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Abstract

Background: Quantification of different types of cells is often needed for analysis of histological images. In our
project, we compute the relative number of proliferating hepatocytes for the evaluation of the regeneration
process after partial hepatectomy in normal rat livers.

Results: Our presented automatic approach for hepatocyte (HC) quantification is suitable for the analysis of an
entire digitized histological section given in form of a series of images. It is the main part of an automatic
hepatocyte quantification tool that allows for the computation of the ratio between the number of proliferating
HC-nuclei and the total number of all HC-nuclei for a series of images in one processing run. The processing
pipeline allows us to obtain desired and valuable results for a wide range of images with different properties
without additional parameter adjustment. Comparing the obtained segmentation results with a manually retrieved
segmentation mask which is considered to be the ground truth, we achieve results with sensitivity above 90% and
false positive fraction below 15%.

Conclusions: The proposed automatic procedure gives results with high sensitivity and low false positive fraction
and can be applied to process entire stained sections.

Background
Quantification of different cell types in histology is
important. For example, quantification of a defined cell
type is necessary for determination of the hepatocyte
proliferation index to describe the kinetics of a liver
regeneration process. Traditionally, observers count cells
manually in small regions of interest (ROIs) during
microscopical observation. This procedure is very time-
consuming and requires an experienced observer, who
must be trained to discriminate the target cells from the
other cell types. In our case, we are interested in discri-
minating hepatocytes, the functional parenchymal cells
in the liver, from non-parenchymal cells of the liver.
Recently, with the availability of digital photography

the computer-assisted cell counting has gained popular-
ity. The observer marks each cell to be included using
image analysis tools, e. g., GIMP http://www.gimp.org/
or Image Tool http://ddsdx.uthscsa.edu/dig/itdesc.html,
and the marked events are enumerated. The image

overlaid with marked target cells is saved for documen-
tation. There exist also semi-automatic and automatic
solutions based on image analysis systems used in clini-
cal routine. For example, our project group recently pre-
sented a macro based on a commercially available
software http://industrial-microscope.olympus-global.
com/en/ga/product/analysisfive/[1].
Such solutions based on the analysis of small 2D sam-

ples from a large 3D object suffer from the sampling
bias problem. The analysis of small 2D samples is only
valid, if target events are distributed homogeneously in
the whole 3D object. This assumption does not hold
generally for liver regeneration, as this process is subject
to local regulation. Spatial distribution of proliferating
hepatocytes within the smallest functional liver unit, the
lobules, depends on the hepatic zone and can vary sub-
stantially throughout the liver. Hence, the entire 3D
object needs to be looked at, which is, again, a tedious
and time-consuming effort when keeping the user in the
loop.
The ultimate solution to this problem and our overall
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sample to an automatic quantitative assessment. The
first step towards this full automatization is to detect
the proliferation index, i. e., the ratio of the number of
proliferating cells and the overall number of cells, in
whole sections of the rat liver; an example image is
shown in Figure 1. To accomplish this goal a series of
tasks needs to be tackled. First, the zones of interest
containing hepatocyte information must be defined. Sec-
ond, due to the sample size it has to be divided into
smaller parts. Third, the parts containing hepatocyte
information has to be processed, i. e., the nuclei must
be detected in each image. Fourth, the nuclei quantifica-
tion information must be accumulated for the whole
section.
In this paper, we address the hepatocyte quantification

task. The specific aim of this task was to develop an
automatic approach, that is fast, robust to different
image appearances, and allows to analyze batches of
images without additional user interaction.
In recent years, a number of sophisticated automatic

image processing approaches for histological sections
have been proposed [2]. However, it is difficult to com-
pare them to each other due to the difference of stain-
ing methods applied to the data and the related image
analysis problems. There exist several popular directions
in segmentation of microscopic structures. They include
fuzzy clustering [3], parametric and geometric deform-
able models [4,5], morphological watershed-based
approaches [6,7]. Though the variety of the proposed
methods is huge, most of them are aimed to detect the
boundaries of the nuclei cells as precisely as possible,
which is actually not needed for our purposes. The
complexity and computational costs of these methods
are not necessary and not justified in our case. In

