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Abstract: Obesity has become a widespread disease that is harmful to human health. Fat 
homeostasis is essentially maintained by fat accumulation and energy expenditure. Studies 
on brown adipose tissue (BAT) represent a promising opportunity to identify 
a pharmaceutical intervention against obesity through increased energy expenditure. Long 
non-coding RNAs (lncRNAs) were thought to be critical regulators in a variety of biological 
processes. Recent studies have revealed that lncRNAs, including ones that are BAT-specific, 
conserved, and located at key protein-coding genes, function in brown adipogenesis, white 
adipose browning (ie, beige adipogenesis), and brown thermogenesis. In this review, we 
describe lncRNA properties and highlight functional lncRNAs in these biological processes, 
with the goal of establishing links between lncRNAs and BAT. Based on the advances of 
lncRNAs in the regulation of BAT, we discussed the advantages of potential lncRNA-based 
obesity drugs. Further BAT lncRNA-based drug development may provide new exciting 
approaches to defend obesity by regulation of fat homeostasis. 
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Introduction
In the last several decades, obesity has become a widespread public disease due to 
a global increase in the number of obese individuals,1,2 and has been clinically 
evidenced as a high-risk factor for several serious chronic diseases including type 2 
diabetes, cardiovascular diseases, and certain fatal cancers.3–5 Obesity develops 
primarily due to an excessive accumulation of white adipose tissue (WAT), which 
mainly gets distributed in the subcutaneous and visceral regions.6 While the process 
is complicated, fat homeostasis is essentially maintained by fat accumulation and 
energy expenditure. Combating obesity requires either a decrease in fat accumula-
tion or an increase in energy expenditure. In this regard, tremendous progress has 
been made to understand the mechanism of WAT development in order to identify 
a method to decrease fat accumulation.7–9 Furthermore, strategies based on brown 
adipose tissue (BAT), another type of adipose tissue specialized for energy expen-
diture, have been conceived in recent years.

Studies on brown adipose tissue (BAT) have been considered a promising 
opportunity to find a pharmaceutical intervention for the treatment of obesity 
with energy dissipation, and therefore, have attracted considerable attention.10–12 

BAT is a type of adipose tissue that had originally been observed in the inter-
scapular region of rodents and newborn infants, and could uniquely induce non- 
shivering thermogenesis via un-coupling respiration licensed through un-coupling 
protein 1 (UCP1) on the mitochondrial membrane under cold exposure.13,14 BAT is 
innervated by the sympathetic system and histological studies have shown that 
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nerve fibers distribute both at the parenchymal space and 
around blood vessels of BAT.15,16 In contrast to white 
adipocytes that contain few mitochondria and unilocular 
lipid droplets, brown adipocytes contain abundant mito-
chondria and multilocular lipid droplets, which matches 
BAT function of energy expenditure. Interestingly, a BAT- 
like fat (referred to beige fat thereafter) has been found to 
be experimentally induced in WAT under the condition of 
constant cold exposure17 or β-adrenergic receptor 
activation,18 and shares common characteristics with 
bona fide BAT including high expression of UCP1 and 
the capacity of uncoupling respiration.

The presence of BAT in humans was reported to posi-
tively correlate with resting metabolic rate and negatively 
correlate with BMI, and genetic ablation of BAT in mice 
increased susceptibility to obesity.19–21 Hence, increased 
attention has been placed on orchestrated genetic mechan-
isms of brown adipogenesis, the transition from WAT to 
BAT (referred to as ‘beige adipogenesis’ thereafter), and 
brown thermogenesis. Some transcription factors (TFs) 
and cofactors, including peroxisome proliferator-activated 
receptor α (PPARα), PPARγ, CCAAT/enhancer-binding 
protein β (C/EBPβ), transcription factor early B-cell factor 
2 (EBF2), PR domain containing 16 (PRMD16), zinc 
finger and BTB domain-containing 7b (Zbtb7b), and 
PPARγ coactivator 1α (PCG1α) have been identified to 
modulate different BAT biological processes.22–25

As a class of regulatory RNA molecules, long non- 
coding RNAs (lncRNAs) have attracted increased atten-
tion in the field of genetics. LncRNAs continue to be 
increasingly identified in several different types of tissue 
among vertebrates and have been found to be involved in 
many biological processes including cell proliferation and 
differentiation,26,27 cell aging,28 and disease 
development.29 On the other hand, recent studies have 
highlighted an important role for lncRNAs in regulating 
fat metabolism.30 However, the relationship between 
lncRNAs and the BAT biological processes has not yet 
been fully elucidated. Recent studies have indicated that 
many different lncRNAs participate in the regulatory net-
work of brown adipogenesis, beige adipogenesis, and 
brown thermogenesis.11,12,31–37 Herein, we depict 
lncRNA characteristics and summarize recent advances 
that have been made on the most prominent lncRNAs in 
the regulation of biological processes in brown/beige fat, 
and thus may facilitate a better understanding of lncRNAs 
and their regulatory mechanisms in BAT.

