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Abstract: Mutations in the gene encoding leucine-rich repeat kinase 2 (LRRK2) are common genetic risk
factors for both familial and sporadic Parkinson’s disease (PD). Pathogenic mutations in LRRK2 have
been shown to induce changes in its activity, and abnormal increase in LRRK2 kinase activity is thought
to contribute to PD pathology. The precise molecular mechanisms underlying LRRK2-associated PD
pathology are far from clear, however the identification of LRRK2 substrates and the elucidation of
cellular pathways involved suggest a role of LRRK2 in microtubule dynamics, vesicular trafficking,
and synaptic transmission. Moreover, LRRK2 is associated with pathologies of α-synuclein, a major
component of Lewy bodies (LBs). Evidence from various cellular and animal models supports a role
of LRRK2 in the regulation of aggregation and propagation of α-synuclein. Here, we summarize our
current understanding of how pathogenic mutations dysregulate LRRK2 and discuss the possible
mechanisms leading to neurodegeneration.
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1. Introduction

Parkinson’s disease (PD) is the second most common neurodegenerative disease among the elderly
population. The cardinal clinical symptoms of PD include resting tremors, muscular rigidity, bradykinesia,
postural instability, and gait problems. Patients with PD often present unilateral motor symptoms that
eventually become bilateral as the disease progresses [1]. Because motor symptoms predominantly
result from the prominent loss of dopaminergic (DA) neurons in the substantia nigra pars compacta
(SNpc), current treatment strategies focus on dopamine replacement. Although the diagnosis of PD
relies on clinical features derived from dopamine deficiency, it has long been recognized that pathology
underlying PD involves several brain areas beyond the dopaminergic system, and that pathology also
extends into the peripheral autonomous nervous system. Indeed, the majority of PD patients show a
variety of non-motor symptoms, including hyposmia, sleep disruption, and constipation, and non-motor
dysfunctions commonly precede motor symptoms by several years [2]. This has motivated clinical
studies to assess olfactory dysfunction or rapid eye movement sleep behavior disorder as potential risk
factors of developing PD [3]. Other non-motor symptoms, such as dementia, cognitive dysfunction,
and hallucinations arise later in the disease. Collectively, the complicated clinical features imply that a
broad spectrum of neurophysiological mechanisms are involved in PD pathology.

The majority of PD cases are idiopathic, while 5–10% of PD cases are familial and linked to
mutations in multiple genes, such as α-synuclein (SNCA), Parkin (PRKN), PTEN-induced putative
kinase 1 (PINK1), DJ-1, VPS35, glucocerebrosidase (GBA), and leucine-rich repeat kinase 2 (LRRK2) [4].
Among the PD genes, LRRK2 mutations comprise the most frequent cause of familial PD cases and are
major risk factors for idiopathic PD cases. The most common mutation LRRK2-G2019S accounts for up
to 6–40% of familial cases, depending on the ethnic group, and up to 2% of all sporadic cases [5–8].
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Moreover, LRRK2-associated PD is generally indistinguishable from sporadic PD in terms of the age of
onset, disease progression, and motor symptoms. Therefore, deciphering the role of LRRK2 might
provide important insights into understanding molecular mechanisms of both familial and sporadic
PD etiology and developing disease-modifying treatments for PD.

PD pathology is generally characterized by the preferential loss of DA neurons in SNpc and the
presence of proteinaceous inclusions known as Lewy bodies (LBs). Enormous efforts have been made
to understand the mechanisms by which each feature contributes to the pathology and progression of
PD. Increasing lines of evidence suggest that the cardinal neuropathological features are not separate
events. Molecular components, pathways, or mechanisms involved in each feature interact, and their
interactions contribute to the pathogenesis of PD. In this review, we briefly discuss evidence regarding
the role of LRRK2 in the regulation of key neuropathological features, and discuss a possibility that
LRRK2 plays a role as an important modulator that mediates the interactions.

2. LRRK2 in Neurodegeneration

2.1. The Structure of LRRK2 and Regulation of Enzymatic Activities

LRRK2 is a large, multidomain protein (280 KDa) and belongs to the ROCO superfamily of
proteins. It consists of multiple protein–protein interaction domains, such as N-terminal armadillo,
ankyrin, and leucine-rich repeat domains, and a C-terminal WD40 domain [9]. An interesting feature
of LRRK2 is that it contains two distinct enzymatic domains, a Ras of complex (ROC) GTPase domain
and a serine/threonine kinase domain, separated by a C-terminal of ROC (COR) domain. Familial
mutations tend to cluster within the catalytic domains of LRRK2. The kinase activity of LRRK2 has
been assessed by measuring the autophosphorylation of LRRK2 [10], LRRK2 phosphorylation at Ser
1292, [11] and/or phosphorylation of an artificial peptide substrate—LRRKtide [12], or myelin basic
protein (MBP) as a generic kinase substrate [13]. In addition to kinase activity, LRRK2 exhibits GTPase
activity, presenting the capacity of GTP binding and hydrolysis in in vitro assay [14,15].