addition, the methods have either problems with over-
lapping nuclei or are strongly dependent on the data
staining. Our task was to develop an approach that is
fast, robust to different data appearances within the
staining specific to our project, and whose aim is not to
detect cell boundaries but rather to evaluate the number
of cells, in particular, that it can deal with overlapping
cells appropriately.
We recently presented a preliminary automatic

approach for quantifying hepatocytes in normally regen-
erating rat livers [8]. The proposed processing pipeline
consists of four main steps. First, the data is smoothed.
We tested and compared different smoothing filters to
find the most appropriate for the given task. Here, we
make use of this investigation by incorporating the most
suitable one in the pipeline presented in this paper. Sec-
ond, we applied an automatic thresholding method simi-
lar to the one described by Petushi et al. [9]. The
applied method was suitable for the data we had used.
However, to build a method that is robust against una-
voidable variations in staining intensities and that can
handle the occurrence of vein structures, we had to
develop a new thresholding strategy, which is presented
in this paper. Third, a detection step of structures of
certain size and shape is applied. And finally, we applied
a Hough transformation step, which showed to be effec-
tive when dealing with overlapping nuclei and computa-
tionally reasonable when the search space is reduced.
This final step is similar to the compact Hough transfor-
mation-based approach [10].
The main limitation of our algorithm [8] was that it

was not able to handle the presence of the vein struc-
tures in the images. In this paper, we now propose an
improved automatic pipeline that includes an appropri-
ate vein structure handling.

Methods
Liver samples of about 0.5-1 cm3 in size from rats sub-
jected to 70% liver resection were formalinfixed, paraf-
fin-embedded, and used for cutting histological sections
of 4-6 μm thickness. Thereafter, a special immunohisto-
chemical procedure [1,11], namely BrdU-staining, was
applied to them. As a result, nuclei of dividing (prolifer-
ating) cells, hepatocytes, and other non-parenchymal
stromal cells are marked in red, whereas the nuclei of
the non-dividing cells are marked in blue.
Digitized images of the stained sections are taken at a

200-fold magnification. An example of such an image is
shown in Figure 1. The rat liver consists of parenchchy-
mal cells (hepatocytes) and non-parenchymal cells (for
instance, bile duct cells, Kupffer cells, sinusoidal
endothelial cells, lymphocytes). According to the portal
blood flow, the hepatic parenchyma is divided into 3
zones. Zone 1, also called portal zone, is surrounding

Figure 1 Whole stained section. Whole stained section digitized
with a resolution of 53248 × 52736. The red rectangle shows a
selected ROI with resolution of 2576 × 1932.
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the portal tract (PT), a complex histological structure
consisting of several vascular components such as a por-
tal vein, a hepatic artery and several bile ducts
embedded in histiocytic cells and connective tissue.
Zone 2 is surrounding the central vein (CV), which is
draining the smallest functional unit of the liver, the
hepatic lobule. Zone 3 is the midzonal area between
zone 1 and zone 2. Despite their anatomical and func-
tional differences, for excluding areas with non-parench-
ymal structures from further proliferation analysis portal
tract and central vein are considered to be similar struc-
tures and are referred to as “venous (vessel) structures”
throughout the text. ROIs with a resolution of 2576 ×
1932 pixels are selected from these three liver zones.
We have made a series of tests on images from eight

different datasets. Each dataset represents ROIs from
the liver samples of one animal. These datasets belong
to two groups that had different contact time of the sec-
tion with staining solutions, which resulted in variations
in image contrast. The datasets within each group are
also subject to variations in color properties, which
occur due to some differences in the histological proces-
sing of the tissue sample and may also occur during
image acquisition (camera settings).
We keep the following naming convention: each image

name has a number that denotes the dataset. For exam-
ple, D1 denotes the image from liver zone 3 of dataset
1. PT and CV in the names belong to the images that
were taken from the liver zones 1 and 2. Liver zones 1
and 2 contain vessel structures.