An Overview of LncRNA
Canonically, the genetic central dogma indicates that 
messenger RNAs (mRNAs) are the intermediary mole-
cules that serve to deliver information from DNA to the 
production of a protein.38 However, with the rapid 
development of high-throughput sequencing technology, 
increasingly more RNA molecules that are not able to 
code for protein production have been demonstrated to 
play important roles in a variety of biological processes, 
despite the fact that they were historically thought to be 
junk RNAs or transcriptional noise.39 Since these RNAs 
cannot be translated into proteins, they were termed as 
non-coding RNAs (ncRNAs). The Human Genome 
Project revealed that only a very small portion of the 
entire genome can actually be transcribed into RNAs, 
and a substantial part of the total transcripts were 
ncRNAs.40,41 Generally, ncRNAs can be classified into 
transfer RNAs (tRNAs), ribosomal RNAs (rRNAs), 
PIWI-interacting RNAs (piRNAs), microRNAs 
(miRNAs) and lncRNAs.

LncRNAs are a type of endogenous RNA molecule 
that contains >200 nucleotide residues and lacks func-
tional open reading frames (ORFs).42 Based on the 
location of lncRNAs in the genome, they can be sepa-
rated into five types including intergenic lncRNAs 
(lincRNAs), antisense lncRNAs (AS lncRNAs), intronic 
lncRNAs, sense-overlapping lncRNAs, and bidirectional 
lncRNAs43,44 (Figure 1). In contrast to the functional 
role of other ncRNAs, such as miRNAs that repress 
mRNA translation by binding to the target mRNA 3ʹ- 
untranslated region (UTR),45 the functional role of 
lncRNAs in the biological process is significantly com-
plex. LncRNAs can act as competing endogenous RNAs 
(ceRNAs) to neutralize miRNAs to protect mRNA trans-
lation from miRNA-repression in the cytosol, thus lead-
ing to positive regulation of mRNA expression.46,47 

Interestingly, lncRNAs that act as ceRNAs competi-
tively bind to not only miRNAs but also proteins, 
which negatively regulates its corresponding protein.48 

LncRNAs that act as molecular vehicles recruit DNA 
methyltransferases or histone modifiers to the genome or 
chromatin to change properties of the epigenome and 
regulate genomic transcription.11,49 LncRNAs that act as 
imprinted genes specifically modulate the expression of 
monoallelic genes.11,50 LncRNAs that act as precursors 
of small RNAs generate regulatory miRNAs that exert 
additional function of repressing relevant mRNAs.51 On 
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the other hand, lncRNAs can bind to specific proteins in 
order to influence pre-mRNA processing, thus regulating 
the diversity of gene isoforms.52

LncRNAs in BAT
BAT Tissue-Specific LncRNAs: Essential 
or Positive LncRNA Roles in BAT 
Biological Processes
Definition of tissue-specific RNAs from different types of 
tissue can help identify potential functional BAT genes. 
Recent studies have revealed a considerable number of 
lncRNAs with BAT specificity among different types of 
tissue through de novo reconstruction of transcriptomes or 
meta-analysis of published datasets.31–33 Among these, 
three lncRNAs were validated to be involved in BAT 
biological processes. Thus, we present these three BAT- 
specific lncRNAs and their functions.

LncRNA-BATE1
Alvarez-Dominguez et al designed a pipeline for tissue- 
specific RNA-seq analysis to identify potential regulatory 
lncRNA candidates in BAT.31 Transcriptome profiling ana-
lysis was utilized to comprehensively detect a total of 
1535 polyadenylated lncRNAs in BAT, epididymal WAT 
(eWAT), and inguinal WAT (iWAT), among which 127 
lncRNAs exhibited BAT-specificity across 30 types of 
primary tissue datasets retrieved from the mouse 
ENCODE project.31 Overall, approximately a third of the 
127 lncRNAs were found to be up-regulated during brown 
adipogenesis and targeted by key TFs (PPARγ, C/EBPα, 
and C/EBPβ).31,53 In total, 40 lncRNAs were selected 
based on three criteria of degree of BAT specificity, degree 
of up-regulation during brown adipogenesis, and 

abundance of expression. These 40 lncRNAs were there-
fore called lncRNA-BATEs (s = 1–40).