Molecular mechanisms that regulate the kinase and the GTPase activities of LRRK2 are not
completely elucidated, but both inter- and intra-molecular regulation have been suggested to control
enzymatic activities. LRRK2 forms a dimer in cells, and dimerization may be a critical step for the
regulation of its enzymatic activities and membrane localization [16–21]. LRRK2 dimers show higher
kinase activity compared to LRRK2 monomers, and the GTPase reaction also seems to depend on
dimerization [22]. Furthermore, LRRK2 dimers are enriched in membrane fractions, and membrane
LRRK2 shows enhanced kinase activity compared to cytosolic LRRK2 [20]. Biochemical analyses
using truncated forms of LRRK2 and structural modeling studies with full length LRRK2 dimers
suggest that the ROC and the COR domains function as primary dimerization interfaces [19]. It has
been suggested that GTPase and kinase domains of LRRK2 could be regulated via an intramolecular
mechanism. Missense mutations, such as K1347A and K1348N in the P-loop of the ROC domain of
LRRK2, disrupt guanine nucleotide binding and impair LRRK2 autophosphorylation (although the
caveat is that the mutations also inhibit dimerization) [23]. Conversely, LRRK2 kinase activity has
been shown to regulate the GTPase activity through autophosphorylation of the ROC domain [24–26].
Kinase activity of LRRK2 can be regulated by guanine nucleotide exchange factor (GEF) or GTPase
activating protein (GAP), such as ArfGAP1, RGS2, and ArhGEF7 [27–30].

2.2. Functions of Pathogenic LRRK2 Mutations in Neurodegeneration

Various genetic variants of LRRK2 have been identified and several missense mutations (N1437H,
R1441C/G/H, Y1699C, G2019S and I2020T) are considered to be pathogenic. Those mutations segregate
with disease in PD families, and pathophysiological roles have been suggested in a number of cellular
and animal models [31]. Of note, pathogenic mutations are located in the catalytic domains: G2019S
and I2020T mutations in the kinase domain; N1437H and R1441C/G/H in the ROC domain; and Y1699C
in the COR domain. Thus, many studies that aim to understand the molecular and cellular mechanisms
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of pathogenic LRRK2 mutants have focused on elucidating whether and how the mutations change
enzymatic activities, how they affect LRRK2 function, and how they contribute to the pathophysiology
of PD. LRRK2 G2019S, the most common genetic determinant of PD, exhibits higher kinase activities
compared to LRRK2 wild type (WT) [10,12,15,32–34]. The effect of I2020T mutation on LRRK2 kinase
activity has been rather controversial, with some reporting increased activity [10,32], while others
have shown decreased activity [12], and others have even described no changes in the kinase activity.
ROC-COR domain mutations, LRRK2 R1441C/G/H and Y1699C show impaired GTP hydrolysis
and enhanced GTP-binding [15,35] compared to LRRK2 WT. LRRK2 R1441C/G and Y1699C show
increased kinase activity [15], whereas kinase domain mutants, LRRK2 G2019S and I2020T do not alter
GTP binding [15,23].

The relationship between LRRK2 enzymatic activities and PD pathology has been and continues
to be the subject of intensive investigation and has been tested in various PD model systems.
In primary neuronal cultures, overexpression of LRRK2 G2019S, I2020T, R1441C, or Y1699C consistently
induced neuronal toxicity, as evidenced by neurite shortening, cell death, or impaired functions of
intracellular organelles [13,15,23,34,36–39]. Furthermore, many of these phenotypes were shown to
be alleviated by introducing kinase-inactive or GTP binding-deficient mutations and/or treatment
with chemical inhibitors of LRRK2 [13,40]. Several LRRK2 transgenic (Tg) animal models have
been developed to recapitulate pathological phenotypes of PD. In Drosophila LRRK2 Tg models,
Tg lines expressing LRRK2 G2019S, R1441C, Y1699C, or I2020T commonly exhibit age-dependent DA
neuronal loss, disruption of dopamine homeostasis, locomotor defects or reduced survival [41–45].
Caenorhabditis elegans (C. elegans) LRRK2 Tg models expressing LRRK2 G2019S or R1441C also show
neurodegeneration of DA neurons, reduced dopamine levels, and locomotor dysfunction [45,46].
These toxic gain-of-function effects of familial LRRK2 mutations are abolished by LRRK2 inhibitors.
Liu et al. provided evidence that the administration of LRRK2 kinase inhibitors could rescue the toxic
effects of LRRK2 G2019S in both Drosophila and C. elegans models [45]. In rodent models, herpes
simplex viral- (HSV) or adenoviral-mediated expression of LRRK2 G2019S in the striatum of mice
or rats induced robust degeneration of DA neurons in SNpc [13,47]. By contrast, the kinase-inactive
variant LRRK2, G2019S/D1994A did not induce neurodegeneration, and neurodegeneration induced
by HSV-LRRK2 G2019S was prevented by the administration of pharmacological inhibitors of LRRK2
kinase. Until now, several Tg rodent models overexpressing pathogenic LRRK2 mutants have been
developed to mimic certain aspects of PD, such as selective DA neuronal loss, disruption of dopamine
homeostasis, locomotor deficit or/and accumulation of tau and α-synuclein [48–52]. Knock-in (KI)
models expressing a PD-associated LRRK2 mutation at endogenous levels did not show overt DA
neuronal cell loss, but the mice at old age showed altered dopamine homeostasis, dysregulation
of dopamine transport and accumulation into the synapse, and mild behavioral deficits, which are
related to the prodromal phase of PD [53,54]. In fact, despite the fact that some models show impaired
dopaminergic neurotransmission [55,56] and mild parkinsonian motor features at late stages [57],
the majority of LRRK2 KI mice do not exhibit selective loss of DA neurons from the SNpc, the hallmark
histopathological feature of PD [50,54–56,58,59]. In general, the pathological phenotypes in LRRK2
Tg or KI mice is highly dependent on aging and expression levels in DA neurons. Nonetheless,
numerous cellular and animal LRRK2 models have repeatedly shown that LRRK2 exerts neuronal
toxicity through kinase-dependent mechanisms. These observations attracted the interest of basic
scientists and pharmacological companies to investigate how the kinase activity of LRRK2 in controlled.