Results
Algorithm
To solve the task of automatic processing of the ROIs of
histological sections, we have developed an algorithm
and created a tool which can assess the total number of
events (total hepatocyte nuclei) as well as the number of
positive events (proliferating red-stained hepatocyte
nuclei). It calculates the relative proportion of the posi-
tive events, namely the ratio between proliferating and
total hepatocytes (BrdU-LI) automatically in one “pro-
cessing run”. To do so, it eliminates morphological
structures impairing the analysis (central vein or portal
tracts). It creates a batch calculation allowing to analyze
several images without user interaction, which forms the
basis for evaluating a whole section. Moreover, it facili-
tate the validation by creating a tool for determining
statistical measures of quantification quality, namely
sensitivity and false positive fraction.
The processing pipeline extends the one described in

our previous work [8]. The main contributions of the
extended pipeline include the processing of images con-
taining vein structures, an improved thresholding step,

and an extended connected-components analysis for
the detection of the number of total and proliferating
hepatocytes. In Figure 2, the flowchart for automatic
detection of the proliferation index is depicted on the
left-hand side. The result for each processing step is
shown next to the correspondent flowchart box on the
right-hand side.
Smoothing
Based on the applied staining technique, it can be
observed that all nuclei are visible in the red color chan-
nel, whereas the proliferating cells are distinguishable in
the blue color channel. We apply a smoothing step to
the representative image channels to reduce noise. As
previously reported [8], we selected the bilateral filter as
one of the most suitable algorithms for the current task.
There are different implementations of the bilateral filter
in the literature [12-14]. We investigated two variants,
which are compared in the Discussion section.
Automatic Thresholding
We previously used Otsu thresholding [15] to automati-
cally separate nuclei from the background in the
smoothed image [8]. The original Otsu method per-
forms histogram-based image thresholding. It assumes
that the image contains two classes of pixels (foreground
and background) and calculates the optimal threshold
that separates the classes, such that their within-class
variance is minimized.
The original binary thresholding is not sufficient for

processing images containing vascular structures [8], as
there are not only two, but three classes in such images,
namely nucleus, vein, and background. For such a pur-
pose, the multi-level Otsu thresholding can be used
[16].
Our experiments showed that applying multilevel Otsu

thresholding to our segmentation task has some severe
drawbacks (see Discussion section). Thus, we decided to
replace it by an automatic thresholding step based on
expectation maximization (EM) [17]. Let y denote
incomplete data consisting of observable variables, and
let z denote the missing data. z can be either missing
measurements or a hidden variable that would make the
problem easier if its values were known. y and z
together form the complete data. Let p(y, z|θ) denote
the joint probability density function of the complete
data with parameters given by vector θ. The EM consists
basically of two steps: expectation and maximization.
In our case, we consider the Gaussian mixture model

for the EM algorithm. It assumes that the image pixel
intensities y1, ..., ym Î R are samples of independent
observations from n Gaussian distributions with
unknown parameters. Let zj Î {1, 2, ..., n} denote the
index number of the Gaussian distribution that yj has
been drawn from.
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The probability density function of the i-th one-
dimensional Gaussian distribution is
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where θ = {μ1, ..., μn, s1,..., sn, p(z = 1), ..., p(z = n)}
with μi and si being the mean and the variance of the
ith Gaussian distribution, and p(z = i) being the ith class
membership probability (or proportion). The class pro-
portion is the probability for each Gaussian distribution
being drawn from all observations.
The log-likelihood of the joint event that is to be max-

imized can be written as
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Before the first iteration, one must find initial estimates
of μ, s, and the class proportions. To compute the initial
μ, the histogram is divided into n equal parts and μi is
taken as a mean of each part. The initial si are taken to

be equal to the maximum value in the image. The initial
class proportions are equal to 1

n . Then, the main goal is
to identify the unknown distribution parameters θ.
In the expectation step, the conditional distribution

with respect to the current unknown parameter esti-
mates is computed by
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where θt is the estimation of the parameters on itera-
tion t, p(yj|zj = i, θt) = N (μi, si) is the Gaussian prob-
ability density function at yj, and p(zj = i| θt) is the
probability of the class i for yj. The values of μ, s, and p
are taken from the previous maximization step.
In the maximization step, the values of μ, s, and p