Among the lncRNA-BATEs, LncRNA-BATE1 was 
found to be a lincRNA containing 2 exons and almost 
averagely distributed across both the nucleus and cyto-
sol of mature brown adipocytes.31 Knockdown (KD) of 
lncRNA-BATE1 during brown preadipocytes differentia-
tion led to a limited change in lipid accumulation but 
significant down-regulation of BAT marker genes 
including Cidea, C/EBPβ, PGC1α, PRDM16, UCP1 
and PPARα, indicating that lncRNA-BATE1 has 
a limited influence on lipogenesis but a great impact 
on brown adipogenesis.31 KD of lncRNA-BATE1 was 
found to hinder UCP1 and PGC1α expression during 
induction of white preadipocyte brown differentiation, 
suggesting that lncRNA-BATE1 has a function in the 
beige adipogenesis.31 Oxygen consumption assay 
showed lower oxygen consumption with KD of 
lncRNA-BATE1 in brown adipocytes, indicating an 
essential function in the thermogenesis of brown 
adipocytes.31 Moreover, global gene expression analysis 
conducted by RNA-seq in mouse mature brown adipo-
cytes revealed that depletion of lnc-BATE1 led to down- 
regulation of genes that were related to brown adipogen-
esis and mitochondrial biogenesis and function.31 

A nuclear matrix factor of heterogeneous nuclear ribo-
nucleoprotein U (hnRNPU) was previously reported to 
guide lncRNA-Firre, an essential lncRNA for white 
adipogenesis, to its target to play role.53,54 RNA immu-
noprecipitation (RIP) showed that lncRNA-BATE1 
interacts with hnRNPU to form a functional ribonucleo-
protein complex to regulate brown adipocyte develop-
ment (Figure 2). This comprehensive data clearly sheds 
light onto a functional lncRNA that is required for BAT 

Figure 1 Classification of lncRNAs. The red arrow represents mRNA transcriptional start site (TSS) and transcriptional direction. The blue blocks represent coding gene 
exons and the grey blocks represent introns or intergenic regions of the genome. The green blocks represent lncRNA exons and their relative position to mRNA exons or 
TSS. The triangles in the green blocks represent the relative direction of lncRNAs to mRNA. The lncRNA without a triangle indicates that it could be a transcript from 
a positive-strand and negative-strand of the genome.
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brown adipogenesis, beige adipogenesis, and 
thermogenesis.

LncRNA-BATE10
Similar to lncRNA-BATE1, lncRNA-BATE10 is also 
a member of the lncRNA-BATEs family that manifests 
BAT-specificity. Another systematic transcriptome study 
on adipose tissue indicated that lncRNA-BATE10 was 
dramatically induced in iWAT by cold exposure, β- 
adrenergic agonist stimulation, and extensive physical 
exercise, respectively.32 Furthermore, lncRNA-BATE10 
was found to be up-regulated during activation in cold 
exposure for 6 hours and down-regulated during inactiva-
tion at 30°C for 7 days in BAT, indicating opposite direc-
tions of the gene expression program upon the dual 
stimulations of temperature.32 These lncRNA transcrip-
tome analyses indicate a potential function of lncRNA- 
BATE10 in the response to a variety of stimulations in 
both BAT and WAT. LncRNA-BATE10 is approximately 
1.7 kb in length, contains 4 exons, and is located in an 
intergenic region of mouse chromosome 18.32 Similar to 
lncRNA-BATE1, KD of lncRNA-BATE10 did not cause 