2.3. Kinase Substrates of LRRK2 and Their Roles in Neurodegeneration

A considerable amount of work has been undertaken to identify the physiological substrates
of LRRK2 kinase. LRRK2 has been suggested to play multiple functions, ranging from cytoskeletal
remodeling to protein expression, to synaptic transmission, and to membrane trafficking, through the
phosphorylation of diverse substrates (Table 1) [60–66], such as moesin [12], β-tubulin [67], tau [68],
microtubule affinity-regulating kinase 1 (MARK1) [69], Futsch [70], FoxO1 [71], 4E-BP1 [72], ribosomal
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protein s15 (RPS15) [73], ArfGAP1 [27], endophilin A1 [74], snapin [75], RGS2 [29], N-ethylmaleimide
sensitive fusion (NSF) [76], synaptojanin-1 [77], and a subset of Rab GTPases [78–80]. Although most
of these substrates have been shown to be directly phosphorylated by LRRK2 in in vitro kinase assays,
it is not clear if they are phosphorylated in a cellular context or in vivo. Phosphorylation of endogenous
Rab GTPases (Rab3, Rab8, Rab10, Rab12, Rab35, and Rab43) by LRRK2 in cells and the mammalian
brain has been validated by several groups [79,80].

Table 1. The list of LRRK2 kinase substrates and their potential functions.

Protein
Substrate Phosphorylation

Phospho-Site Potential Role Reference
In Vitro In Vivo

ArfGAP1
↑ hLRRK2 WT,

G2019S
↓ hLRRK2 KD

↓ Lrrk2 Knock-out (KO)
mouse brain

S155, 246, 284
T189, 216, 292

GTPase activating protein
(GAP) for LRRK2 [27]

β-tubulin

↑ hLRRK2 WT,
G2019S
↓ hLRRK2
D1994A

ND ND
A component of

microtubule (MT)
Neurite outgrowth

[67]

4E-BP-1

↑ dLRRK WT,
Y1383C, I1915T
↑ hLRRK2 WT,

I2020T
↓ dLRRK 3KD

↑ hLRRK2WT, I2020T in
293T cells

↓ hLRRK2 3KD in
293T cells

T37/46

Cap-dependent protein
translation

Survival under starvation,
oxidative, and unfolded

protein stress

[72]

Endophilin A
↑ hLRRK2 WT,

G2019S
↓ hLRRK2 KD

↑ hLRRK2 WT, G2019S in
CHO cells and Drosophila
↓ hLRRK2 KD in CHO

cells and Drosophila

S75
Regulation of

membrane curvature
Synaptic vesicle endocytosis

[74]

FoxO1
↑ dLRRK

↑ hLRRK2 WT
↓ hLRRK2 3KD

↑ hLRRK2 WT, G2019S
in 293T cells

↓ hLRRK2 3KD in
293T cells
↓ dLRRK null
in Drosophila

S319 Transcriptional regulation of
pro-apoptotic genes [71]

Futsch
↑ hLRRK2 WT,

G2019S
↓ hLRRK2 KD

ND ND

Microtubule-association
protein (MAP), regulation of

MT dynamics
Negative regulator of

synaptic functions

[70]

MARK1 ↑ hLRRK2
G2019S

↑ hLRRK2 WT, G2019S
in HEK-293 cells
↓ hLRRK2 KD in
HEK-293T cells

ND
Regulation of MT stability
through phosphorylation

of MAPs
[69]

Moesin/Ezrin/
Radixin

↑ hLRRK2 WT,
G2019S

↑ hLRRK2 WT, G2019S
in HEK-293 cells T558

Actin cytoskeleton
rearrangement, neurite

outgrowth, neuronal
morphogenesis

[12,66]

NSF
↑ hLRRK2 WT,

G2019S
↓ hLRRK2 KD

ND T645 SNARE complex dissociation,
synaptic vesicle endocytosis [76]

P62/SQSTM1
↑ hLRRK2 WT,

G2019S
↓ hLRRK2 KD

↑ hLRRK2 WT, G2019S,
N1437, R1441G, Y1699C

in HEK-293 cells
↓ hLRRK2 KD in

HEK-293 cells

T138 Autophagy [60]

Rab1a/b/c
↑ hLRRK2 WT,

G2019S
↓ hLRRK2 KD

↑ hLRRK2 WT, G2019S
in HEK-293 cells
↓ hLRRK2 KD in

HEK-293 cells

T75 Endoplasmic reticulum
(ER)-Golgi trafficking [61,78,80]

Rab3a/b/c/d
↑ hLRRK2 WT,

G2019S
↓ hLRRK2 KD

↑ hLRRK2 WT, R1441G,
Y1699C, G2019S in

HEK-293 cells
T94 Exocytosis,

neurotransmitter release [62,79,80]

Rab5a/b/c ↑ hLRRK2 WT
↑ hLRRK2 WT, R1441G,

Y1699C, G2019S in
HEK-293 cells

T6 Early and recycling
endosomal trafficking [61,65,78,79]
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Table 1. Cont.