which maximize the log-likelihood are re-estimated:
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Figure 2 Pipeline. Pipeline for automatic hepatocyte quantification. Our processing pipeline consists of four main steps. The flowchart is
depicted on the left-hand side; the impact of the individual steps on the right-hand side. The detection of total HC-nuclei in the red image
channel and proliferating HC-nuclei in the blue image channel is shown side by side. The vein region is smoothed and eliminated. For
proliferating HC-nuclei detection, the vein mask is excluded in the thresholding step.
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To speed up the computations, we assume not the image
pixels, but the image histogram values to be y. Thus, the
corresponding probabilities for yj are taken into account in
each expectation step when computing p(yj|zj = i, θt).
When the difference between the log-likelihood values

found in two iterations is lower than a certain accuracy
value, the algorithm stops. The algorithm execution
time varies depending on the selected accuracy. For our
application, an accuracy value of 10-4 was enough to
obtain the desired results in a short amount of time.
In the current implementation, the choice of the num-

ber of classes in the image is indicated to our tool using
a filename convention. The filenames must indicate,
which files contain vein structures. After the automatic
thresholding is completed, we obtain the proper mask
that consists either of two or three classes. We place
each class in a separate image channel and combine the
RGB mask image (see Figure 2).
Connected Components Processing
To discriminate the candidates for hepatocytes from all
other structures of the mask image, we apply some stan-
dard algorithms, namely morphological operations [18]
and size and roundness filters.
First, the morphological operation of erosion [18]

shrinks the regions to separate “weakly connected”
regions, i. e., regions with a thin and fragile connected-
ness. Second, the Fill Holes filter [18] is applied to erase
potentially existing holes in regions and, hence, make
the regions simply-connected. Third, we use connected-
component labeling in the image [6] to analyze each
connected component according to its area, i. e., we
threshold the connected components according to their
area and the respective equivalent diameter. The equiva-
lent diameter deq is the diameter of a circle with the
same area as the connected component, i. e.,

d Aeq  4  , (7)

where A denotes the area of the connected component.
Then, the dilation operation [18] can be applied to

expand the regions and restore the original region sizes.
Finally, we eliminate the non-round regions by excluding
the connected components that have a form factor lower
than a certain threshold. The form factor F given by

F
A

P
 4

2
p

, (8)

is equal to 1 for circles and approaches 0 for elon-
gated regions, where A is again the area of the con-
nected component and P is its perimeter. Perimeter P is
computed by summing the distances of all neighboring
pairs of pixels along the border of the connected
component.
In case there are vein structures present in the image,

those are eliminated using the vein structure mask
obtained by the thresholding step. We compute the
ratio between the area of the largest vein component
and the whole area covered by vein, then smooth the
vein region according to that ratio, and subtract the
resulting mask from the hepatocyte channel mask. Sub-
tracting the mask means that we set all those pixels to
black in the hepatocyte mask that are white in the vein
mask, see Figure 2. The smoothing is needed to connect
disjoint vein regions and to exclude inner part of the
vein. To smooth the vein mask we, again, apply a bilat-
eral filter.
Such a vein exclusion technique can handle vein

structures that consist of several disconnected regions
lying close together. If the vein region consists of one
major connected component, smoothing is not neces-
sary and can be omitted. However, such a connected
vein regions may contain some blood cells, which
appear as holes in the vein structure mask. A Fill Holes
filter [18] takes care of removing the blood. In the cur-
rent implementation, the type of the vein exclusion is
defined by a parameter in the pipeline settings.
The vein exclusion is applied to the red image channel

during the detection of the whole number of HC. In the
blue image channel the vein mask found in the red chan-
nel is discarded in the thresholding step, see Figure 2.
Hepatocyte Detection
To calculate the number of circular, possibly overlap-
ping regions in the image, we utilize the Hough trans-
formation [19], looking for circles within a pre-defined
radius interval. The algorithm operates in the parameter
space of the circles. The search for circles stops when
the height of the currently detected maximum in the
accumulator matrix is smaller than a certain percentage
of the first detected maximum.
In a post-processing step, we analyze the obtained cir-