a significant difference in cell morphology, lipid accumu-
lation, and expression of common lipid markers including 
PPARγ, CEBPα, and FABP4 during differentiation of 
brown preadipocytes.32 However, KD of lncRNA- 
BATE10 led to significant impairment in BAT-selective 
marker genes including UCP1 and PGC1α, and down- 
regulation of respiratory electron transport at the genome- 
wide level, as detected by gene-set enrichment analysis 
(GSEA),32,55 a knowledge-based approach for interpreting 
genome-wide expression profiles. On the other hand, 
lncRNA-BATE10 is required for beige adipogenesis as 
KD of lncRNA-BATE10 led to down-regulation in the 
expression of BAT-selective genes during both processes 
of white primary adipocytes browning and iWAT 
browning.32 Further analysis of the lncRNA-BATE10 on 
thermogenic activation of brown adipocytes stimulated by 
norepinephrine (NE) in the differentiated brown adipo-
cytes showed that KD of the lncRNA-BATE10 hindered 
the up-regulation of UCP1 and PGC1α, suggesting an 
essential role for BAT-selective gene expression program 
in thermogenesis.32 Celf1, an RNA-binding protein (RBP), 
binds the 3ʹ UTR of its target mRNAs to promote RNA 

Figure 2 LncRNAs involved in BAT biological processes. 
Abbreviations: BAP, brown adipocyte progenitor; WAT/WAP/BeAP, white adipose tissue/white adipocyte progenitor/beige adipocyte progenitor; EE, energy expenditure; 
PEGs, paternally expressed genes.
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degeneration and repressing translation.56 The promoter 
binding site and truncated promoter transfection assay 
determined that the lncRNA-BATE10 is regulated by the 
cAMP-Creb axis and further experiments validated that it 
mechanistically competes with PGC1α mRNA for Celf1 
binding during differentiation of brown preadipocytes,32 as 
it is a ceRNA in brown adipogenesis (Figure 2).

AK079912
The lncRNA AK079912 was originally identified in 
mouse using a full-length cDNA functional annotation.57 

Xiong et al found that AK079912 was a brown adipose 
enriched lncRNA using bioinformatics analysis of pub-
lished RNA-seq datasets, which indicated that AK079912 
expression was up-regulated 100-fold in BAT compared to 
eWAT.33 Cold exposure induced up-regulation of 
AK079912, Blnc1 (a lncRNA gene related to BAT devel-
opment), and UCP1 in both BAT and iWAT, indicated 
a potential role of AK079912 in thermogenesis.33 

Additionally, KD and overexpression of AK079912 
revealed that AK079912 is a positive regulator of brown 
adipogenesis, WAT browning, and brown adipocyte mito-
chondrial biogenesis.33 Mechanistically, the transcription 
of AK079912 was found to be regulated by PPARγ bind-
ing to the AK079912 promoter33 (Figure 2). These results 
reported a PPARγ-regulated positive modulator of lncRNA 
expression involved in brown adipogenesis, beige adipo-
genesis, and brown thermogenesis.

Conserved LncRNAs Between Human 
and Mouse: Most Potential LncRNAs of 
Preclinical Significance for Humans 
Fighting Against Obesity
For a long time, it was generally accepted that lncRNAs 
were poorly conserved across species,58–60 which hindered 
the exploration of lncRNAs among different species. 
However, recent studies have demonstrated several 
sequences and functionally conserved BAT lncRNAs 
between humans and mice. These conserved lncRNAs 
might have the most potential and preclinical significance 
for the fight against obesity.

Blnc1
Blnc1 is a lncRNA that contains a single exon that is 
approximately 965 bp in length. The function and 
mechanism of Blnc1 during brown adipogenesis was 

initially illustrated by Zhao et al.34 Blnc1 is transcribed 
from the intergenic region and was found to be up- 
regulated during brown adipocyte differentiation and 
exhibits specificity of expression in BAT compared to 
eWAT.34 Additionally, Blnc1 expression was induced in 
eWAT when treated with a β3-adrenergic agonist of 
CL-316,243.34 This lncRNA is thought to be essential 
for brown adipogenesis as KD of this lncRNA signifi-
cantly impaired brown adipogenesis.34 In vivo, gain-of- 
function transplantation experiment strongly implicated 
Blnc1 act as a lncRNA activator for brown adipogen-
esis and brown fat formation as fad pad formed from 
exogenous preadipocytes that had transduced Blnc1 
retroviral vectors expressed higher levels of UCP1, 
Cidea, and FABP4.34 Furthermore, gain- and loss-of- 
function during differentiation of beige adipocyte pro-
genitor reveal that Blnc1 is sufficient and required for 
beige adipogenesis.34 Additionally, further binding 
event study revealed that Blnc1 exerts its function by 
forming a ribonucleoprotein complex with EBF2.34 

These discoveries on the murine model exhibited 
a powerful positive lncRNA regulator of the BAT bio-
logical processes.