Protein
Substrate Phosphorylation

Phospho-Site Potential Role Reference
In Vitro In Vivo

Rab8a/b
↑ hLRRK2 WT,

G2019S
↓ hLRRK2 KD

↑ hLRRK2 WT,
R1441C/G/H, Y1699C,

I2020T, G2019S in
HEK-293 cells

T72 Post-Golgi trafficking,
ciliogenesis [61,78–80]

Rab10
↑ hLRRK2 WT,

G2019S
↓ hLRRK2 KD

↑ hLRRK2 WT,
R1441C/G/H, Y1699C,

I2020T, G2019S in
HEK-293 cells

T73

Exocytosis,
trans-Golgi/recycling

endosome trafficking to
plasma membrane

[62,78,79]

Rab12 ↑ hLRRK2 WT,
G2019S

↑ hLRRK2 WT, R1441G,
Y1699C, G2019S in

HEK-293 cells
S106 Recycling of endosomes and

lysosomes, ciliogenesis [63,64,78,79]

Rab29 ↑ hLRRK2 WT
↑ hLRRK2 WT, R1441G,

Y1699C, G2019S in
HEK-293 cells

S72 Endolysosomal
sorting/degradation [61,78,79]

Rab35
↑ hLRRK2 WT,

G2019S
↓ hLRRK2 KD

↑ hLRRK2 WT, R1441G,
Y1699C, G2019S in

HEK-293 cells
T72 Recycling endosomal

trafficking, exosome secretion [61,79,80]

Rab43 ND
↑ hLRRK2 WT, R1441G,

Y1699C, G2019S in
HEK-293 cells

T82 Anterograde ER-Golgi
trafficking [79]

RGS2
↑ hLRRK2 WT,
G2019S, I2020T
↓ hLRRK2 KD

↑ hLRRK2 WT, G2019S
in HEK293 cells cells
↓ hLRRK2 KD in ES

derived human DA cells

ND GAP for LRRK2 [29]

RPS15
↑ hLRRK2 WT,
G2019S, I2020T
↓ hLRRK2 KD

↑ hLRRK2 WT, G2019S
in ES derived human

DA cells
↓ hLRRK2 KD in ES

derived human DA cells

T136 Bulk protein translation [73]

Snapin
↑ hLRRK2 WT,

G2019S
↓ hLRRK2 KD

ND T117 Synaptic vesicle trafficking [75]

Synaptojanin-1
↑ hLRRK2 WT,

G2019S
↓ hLRRK2 KD

ND T1343,1348,
1452,1503

Clathrin uncoating,
down-regulation of actin

polymerization, modulation of
dynamin activity

[77]

Tau ↑ hLRRK2 WT,
G2019S, I2020T

↑ hLRRK2 WT in
SH-SY5Y cells

↓ hLRRK2 RNAi in
SH-SY5Y cells

T181
Modulation of

microtubule dynamics
Neurite outgrowth

[68]

↑ increase; ↓ decrease; ND: Not defined.

Early studies demonstrated that the expression of the pathogenic mutants of LRRK2 caused
marked shortening of neurites, whereas depletion of LRRK2 increased neurite length and branching
in primary cultures of embryonic cortical neurons [13,15,34,39]. Many LRRK2 substrates, such as
moesin, β-tubulin, tau, and MARK1 have been suggested to play key roles in neurite extension via the
regulation of cytoskeletal structures and dynamics. In cell-free assays, microtubule polymerization
was enhanced by incubation with LRRK2 G2019S compared to LRRK2 WT or kinase-inactive LRRK2
D1994A [67]. It has been shown that tau, a microtubule-association protein (MAP), physically associates
with and can be phosphorylated by LRRK2, in the presence of tubulin. In physiological conditions,
tau associates with neuronal microtubules and is thought to play critical roles in the regulation of
microtubule stability and dynamics [81–83]. In pathological conditions, tau detaches from microtubules
and forms aggregates. Deposition of tau aggregates is a hallmark of Alzheimer’s disease, but is also
found in a variety of other neurodegenerative diseases, including frontotemporal dementia with
parkinsonism-17, Pick disease, progressive supranuclear palsy and corticobasal degeneration [84,85].
Phosphorylation induces tau to dissociate from microtubules, and hyperphosphorylation of tau has
been proposed to contribute to neurodegeneration by the loss of microtubule stabilizing function of
tau and by promoting tau aggregate formation. Increased phosphorylation of tau have been reported
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in multiple cellular and animal models expressing pathogenic LRRK2 mutants and in the postmortem
brains from LRRK2-linked PD patients [39,86–88], although it is not clear whether the phosphorylation
is directly mediated by LRRK2. It is plausible that hyperactivity of pathogenic LRRK2 plays a role in
neurodegeneration by disturbing microtubule dynamics, but future studies are needed to investigate
if LRRK2 phosphorylates tubulin and tau in vivo and whether and how the phosphorylation events
contribute to PD pathology.