cle list. We exclude all those circles whose center lies
outside the image or does not lie inside the hepatocyte
region mask. Moreover, from a group of circles lying
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close together we exclude the ones having less overlap
with the hepatocyte region mask. The closeness of the
circles is defined as

dist c c F r rcl( , ) max( , ) ,1 2 1 2
2 (9)

where c1, c2 denote the centers of the circles, r1, r2
denote the circles’ radii, and Fcl is a user-defined
parameter.
All the above-mentioned algorithms have been imple-

mented, using MeVisLab, Software for Medical Image Pro-
cessing and Visualization (see http://www.mevislab.de).

Testing
Inter-observer performance
As the groundtruth which is considered to be the
golden standard is manually defined by experts, we have
carried out the inter-observer agreement analysis. We
asked four experts to mark total and proliferating HC
on one batch of data (D5-8). Moreover, the experts
were also supposed to mark all events that could be
“non-hepatocytes” and “non-proliferating-hepatocytes”.
The results are presented in Table 1. Relative standard
deviation (which is computed as 100StDev

Mean ) has been cal-
culated for each image and then its mean has been
found. The results have shown that the relative standard
deviation is 15% for the total number of hepatocytes. Its
value is higher for the number of proliferating hepato-
cytes (20%), which is due to the fact, that, for instance,
dataset D5 has very low proliferation rates, hence, the
results are very sensitive to expert decisions. We have
compared our results to the sets of expert groundtruths
and the resulting mean sensitivity is close to 90%. In
Tables 2, 3, we show the results obtained with compari-
son to one of the expert groundtruths.
However, when the description of the target is rather

vague (to mark “non-hepatocytes”), the experts result in
much less agreement (around 30%). Therefore, we
assume that computation of True Negatives (TN) and,
correspondingly, the specificity or the false positive rate
brings less value due to such a high inter-observer disper-
sion. Instead, we propose to evaluate the false positive
fraction (FPF) within the total number of detected events,
i. e., FP

Detected . Intuitively clear, that results where the false
positive fraction is approaching to 0 are preferable, and
when the FPF is close to 1, the solution is too inexact.
Parameter selection
For selection of the parameters in the most optimal way,
such tool as receiver operator characteristic (ROC) [20]
is very useful. A ROC space is defined by 1-specificity
and sensitivity as x and y axes respectively, which

Table 1 Inter-observer variability results

Inter-observer variability

Total
HC

Total
Non-HC

Proliferating
HC

Proliferating
Non-HC

D5 219 162 4 399

198 150 4 357

189 257 2 188

D5-PT1 266 164 2 473

213 170 3 442

314 150 4 453

225 272 2 188

D5-CV1 265 167 2 444

227 137 2 415

303 127 1 184

202 214 1 371

D6-PT1 215 174 90 319

207 165 103 295

276 135 107 292

197 178 77 99

D6-CV1 232 163 81 348

213 127 78 276

291 139 92 345

200 208 62 127

D7 243 134 39 347

230 153 42 280

264 103 49 326

202 191 39 168

D7-PT1 249 146 33 383

214 113 34 317

282 116 37 359

193 251 24 151

D7-CV1 264 153 28 421

195 124 27 355

289 122 33 398

212 214 21 188

D8 237 189 147 284

216 117 143 200

254 142 158 242

203 181 122 242

D8-PT1 242 255 102 402

200 195 109 321

274 197 134 348

187 319 75 388

D8-CV1 230 116 61 315

185 69 53 235

253 78 65 273

190 207 51 398

Mean Relative
StdDev

15.02 27.96 20.92 29.42
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depicts relative trade-offs between true positive (bene-
fits) and false positive (costs). In Figure 3, the ROC
space is shown. The best possible classification method
would yield a point in the upper left corner or coordi-
nate (0, 1) of the ROC space, representing 100% sensi-
tivity (no false negatives) and 100% specificity (no false
positives). However, as it is shown above, the number of
True negatives (TN) is too rough and does not bring
meaningful information, hence, we propose to build a
ROC-like curve with FPF (false positive fraction) on
abscissa. Its behavior will be the same as of the standard
ROC-curve.
One of the parameters that influences strongly the