To investigate whether Blnc1 is functionally con-
served across humans and mice, as well as Blnc1’s 
molecular mechanism in humans, Mi et al analyzed 
genomic DNA sequences adjacent to mouse and 
human Paqr9 gene and found mouse Blnc1 and 
human Blnc1 were both transcribed near from Paqr9 
gene of their own genome.61 Obtaining full-length 
cDNA sequence and alignment analysis indicated that 
mouse and human Blnc1 contain two highly conserved 
segments as they share high sequence identity, which 
suggests sequence conservation between mouse Blnc1 
and human Blnc1.61 Interestingly, overexpression of 
human Blnc1 during mouse brown preadipocytes dif-
ferentiation exhibited functional conservation in 
induced thermogenic genes and human Blnc1 was 
able to rescue KD of mouse Blnc1, indicating func-
tional conservation between the human and mouse 
Blnc1.61 The ability of lncRNAs to form secondary 
structures probably contributes to its complicated 
function.62,63 Blnc1 was predicted to contain three dif-
ferent domains, with one domain being responsible for 
transcriptional activation of brown adipocytes genes 
including UCP1, Elvol3, Pcg1α, and Dio2.61 Blnc1 
has been shown to physically interact with hnRNPU 
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which, in turn, physically interacts with EBF2.61 Thus, 
hnRNPU acts as a vehicle between Blnc1 and EBF2. 
Intriguingly, hnRNPU also serves as a medium to cate-
nate Blnc1 to Zbtb7b (Figure 2), another transcription 
cofactor that reportedly plays a crucial role in brown 
fat development.25 Collectively, these studies reveal 
Blnc1 acts as a positive conserved lncRNA in the 
regulation of brown adipogenesis, beige adipogenesis, 
and brown thermogenesis.

H19
As it was first identified in imprinted lncRNA, H19 has 
been shown to play a role in multiple biological pro-
cesses including cancer formation,64 cell proliferation 
and differentiation,65,66 and immune response.67 This 
lncRNA is one of the transcripts transcribed from the 
imprinted H19/IGF2 locus. H19 is conserved on the 
human 11p15.5 and mouse chromosome 7, and is 
expressed exclusively from the maternal allele.64,68 

A recent study revealed that H19 was highly expressed 
in BAT in comparison to subcutaneous WAT (scWAT) 
and visceral WAT (vWAT).11 H19 was found to be, 
respectively, up-regulated and decreased in cold expo-
sure and dietary-induced obesity mice BAT, but did not 
show a similar manner of expression in scWAT and 
vWAT in the two conditions,11 which argues for selec-
tive involvement in brown adipogenesis over beige 
adipogenesis. During differentiation of the BAT stro-
mal-vascular fraction (SVF) adipocyte precursor cell, 
RNA interference (RNAi) led to hindered lipid accu-
mulation, impaired expression of BAT markers (ie, 
UCP1 and Cidea) and several common adipose tissue 
markers (ie, PPARγ, FABP4, and CEBPα), indicating 
that H19 is required for commitment of BAT.11 In vivo, 
H19 transgenic (TG) mice strongly prevent diets- 
induced weight gain with mounting energy expendi-
ture, and H19 expression was found to be negatively 
related to BMI in human population, which suggests 
that it may function as a potential therapeutic molecule 
for energy dissipation and counteraction of obesity.11 

Further interrogation of the underlying mechanism on 
H19 regulating BAT revealed that H19 improved insu-
lin sensitivity and mitochondrial biogenesis, and man-
aged imprinted gene networks that consisted of 
paternally expressed genes (PEGs) including GPR1, 
IGF2, Peg10, Peg3, Plagl1, miR184, miR298, and 
miR335 by recruiting MBD1 (a chromatin modifier)11 

(Figure 2). These data clearly indicate an important 

role for H19 in BAT protection from dietary obesity 
by constraining monoallelic gene expression to pro-
mote brown adipogenesis and thermogenesis.