A group of LRRK2 substrates, such as endophilin A1, snapin, synaptojanin-1, and NSF, are key
regulators of synaptic transmission. In neurons, synaptic transmission requires precisely controlled
membrane trafficking at the presynaptic terminal in order to recover and recycle membranes that
have fused with the plasma membrane during neurotransmitter release. Through postmortem brain
studies of PD patients, synaptic dysfunction has been suggested to represent early events in PD [89].
Furthermore, multiple lines of evidences support the notion that LRRK2 plays a role as a regulator
of clathrin-dependent endocytosis and recycling of synaptic vesicles [90]. In the course of synaptic
vesicle endocytosis (SVE), endophilin promotes an early step by generating membrane curvature and
a later step involved in vesicle release at the presynaptic membrane. Phosphorylation of endophilin
by LRRK2 has been suggested to modulate the membrane deformation and release of endocytic
vesicles [74]. In addition to SVE, LRRK2 can modulate synaptic vesicle fusion by regulating the
dissociation of the SNARE complex via NSF phosphorylation [76]. NSF is an ATPase that catalyzes
the release of SNARE complexes, thus allowing SVE and the next cycle of fusion. Phosphorylation of
NSF by LRRK2 enhanced the catalytic activity of NSF and thus increased the rate of SNARE complex
disassembly. These results imply that LRRK2 may tune the kinetics of synaptic vesicle recycling via NSF
phosphorylation. Apart from endophilin and NSF, LRRK2 has been reported to bind and phosphorylate
many other synaptic vesicle proteins [91], suggesting a broad role in synaptic transmission.

To date, it has been reported that LRRK2 can phosphorylate fourteen Rab GTPases (Rab3a/b/c/d,
Rab5a/b/c, Rab8a/b, Rab10, Rab12, Rab29, Rab35, and Rab43) at a conserved residue, which is located in
the switch II effector-binding motif [78–80]. The Rab GTPase family consists of more than 60 members
in the human genome, and functions as a molecular switch in the regulation of intracellular vesicle
trafficking. Rab GTPases cycle between the inactive GDP-bound and the active GTP-bound forms at
specific membranous compartments. The rate of GDP/GTP cycling is regulated by specific GAPs and
GEFs, which activate and inactivate the GTPase activity. GEF promotes GTP binding by inducing
the dissociation of GDP from Rab GTPases and causes major conformational changes in two highly
flexible regions, switch I and II. The conformational change enables the binding of γ-phosphate and
interaction with regulatory proteins and effectors [92]. In the case of Rab8a, phosphorylation by
different pathogenic LRRK2 mutants decreases the affinity for guanine dissociation inhibitor (GDI),
which is required for membrane delivery and recycling of Rab, and the phosphorylation eventually
disrupts the balanced membrane-cytosol distribution of Rab8a [78]. Steger et al. replaced the LRRK2
target site in all fourteen LRRK2 substrate Rabs with either a phosphomimetic glutamic acid or a
non-phosphorylatable alanine residue and examined how the mutation affected partner protein binding.
Interestingly, non-phosphorylatable mutants of Rabs stably bound to GDI1/2 and Rab escort proteins,
CHM and CHML, whereas the phosphomimetic mutations strongly prevented partner binding [79].
These results imply that Rab phosphorylation by LRRK2 modulates the binding with regulators of
the GDP/GTP cycle or downstream effector molecules, which may affect subcellular localization and
function. Some studies have suggested that phosphorylation of Rab8a and Rab10 by pathogenic
mutants of LRRK2 caused defects in primary cilia formation [79,93] and centrosomal cohesion [94,95].
Both ciliogenesis and centrosomal cohesion were regulated by phosphorylation-dependent recruitment
of their effector, RILPL1. Rab8a/Rab10 phosphorylation by LRRK2 has also been suggested to be
involved in endolysosomal trafficking [96] and lysosomal homeostasis [97]. Upon lysosomal overload
stress, LRRK2 was activated and recruited onto lysosomes, where LRRK2 stabilized Rab8 and Rab10
through phosphorylation, and Rab8/10 further recruited their effectors, EH domain-binding protein
1 (EHBP1) and EHBP1-like 1 (EHBP1L1), to regulate stress-induced lysosomal enlargement and
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secretion [97]. Jeong et al. provided important clues regarding the pathological consequences of Rab
phosphorylation by LRRK2 by using neuronal culture and in vivo models [80]. In primary cultures of
cortical neuron, non-phosphorylatable and phosphomimetic mutants of Rab1a, 3c, and 35, but not the
WTs, specifically induced neuronal toxicity. Furthermore, intracranial injection of adeno-associated
viral (AAV) vectors expressing non-phosphorylatable or phosphomimetic mutants of Rab35 into SNpc
of mouse brains caused profound DA neuronal loss. Of note, increased Rab35 expression was detected
in the SN region of multiple PD animal models, including LRRK2 G2019S and R1441C Tg mice and
MPTP and rotenone intoxication mice, as well as in the serums of PD patients when compared to
age-matched subjects [98]. Rab35 has been reported to be localized in the plasma membrane and
the endosome. Rab35 seems to play a role in delivering internalized cargos to late endosomes or
multivesicular bodies (MVBs) directed either for lysosomal degradation or for secretion through
exosomes [99,100]. Endolysosomal system dysfunctions have been repeatedly reported in a diverse
range of neurodegenerative diseases, and defects in the endolysosomal trafficking may represent
early events during the progression of PD [101]. Notably, LRRK2 is enriched in membrane-associated
fractions, including the Golgi apparatus, endoplasmic reticulum, mitochondria, multivesicular bodies
(MVBs), lysosomal and endosomal vesicles, and autophagic vacuoles, suggesting a role of LRRK2 in
membrane trafficking [102]. Studies from LRRK2 knock-out (KO) animals support a role in autophagy
and lysosomal function [103–105]. Investigating the interaction between LRRK2 and Rab GTPases in
various membranous organelles and how Rab phosphorylation by LRRK2 affects the endolysosomal
and autolysosmal pathways will enhance our understanding of LRRK2-mediated neuropathologies.