results is the relevance threshold for Hough transforma-
tion. In Figure 4, we show the ROC-like curves for
detection of the total HC for images D4-CV1 and D8-
CV1. The threshold values are [0.1, ..., 0.9] with Step =
0.1. We have observed, that the best results (sensitivity
is ≥ 90%, FPF is ≤ 10%) are achieved with the relevance
threshold interval [0.5, 0.6].
The parameter selection is a trial-and-error process. In

general, one should take into account the following data

Table 2 Total hepatocyte quantification results for eight
different data sets

Total hepatocytes

Image Detected TP FP FN Sensitivity FPF User P

D1 230 221 9 22 0.91 0.039 243

D1-PT1 210 188 22 20 0.90 0.1 208

D1-CV1 302 269 33 38 0.88 0.1 307

D2 223 201 22 14 0.93 0.09 215

D2-PT1 212 166 46 9 0.95 0.21 175

D2-CV1 230 200 30 17 0.92 0.13 217

D3 299 230 69 10 0.96 0.23 240

D3-PT1 268 206 62 13 0.94 0.23 219

D3-CV1 269 216 53 13 0.94 0.19 229

D4 229 212 17 33 0.87 0.07 245

D4-PT1 216 198 18 15 0.93 0.08 213

D4-CV1 237 218 19 10 0.95 0.08 228

D5 226 189 49 12 0.94 0.21 201

D5-PT1 217 210 7 15 0.93 0.03 225

D5-CV1 237 197 40 5 0.97 0.16 202

D6-PT1 216 186 30 11 0.94 0.13 197

D6-CV1 224 186 38 14 0.93 0.16 200

D7 230 191 39 11 0.94 0.17 202

D7-PT1 236 190 46 3 0.98 0.19 193

D7-CV1 218 204 14 8 0.96 0.06 212

D8 229 197 32 6 0.97 0.13 203

D8-PT1 214 177 37 10 0.95 0.17 187

D8-CV1 208 174 34 16 0.91 0.16 190

Mean 0.93 0.135

Table 3 Proliferating hepatocyte quantification results for
eight different data sets

Proliferating hepatocytes

Image Detected TP FP FN Sensitivity FPF User P

D1 3 3 0 0 1.00 0.00 3

D1-PT1 3 3 0 1 0.75 0.00 4

D1-CV2 4 4 0 0 1.00 0.00 4

D2 22 18 4 1 0.94 0.18 19

D2-PT1 27 23 4 1 0.96 0.14 24

D2-CV1 11 8 3 0 1.00 0.27 8

D3 27 24 3 1 0.96 0.11 25

D3-PT1 12 11 1 7 0.61 0.08 18

D3-CV1 41 39 2 1 0.97 0.04 40

D4 98 96 2 27 0.78 0.02 123

D4-PT1 105 102 3 14 0.87 0.02 116

D4-CV1 58 57 1 7 0.89 0.01 64

D5 3 2 1 0 1.00 0.33 2

D5-PT1 1 1 0 1 0.5 0.00 2

D5-CV1 1 1 0 0 1.00 0.00 1

D6-PT1 90 77 13 3 0.96 0.14 80

D6-CV1 65 61 4 5 0.92 0.06 66

D7 40 37 3 2 0.94 0.075 39

D7-PT1 26 25 1 0 1.00 0.03 25

D7-CV1 24 20 4 1 0.95 0.16 21

D8 138 120 18 2 0.98 0.13 122

D8-PT1 93 72 21 3 0.96 0.22 75

D8-CV1 55 50 5 1 0.98 0.09 51

Mean 0.91 0.09

Figure 3 ROC Space. A ROC space is defined by 1 - specificity and
sensitivity as x and y axes respectively, which depicts relative trade-
offs between true positive (benefits) and false positive (costs).
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characteristics for the optimal parameter determination:
the noise level of images; the size and roundness of the
target objects (hepatocytes, in our case); if the target
objects can be clumped together, then the size and
roundness of the clumped objects; the level of overlap
of the single target objects.
Since our smoothing step is followed by an automatic