Lnc-Uc.417
Aging is accompanied by a decline in the regenerative 
capacity of brown adipocyte in humans.19,69 In order to 
investigate age-related lncRNAs in BAT, the ultra- 
conserved lncRNA lnc-uc.417 that is primarily distrib-
uted in the nucleus and increases with age in BAT was 
selected to further research.35 This lncRNA was found 
to share highly conserved sequence similarity among 
mouse, human, dog, elephant, chicken, African clawed 
fogs, and zebrafish. Furthermore, lnc-uc.417 shares 
100% sequence identity between human and mouse.35 

Cold induction and agonist stimulation (CL-316,243, 
forskolin, or db-cAMP) reduced lnc-uc.417 expression 
in BAT and differentiated interscapular BAT primary 
SVF cells, respectively.35 Overexpression of lnc-uc.417 
mediated by lentivirus transduction during brown pre-
adipocyte differentiation led to limited changes in lipid 
accumulation but significant a decreased in expression 
of brown adipogenic genes including PRDM16, 
PPARγ2, C/EBPβ, EBF2, and Cidea.35 Moreover, over-
expression of lnc-uc.417 led to not only a lower 
respiration rate in the mitochondria but also decreased 
expression of related mitochondrial genes, such as 
UCP1, PGC1α, and CytC.35 Further bioinformatics 
analysis and protein detection have demonstrated that 
lnc-uc.417 moderately suppresses the phosphorylation 
of p38MAPK without affecting the total protein levels 
of p38MAPK35 (Figure 2). These data indicate that lnc- 
uc.417 functions as a conserved negative lncRNA reg-
ulator of brown adipogenesis and thermogenesis.

Lnc-dPrdm16
LncRNA expression is generally specific to certain cell 
types and most of the detectable lncRNAs can be sig-
nificantly differentially expressed, even among closely 
related cell type,70,71 which hinders the understanding 
of human adipose lncRNAs. In order to address this 
issue, Ding et al constructed a comprehensive human 
adipose lncRNA catalog from human fetal BAT, adult 
omental WAT (oWAT), and adult scWAT. Lnc- 
dPrdm16, also known as LINC00982, is one of the 
lncRNAs from the catalog that was found to be synte-
nically conserved between humans and mice.12 Lnc- 
dPrdm16 contains 2 exons, is mainly expressing in 
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the cytosol, and was found to be a bidirectional 
lncRNA that is located divergently from Prdm16, 
a master regulator for brown adipocyte biology.12 Lnc- 
dPrdm16 is known to positively regulate Prdm16 
expression at the beginning of Ding’s research and 
was predicted to exert canonical functions including 
lipid catabolic processes, cellular lipid metabolic pro-
cesses, and fatty acid catabolic processes using Gene 
Ontology (GO) enrichment based on its highly co- 
expressed protein-coding genes.12,72 Furthermore, RT- 
qPCR results showed lnc-dPrdm16 is significantly 
higher expressed in BAT than oWAT and scWAT, indi-
cating a potential regulatory function in BAT. KD of 
lnc-dPrdm16 during primary brown adipocytes differ-
entiation led to a reduction in lipid accumulation, 
down-regulation of general adipogenic markers, and 
down-regulation of brown fat markers (ie, UCP1, C/ 
EBPβ, and lnc-BATE1), suggesting that it functions as 
a required regulator in brown adipogenesis. 
Additionally, KD of lnc-dPrdm16 led to a reduction 
of both BAT-selective and pan-adipogenic marker 
expression during induction of iWAT browning 
in vivo, indicating that lnc-dPrdm16 is required for 
maintaining a mature adipocyte program in WAT and 
BAT marker induction during iWAT browning12 

(Figure 2).

Anti-Sense LncRNAs Located at Key 
Protein-Coding Genes: Positive 
Regulators in Beige Adipogenesis and 
Thermogenesis
LncRNAs can regulate genes proximal to them, which is 
known as cis-regulation.73,74 As a secretory organ, WAT is 
reported to secrete hormones in an autocrine, paracrine, 
and endocrine manner.75 LncRNAs that are located on the 
locus of a hormone gene might regulate their correspond-
ing hormone gene, which helps expand our understanding 
of the metabolic functions of BAT. On the other hand, 
some known critical BAT TF genes might be regulated 
by certain lncRNAs. However, whether these key protein- 
coding genes are regulated by neighboring lncRNAs in 
a cis-regulatory manner might need further investigation.