3. Functions of LRRK2 in Lewy Pathology and Synucleinopathies

3.1. Lewy Pathology in PD

The presence of LBs, the proteinaceous inclusions characterized by the accumulation of misfolded
and aggregated α-synuclein, is the main histopathological hallmark of PD. LBs are widely distributed
in multiple brain regions, including the mesostriatal system, cortex, thalamus, hypothalamus, olfactory
bulb and brain stem [106]. The morphology of LBs varies depending on the location in the brain
(brainstem, limbic, or neocortical), and the heterogeneity may reflect the maturation stage and/or the
biochemical variability of Lewy pathology [106,107]. LBs are also found in neurites, mainly in axons,
referred to as intraneurite LBs or Lewy neurites. Misfolded and aggregated forms of α-synuclein
are main protein components of LBs. It has been proposed that α-synuclein exists in a dynamic
equilibrium of the unfolded monomers and helically folded tetramers, and that chronically shifting the
physiological tetramers to excess monomers is associated with PD-like states [108]. Under pathological
conditions, α-synuclein monomers become aggregated and initiate the formation of protofibrils and
insoluble fibrils [109]. WT and disease-linked mutants of α-synuclein spontaneously form amyloid-like
fibrils during prolonged incubation in vitro [110], but few inclusion bodies are found in various Tg
mice overexpressing α-synuclein. Molecular mechanisms that trigger the fibrillization of α-synuclein
and the formation of LBs in the brain remain poorly understood. Identification of the molecular
components of LBs may provide important clues regarding the mechanisms of LB formation and
disease progression. Proteomic analyses have identified more than 300 proteins in LBs, and about
a hundred proteins have been validated by immunohistochemical analyses in various postmortem
studies [106,111,112]. Notably, LRRK2 [36,113–115] has also been detected in LBs together with
other PD-linked gene products, such as DJ-1 [116,117], Parkin [118], and PINK-1 [119]. In addition to
proteinaceous components, LBs also contain non-proteinaceous (lipid) materials. Using correlative light
and electron microscopy and tomography on postmortem human brain tissue from PD brain donors,
one study [107] has revealed that α-synuclein-positive LBs and Lewy neurites contained a crowded
mix-up of dysmorphic organellar and membranous features. Detection of LRRK2 and distorted
membranous organelles in α-synuclein-positive Lewy pathology not only suggests a molecular and
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functional interaction between LRRK2 and α-synuclein but also provides support for the hypothesis
that LRRK2 dysfunction may disrupt organelle trafficking and contribute to the pathogenesis of PD.

3.2. Roles of LRRK2 in Synucleinopathy

PD is now thought of as a complex multisystem disease with premotor and nonmotor symptoms,
however, clinical-pathological diagnosis related to motor symptoms still remains the gold standard for
the diagnosis of PD [120]. The current pathological criteria for PD require both DA neuronal loss in
SNpc and LB pathology. Most LRRK2-assocaited PD patients are indistinguishable from idiopathic
PD, both pathologically and clinically [121]. Pathological analyses revealed typical PD-type LB in
most patients, but atypical neuropathology was also observed in some LRRK2 mutation carriers [122].
A subset of PD patients carrying a highly penetrant LRRK2 mutation, such as G2019S, R1441C/G,
Y1699C, or I2020T, did not show LBs or α-synuclein pathology [120,123–127], despite the loss of DA
neurons in SNpc [120]. However, it should be noted that the absence of LBs does not necessarily
indicate that there is no α-synuclein-linked pathology. Native α-synuclein monomers can give rise
to heterogeneous soluble oligomeric forms, which are not readily detectable in histological sections.
Several lines of evidence suggest that LB themselves may be innocent bystanders in PD pathogenesis
and that the neurotoxic species are in fact oligomers [128–130]. In this aspect, formation of LBs can
represent a protective mechanism whereby insoluble fibrils function to sequester toxic oligomers [131].
It is a matter of debate whether LBs are neurotoxic or neuroprotective. Monitoring the dynamic
process of α-synuclein aggregation rather than detecting the mere existence of LBs may be more
informative to understand α-synuclein pathology. Levels of α-synuclein oligomers were significantly
higher in the cerebrospinal fluid (CSF) of asymptomatic LRRK2 mutant carriers relative to healthy
age-matched controls, suggesting a possibility that oligomeric α-synuclein is formed during the early
stages of the disease prior to any major clinical manifestation and that LRRK2 might play a role in
this pre-symptomatic stage by contributing to the formation of the toxic α-synuclein oligomers [132].
Supporting this notion, another study showed greater age-dependent accumulation of oligomeric
α-synuclein in the striatum and cortex of LRRK2 R1441G KI mice at 15 and 18 months of age, compared
to age-matched LRRK2 WT mice [133].

