploration, which highlights the importance of
developing tuned template-based AF2 approaches for
assessing the conformational heterogeneity of protein
structures. The results provided in this study indicate that
by altering the MSA depth and using either x-ray struc-
tures or conformations taken from MD simulations, the
conformational heterogeneity of related TrpB variants
can be quickly estimated. This is specially the case if AF2
predictions are then further evaluated by means of multi-
ple short nanosecond timescale MD simulations.
Although much drastic differences are observed when
comparing systems presenting lower sequence identities,
subtle conformational changes induced by a small num-
ber of mutations can also be potentially captured. This is
exciting as it suggests that AF2 could be applied for asses-
sing the effect of the introduced mutations on the confor-
mational landscape at a rather reduced computational
cost, and opens the door to new AF2-based computa-
tional enzyme design approaches.

4 | MATERIALS AND METHODS

AF2 structure prediction starts with a FASTA sequence
as an input that is used to generate the MSA and find
structural templates, with which AF2 was trained. Five
models are obtained as a result, which come from differ-
ent combinations of random seeds, and considering a
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different number of structural templates and extra
sequences. This blend of strategies leads to a larger diver-
sity in the predictions.41 Even so, the obtained structures
are often very similar as they are exploring the lowest in
energy conformations of the protein. In recent papers,
different strategies have been proposed to overcome this
static picture provided by AF2: (a) del Alamo et al.27 the
number of sequences of the MSA provided to AF2 was
modified to contain as few as 16 sequences, they also
reduced the number of recycles to 1, and avoid the final
MD simulation to reduce the computational cost of the
pipeline; (b) Stein and coworkers proposed to replace
some specific residues within the MSA to alanine or
another residue to potentially manipulate the distance
matrices leading to alternate conformations.28 To investi-
gate whether AF has learned a coevolution-independent
potential function for scoring protein structures Roney
and Ovchinnikov evaluated the effect of using decoy
structures as templates with missing amino acids.40 In
this work, we fine-tune several parameters that differ
from the default AF2: (1) MSA depths, as described in
the previously mentioned papers,27,28 giving less co-
evolution information and thus leading to an increase of
the conformation diversity and (2) the set of templates
used, that come either from a subset of x-ray structures
(as done in del Alamo et al.27), or from conformations
taken from previous MD simulations17 (this was not
tested in any of the previously mentioned papers).

In particular, we used the following protocol: Starting
from the MSA depth alteration, we reduced the number
of recycles to one (“num_recycle = 1”) because of perfor-
mance reasons. Similarly, Amber minimization was also
deactivated, so no structure relaxation was requested
(“amber_relaxed” = none). Each of the five models were
run with 10 different MSA depths. This value is con-
trolled by “max_extra_msa” and “max_msa_clusters”
parameters. The first parameter is described as the num-
ber of extra sequences used; and the latter determines the
number of the sequence clusters used for the AF2 neural
network. Here, the first parameter was comprised
between 5120 and 32. Note that, as described in a previ-
ous paper,27 we set the latter parameter as the half of the
former parameter except when 5120 sequences are used.
In that particular case, “max_msa_clusters” parameter
was set to 512.27 In order to include templates, two strate-
gies were performed: (1) considering x-ray structures and
(2) conformations extracted from our previously recon-
structed free energy landscape of 0B2-pfTrpB.17 Nine x-
ray structures (Figure S2) and 11 MD structures
(Figure S8) were used as templates presenting different
levels of closure of the COMM domain. The parameters:
“num_recycle” and “amber_relaxed” were also main-
tained as described before. We focused on

“model_ptm_2” as it presented the most confident struc-
ture results in terms of the predicted LDDT-Cα score
(pLDDT) and TM-score (pTM) values. In the case of
template-based calculations, the MSA depth was altered
in the 1024–16 range (“max_extra_msa” comprised
between 1024 and 16, and “max_msa_clusters” was set at
its half). Finally, the parameter “reduce_msa_clusters_-
by_max_templates” was deactivated. Also, AF2 calcula-
tions considering only the targeted sequence in the MSA
was done to ignore co-evolution information (Figures S5
and S10).

4.1 | Molecular dynamics simulations

The starting structures for the four enzymes (pfTrpB,
0B2-pfTrpB, LBCA-TrpB, and SPM6-TrpB) were generated
with the predictions of the x-ray template-based AF2
approach. We performed two replicas of 10 ns MD simula-
tions at the Q2 intermediate starting from a total of 60, 59,
62, and 59 AF2 structures for pfTrpB, 0B2-pfTrpB, LBCA-
TrpB, and SPM6-TrpB systems, respectively. All calcula-
tions were performed using a modification of the amber99
force field (ff14SB) using AMBER 20 (see Appendix S1 for a
complete description of the methods).42
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