AdipoQ as LncRNA
Previous studies have shown that AS lncRNAs regulate their 
neighboring genes both positively or negatively.76,77 AdipoQ 
AS lncRNA is translated from the opposite strand to AdipoQ 

mRNA transcript. The AdipoQ protein is a selectively 
expressed hormone in adipocytes that modulates glucose 
and lipid metabolism in order to maintain energy 
homeostasis.78 A recent study demonstrated that overexpres-
sion of AdipoQ AS lncRNA by intraperitoneal injection of 
adenoviruses into mice that consumed a high-fat diet (HFD) 
led to an up-regulation of BAT thermogenic genes including 
UCP1, PGC1α, and PRDM16, and decreased BAT triglycer-
ides (TG) content.36 Further interrogation of AdipoQ AS 
lncRNA regulation during adipogenesis revealed that it is 
bound to the AdipoQ mRNA to form an RNA duplex (Figure 
2). In addition, the distribution of AdipoQ AS lncRNAs in 
adipocytes has been reported to exhibit dynamic change 
during differentiation, and is distributed approximately 
equally into nucleus and cytoplasm in preadipocytes, and 
almost completely distributed in the cytoplasm in mature 
adipocytes,36 which indicates a transferring process during 
preadipocyte differentiation. These findings provide 
a potential novel therapeutic target of AS lncRNA located 
at a hormone gene, and might protect patients from obesity- 
related metabolism diseases. AdipoQ AS lncRNA acts as 
a ceRNA to attenuate AdipoQ gene post-transcriptional 
translation. However, whether this lncRNA regulates an 
AdipoQ genomic element to influence AdipoQ transcription 
in cis-manner might need further investigation.

GM13133
You et al identified GM13133, an AS lncRNA that is 736 bp 
in length and overlaps with PRDM16, which is significantly 
induced in BAT during canonical adipose browning protocol 
of cold exposure, β-adrenergic agonist, and cAMP.37 

Overexpression of GM13133 during white adipocyte differ-
entiation causes an increased number of mitochondria, up- 
regulation of UCP1 expression, slightly increased oxygen 
consumption rate and gives rise to the characteristics of 
brown adipocytes.37 Further investigation of differentially 
expressed genes during white-to-brown adipocytes transition 
with the interference of GM13133 revealed that GM13133 
regulates the thermogenic program through cAMP signaling 
pathway.37 Overexpression of GM13133 moderately but not 
significantly up-regulates its neighboring gene PRDM16 
expression.37 On the other hand, whether GM13133 is 
required for PRDM16 expression is unknown. Therefore, 
whether PRDM16 is cis-regulated by GM13133 might need 
further validation. Overall, these results highlight an AS 
lncRNA that plays an important role in beige adipogenesis 
and brown thermogenesis (Figure 2).
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Conclusions and Future 
Perspectives
BAT has been considered a potential target for tackling 
obesity due to its unique function of energy expenditure. 
LncRNAs were a class of key regulators that are involved 
in many biological processes including BAT development. 
LncRNAs are defined by their transcript length and protein- 
coding ability. The length of a lncRNA transcript is measured 
from exon start and end site. On the other hand, the protein- 
coding ability of a lncRNA cannot easily be calculated pre-
cisely. In this review, most of the lncRNAs were predicted 
using multiple coding software in the analysis pipeline in 
order to ensure that they were indeed non-coding.12,31,32,34,35 

Notably, Blnc134 and uc.41735 were identified using extra 
mass hypothetical protein expression and spectrometry ana-
lysis in vitro, respectively, which improved the lncRNA 
reliability that these are non-coding RNAs. The combination 
of bioinformatics prediction and in vitro protein analysis is 
worthy of being adopted in the identification of novel 
lncRNAs in future studies. The transcripts with a single 
exon generally become discarded in the data processing of 
lncRNA identification in several studies.12,31,79 However, the 
single exon lncRNA Blnc1 was proven to play an important 
role in BAT biological processes,34 which suggests more 
attention should be paid to single exon lncRNA identifica-
tion. RNAi was employed to explore BAT functional 
lncRNAs and lncRNAs including lnc-BATE131 and 
Blnc134 were verified by the rescue experiments, which 
was able to verify their robust functional role in BAT 