Attempts have been made to recapitulate Lewy pathology or synucleinopathy in rodent models
and mimic the increased expression or phosphorylation of α-synuclein and/or the formation of
insoluble α-synuclein aggregates or LB-like inclusions. In Tg mice overexpressing LRRK2 G2019S
in catecholaminergic neurons under the control of TH promoter, DA and norepinephrine neurons
degenerated in an age-dependent manner [52]. Moreover, elevated phosphorylation (pS129) of
α-synuclein and high molecular weight species of α-synuclein were detected in the striatum and ventral
midbrain of the LRRK2 G2019S Tg mice, whereas none of the pathogenic forms of α-synuclein
were detected in nonTg or the LRRK2 G2019S/D1994A mice at 15 and 24 months of age [52].
LRRK2 G2019S KI mice showed age-dependent increases in phospho-α-synuclein (pS129) in SN
and striatum [134]. However, most other Tg or KI mouse lines expressing pathogenic LRRK2 mutants
under different promoter systems do not exhibit synucleinopathy, which may be in part explained
by the insufficient amount of seeds required for α-synuclein aggregation. Tg mice expressing LRRK2
alone did not cause noticeable neurodegeneration, but the presence of excess LRRK2 accelerated the
progression of neuropathological abnormalities developed in PD-related A53Tα-synuclein Tg mice [135].
Co-expression of WT or LRRK2 G2019S with α-synuclein A53T caused synergistic toxicity to neurons
that accelerated the progression ofα-synuclein-mediated neuropathology. In another study, aged LRRK2
G2019S KI mice were more prone to develop α-synuclein toxicity than WT mice, and larger amounts of
α-synuclein aggregates were present in aged LRRK2 G2019S KI mice [134,135]. Conversely, deletion of
LRRK2 suppressed the aggregation and somatic accumulation of α-synuclein, and thereby delayed the
progression of neuropathology developed in A53T Tg mice [135]. Preformed fibrils (PFFs) are artificially
generated short fragments of fibrils that can trigger the conversion of endogenous α-synuclein into
pathogenic fibril forms, and PFFs can function as seeds for the generation of insoluble fibrils or LB-like
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inclusions. In the α-synuclein PFF model, LRRK2 G2019S Tg mice showed accelerated α-synuclein
aggregation, degeneration of DA neurons in SNpc, and neuroinflammation [136]. These lines of evidence
suggest that LRRK2 may regulate α-synuclein-induced pathogenesis in PD. However, the link between
LRRK2 and synuclein aggregation is far from clear and the literature is still controversial.

3.3. Roles of LRRK2 in α-Synuclein Propagation

The Braak model suggests that PD pathology spreads in a stereotypical fashion. According
to the Braak model, PD pathology ascends caudo-rostrally from the lower brainstem and olfactory
bulbs at the prodromal stage of disease, spreads through the midbrain and forebrain regions at
disease diagnosis, and eventually propagates into the cerebral cortex at later stages [137]. Studies
have suggested that α-synuclein exhibits prion-like properties and self-propagates via templating
endogenous α-synuclein to form polymers [138]. The spreading of α-synuclein is considered to be
an underlying molecular mechanism for the Braak hypothesis. Currently, cell-to-cell transmission
of α-synuclein has been recapitulated in both cell culture and animal models [139–142]. The initial
step of α-synuclein transmission may be the transformation of an innocuous, physiological form
of α-synuclein into a toxic fibril, which may be caused by the misfolding of α-synuclein [128–130].
Infectious cells release α-synuclein oligomers or fibrils through undefined nonclassical secretory
pathways, and α-synuclein then gains entry to nearby naïve cells [143], presumably by utilizing
cell-to-cell communication mechanisms, such as passive diffusion, endocytosis, or transsynaptic
transport [144,145]. Finally, the internalized pathogenic forms of α-synuclein act as seeds for de novo
formation of α-synuclein fibrils, and thereby converts a naïve cell into an infectious cell.