thresholding step, the smoothing must be sufficient,
otherwise the thresholding will most likely fail. Other-
wise, when the denoising parameters are too high, the
cells lying close will be merged together and detected as
one connected component, that could be either rejected
on the connected component analysis step as a too big
or too non-round object (this would cause a number of
false negatives) or Hough transformation would detect
there a number of false positives. Moreover, to detect
the proliferating hepatocytes, i. e., to process the blue
image channel, we select a much stronger smoothing.
This allows us to leave out non-proliferating hepato-
cytes, which are much brighter than the proliferating
ones, and to separate the image into two classes (hepa-
tocytes and background) in the thresholding step.
While processing the resulting connected components,

we empirically measured the size and the roundness of
the single HC and the HC that are clumped together.
For Hough transformation, we selected the parameters
according to the size (HC radii interval), form (relevance
threshold and s for the accumulator array smoothing),

and the overlap level (closeness factor) of the single HC.
If these parameter values are underestimated, then prac-
tically all detected components pass, which will cause a
significant number of false positives. Otherwise, the
overestimated parameter values will cause many misses
in the detection.
Overall, for detection of the total and proliferating

number of hepatocytes the following parameters are
used: for smoothing ss = 16, sr = 0.15 and ss = 50, sr =
0.1, respectively; for connected component processing
deqÎ [35, 200], F = 0.2, and A Î [700, 8000]; and for
Hough transformation r Î [14, 50], s = 10, relevance =
0.5, and Fcl = 0.5 and Fcl = 0.75, respectively.
Pipeline results
We tested our processing pipeline on the detection of
the number of total HC and the number of proliferating
HC. The proliferation index detection takes on an Intel
(R) Core(TM)2 CPU T7200 @ 2.00 GHz computer with
2 GB DDR2 for one ROI image with a resolution of
2576 × 1932 on average 135 seconds.
The proposed pipeline has been validated using two

sets of samples (D1-4, D5-8), which have variations in
staining intensity and contrast due to some differences
in the histological processing. The ground truth is deter-
mined by manual identification of targeted red and blue
labeled hepatocytes. We have taken the groundtruth
from one of the observers. The result is compared with
the cells detected by the application. In order to allow
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for a fast comparison of the results, a small “validation
tool” has been developed, which allows for creating sets
of groundtruth and obtaining sensitivity and false posi-
tive fraction values.
Our evaluations are presented in Tables 2 and 3. The

following notations for the headings are used:
“Detected” means the number of circles found by
Hough transformation; “TP” is the number of True
Positive hepatocytes, which is the result of the overlay
of detected circles and the user expectations; “FN”
denotes the number of False Negative hepatocytes,
which is the difference between the Ground Truth Posi-
tives and the True Positives; “FP” stands for the number
of False Positive hepatocytes, which is the difference
between “Detected” and “TP"; and User P is the number
of Positive hepatocytes manually specified by the expert.
The most important numbers are the computed sensi-

tivities and false positive fractions (FPF). Sensitivity is
defined by T P/(T P + F N) and measures the propor-
tion of actual positives, while FPF is defined by F P/
(Detected) and measures the proportion of false positives
in the number of detected events.
The processed datasets belong to two batches, namely

D1-D4 belong to the first batch and D5-D8 belong to
the second batch. The second batch of datasets corre-
sponds to the data used in Tables 2 and 3 in previous
work [1]. In Figure 5, examples of our results for images
from both batches are depicted in an overlaid manner.
The red circles are the output of our pipeline. The
images visually document the findings in Table 2.