biological processes. Despite the fact that AS lncRNAs are 
generally considered to function in cis-manner, there has 
been no evidence that AS lncRNAs only play role in cis. 
Hence, further research should be conducted to indicate both 
the cis- and trans-regulation of AS lncRNAs in BAT. Among 
different types of ncRNAs, binding to specific protein is one 
of the hallmarks of lncRNAs. Experiments such as RNA 
immunoprecipitation, RNA pull down, and immunoblotting 
have confirmed that some lncRNAs, including lnc-BATE1, 
lnc-BATE10, Blnc1 and H19, interact with certain proteins in 
BAT biological processes. However, the protein partners of 
several lncRNA, such as lnc-dPrdm16, GM13133, and 
AdipoQ AS lncRNA, have yet to be elucidated. On the 
other hand, the lncRNA functions, such as neutralizing 
miRNA to protect mRNA translation from miRNA binding, 
have been found in WAT or other tissue development,80–83 

though it, remains to be explored in BAT.
Despite the fact that many lncRNAs have been identi-

fied to play potential roles in BAT development by de 
novo reconstruction of transcriptome,12,31,32 only a small 
portion of lncRNAs including BAT-specific ones, 
sequence and functional conserved ones, and those 
located at key protein-coding genes have been verified to 
play crucial roles in the brown adipogenesis, beige adipo-
genesis, or brown thermogenesis in vitro or in vivo (Table 
1, Figure 2). Most lncRNAs play roles that depend on the 
regulation of certain TFs or transcription cofactors, such 
as EBF2, PPARγ, and Celf1 (Figure 2). Despite the com-
plexity of lncRNA mechanisms in regulating the BAT 

Table 1 Characterization of LncRNAs in the Regulating BAT Biological Processes

LncRNA Cellular Location Organism Functions

LncRNA-BATE131 Nucleus and 
cytosol

Mouse Required for brown adipogenesis, beige adipogenesis, and thermogenesis

LncRNA-BATE1032 Nucleus and 
cytosol

Mouse Required for brown adipogenesis, beige adipogenesis, and thermogenesis

Blnc125,34,61 Nucleus Mouse and human Promotes brown adipogenesis, beige adipogenesis, and thermogenesis.

Lnc-dPrdm1612 Cytosol Mouse and human Required for brown adipogenesis and beige adipogenesis.

H1911,89 Ribosome Mouse and human Promotes brown adipogenesis and thermogenesis.

Lnc-uc.41735 Nucleus Mouse Impairs brown adipogenesis and thermogenesis.

AdipoQ AS lncRNA36 Dynamic Mouse Promotes brown thermogenesis.

GM1313337 Unknown Mouse Promotes beige adipogenesis and thermogenesis.

AK07991233 Nucleus Mouse Promotes brown adipogenesis, beige adipogenesis, and thermogenesis.
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biological network, emerging technologies such as single- 
cell RNA-seq,84 chromatin accessibility analysis,85 and 
multi-omics study86 have shown the powerful capacity 
to reveal deeper insight into RNA regulatory mechanisms 
and may contribute to the precise interrogation of the 
mechanisms by which lncRNA regulates BAT biological 
processes. Inversely, efficient genetic editing of lncRNA 
gene might help to validate lncRNA functions in vivo, 
which can speed up the preclinical research of lncRNA- 
based drugs. In contrast to other types of RNA molecules 
(such as mRNAs), lncRNAs are expressed at relatively 
lower levels in tissues, which suggests that most lncRNAs 
have a powerful regulatory function at even a low expres-
sion level. Hence, possible lncRNA-based drugs can be 
more efficient at low doses in treatment. LncRNAs, for 
instance Blnc1, exhibit the ability to directly recruit cer-
tain TFs to exert transcriptional functions (Figure 2), thus 
implicating the efficiency of potential lncRNA-based 
drugs. However, to date, there is not an approved BAT 
lncRNA-based drug for the treatment of obesity. Recent 
studies have shown that small-molecule drugs can help 
regulate lncRNA expression,87 which indicates that small- 
molecule drugs that target lncRNA genes can modulate 
BAT lncRNA expression, and thus might be a novel treat-
ment method for human obesity treatment. On the other 
hand, with the development of precision medicine being 
applied to the treatment of obesity, specific oligonucleo-
tides that are based on precise base complementarity 
could be designed to target BAT lncRNAs,88 thus regulat-
ing the expression of BAT lncRNAs in the fight against 
obesity.

To date, although limited lncRNAs have been identi-
fied to play important roles in BAT biological processes, 
many BAT lncRNAs and their complex regulatory 
mechanisms remain to be determined. Further lncRNA 
studies including in vitro and in vivo experiments may 
help develop novel exciting approaches to defend obesity 
by regulating fat homeostasis.
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