Multiple lines of studies have demonstrated that LRRK2 plays a role in the regulation of
cell-to-cell transmission of α-synuclein. Kondo et al. [146] provided the first clues regarding a role
of LRRK2 in α-synuclein transmission. Co-expression of LRRK2 G2019S and α-synuclein in human
neuroblastoma SH-SY5Y cells increased α-synuclein aggregation and secretion when compared to cells
expressing α-synuclein alone. Furthermore, more α-synuclein+ cells were detected after treatment with
conditioned media collected from cells co-expressing LRRK2 G2019S and α-synuclein, when compared
to cells treated with conditioned media collected from cells expressing α-synuclein alone. These results
suggest that LRRK2 may be involved in the process of α-synuclein secretion and/or transmission. In an
α-synuclein PFF-based transmission assay, where human α-synuclein PFFs trigger the aggregation of
endogenous α-synuclein, α-synuclein aggregation was enhanced by LRRK2 G2019S compared to WT,
but was decreased by the loss of LRRK2 in PD patient-derived neurons differentiated from induced
pluripotent stem cells [136]. LRRK2 dependent α-synuclein transmission has also been demonstrated
in multiple animal models. Bae et al. [147] generated C. elegans Tg models that expressed the N-
and the C-terminal halves of the Venus fluorescent protein fused to α-synuclein in the pharyngeal
muscles and the connected neurons, respectively, to assess intercellular α-synuclein transmission
between pharyngeal muscles and neurons. Age-dependent increases in Venus fluorescence were
detected in the WT background, but not in worms lacking lrk1 (Lrrk1 and Lrrk2 ortholog in C. elegans).
Bae et al. also injected AAV vectors encoding human α-synuclein into the vagus nerve of rats and
tested neuron-to-neuron transmission of α-synuclein and long-distance protein spreading. The number
of immunoreactive axons against α-synuclein were significantly decreased in the pons, the caudal and
rostral midbrain, and the forebrain in rats lacking Lrrk2 compared to WT. These studies imply that
LRRK2 plays a role in cell-to-cell transmission and long distance spreading of α-synuclein, presumably
through regulation of the release, uptake and/or lysosomal/proteosomal degradation of α-synuclein.
The exact molecular mechanisms by which LRRK2 regulates α-synuclein transmission remain to
be determined.

The identification of multiple Rab GTPases as physiological substrates of LRRK2 has raised
an interesting hypothesis that links LRRK2 and α-synuclein transmission (Figure 1). In particular,
Rab35, which has been suggested to mediate neurodegeneration induced by LRRK2 [80], has also been
pointed out to mediate α-synuclein transmission stimulated by LRRK2 [147]. Rab35 could enhance the
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secretion and aggregation of A53T α-synuclein in SH-SY5Y cells [98]. How phosphorylation of Rab35
regulates α-synuclein propagation is unclear at this point. Considering the role of LRRK2 and Rab35
in endosomal recycling, it is plausible to suggest that activation of the LRRK2–Rab35 pathway would
hijack the internalized α-synuclein aggregates from the endolysosomal degradation pathway, causing
amplification of aggregates and continuous propagation [147]. Interestingly, several Rab GTPases
that have been identified as modulators of α-synuclein toxicity, such as Rab1, 3, and 8 [148,149],
are also LRRK2 substrates [80]. It is possible that more Rab GTPases are involved in LRRK2-mediated
α-synuclein transmission. Rab8, 10, and 29 have been suggested as upstream and downstream
molecules of LRRK2 in the regulation of endolysosomal pathway [97,150]. More studies are needed to
define the link between LRRK2 and α-synuclein, but the LRRK2–Rab axis may have a critical role in
α-synuclein transmission through the regulation of lysosomal degradation and secretory pathways.
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4. Conclusions and Future Directions

Since the first descriptions of pathogenic mutations of LRRK2 in 2004 [151], remarkable advances
have been made in our understanding of the function and dysfunction of LRRK2. Evidence so far suggests
that LRRK2 plays multiple roles to control neuronal survival and death through cell-autonomous and
non-cell-autonomous mechanisms. Apparently, the aberrant kinase activity of pathogenic LRRK2
mutants induces neurodegeneration by disturbing various intracellular processes, such as protein
translation, endolysosomal pathway, autophagy, synaptic functions, and cytoskeleton dynamics, which
may be mediated by the phosphorylation of several distinct putative substrates (Table 1). Although future
studies are needed to identify the mechanistic link between LRRK2 and α-synuclein, pathogenic LRRK2
could exacerbate α-synuclein-mediated neurotoxicity, and LRRK2 has been suggested to interact with
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α-synuclein through intra- and inter-neuronal mechanisms. The available data suggest that targeting
LRRK2 might be beneficial not only for patients with LRRK2 mutations but also for idiopathic PD
patients. Therefore, LRRK2 has emerged as a promising target for potential disease-modifying therapies
for PD, and clinical trials with small-molecule LRRK2 kinase inhibitors have already commenced.
Until now, to understand LRRK2 pathology in PD, research interests have largely focused on the
neurotoxic effects of pathogenic LRRK2 in the brain. Of note, accumulating lines of evidence suggest
that LRRK2 plays a fundamental role in the regulation of inflammation in both the central and peripheral
immune system [152,153]. Moreover, LRRK2 protein is also highly expressed in the kidney and the
respiratory system. Therefore, increased knowledge of the role of LRRK2 in the immune system and in
the periphery is needed and should be taken into consideration to develop effective and safe treatments
for PD.
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