Discussion
Smoothing analysis
We propose to use two different variants for the bilat-
eral filter. One is the bilateral filter chain as implemen-
ted by Aurich et al. [12]. It allows for the removal of
fine details while preserving the edges of the coarser
structures. However, the computational costs of this
implementation are rather high. Therefore, we also

applied a faster implementation, namely the approxima-
tion of the bilateral filter introduced by Paris et al. [14].
The fast approximation is based on downsampling the
image, applying the convolution, and upsampling again.
Such a technique is favorable in terms of speed, but
introduces some distortions in the image for the slight
smoothing, which can affect the subsequent automatic
thresholding step negatively and may hinder the appro-
priate nucleus detection. However, we observed that the
distortion effect is mostly “corrected” by the connected
components post-processing and the detection results
for the two implementations are similar. In Figure 6,
smoothing results for both bilateral filter implementa-
tions are presented.

Thresholding analysis
In general, Otsu thresholding and expectation maximi-
zation produce quite similar results with threshold
values lying close to each other. For instance, in Figure
7, the initial image and results of both methods are
shown. In Figure 8, the threshold values obtained with
Otsu thresholding and EM are presented being overlaid
with the respective histogram. Otsu thresholding deli-
vers two threshold values, namely 118 and 185, which
separates the data range into three regions. The EM
method delivers three Gaussian curves, which represent
the likelihood of belonging to the three classes, i. e., the
class with the highest value is the most likely one. The
classification changes where the curves intersect, i. e.,
intersection points deliver the threshold locations. They
are close to the Otsu thresholds (marked with bars).
However, when one of the classes in the images is not

representative, i. e., it is negligible when compared to
the other classes, the cell class may be misclassified. For
example, for an image with low proliferation rate as the
one depicted in Figure 9, the results for Otsu threshold-
ing and EM are shown in Figure 10. Otsu thresholding
separates the vein from the background, but the infor-
mation about the cell class is lost. EM assigns the vein

Figure 5 Example Results. Result for detection of all hepatocytes for the images shown in Figure 12. No parameter adjustment was done. The
resulting statistical measures in form of sensitivity/FPF are D3-CV1: 0.94/0.19, D7-CV1: 0.93/0.06, and D8-CV1: 0.9/0.16. Our pipeline is robust
enough to allow accurate analysis of images with different color properties without the need for individual adjustments.
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Figure 6 Smoothing Analysis. Comparison of the smoothing results obtained with different implementations of the bilateral filter for image
D8: Bilateral filter chain (left), fast bilateral filter (right). The bilateral filter chain approach produces much smoother and “round” result, while the
fast bilateral filter introduces some distortions due to its implementation with downsampling. The bilateral filter chain detects 200 HC out of
user-marked 205, while the fast bilateral filter due to the introduced distortions detects only 192 HC out of 205. However, it does not
significantly worsen the detection rates: The bilateral filter chain produces results with sensitivity of 97% and false positive fraction of 13%, while
the fast bilateral filter produces results with sensitivity of 94% and false positive fraction of 10%.
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and the cells to the same class, which can lead to some
additional false positives detection.
For a more adequate detection of the proliferating hepa-

tocytes, we discard the vein region, which was detected in
the red channel, by excluding the vein mask from the
image histogram. In Figure 10, the results obtained with-
out vein exclusion are presented. In Figure 11, the result-
ing threshold values obtained with Otsu thresholding and
EM are presented overlaid with the respective histogram.
As the cell class is negligible when compared to both vein
and background classes or to the intensity variations inside
the background class (see Figure 11), the Otsu threshold-
ing method gives an incorrect result. In Figure 12, the
results obtained with vein exclusion are shown. The result
of EM method after vein exclusion, however, corresponds
to the cell class in the initial image.

Vein exclusion analysis
The preceding subsection shows that vein structures in
the images make the classification task much tougher,

but it also shows that vein exclusion can solve the pro-
blem. There is a number of works that tackle the pro-
blem of the vessel structure segmentation in CT scans
[21,22]. However, the task of vein segmentation from
histological images is hardly addressed in the literature.
We included the venous structure segmentation as a
part of our processing pipeline, utilizing automatic
thresholding and morphological operations. Certainly,
some more sophisticated techniques, such as, for exam-
ple, active contours [6] can be applied, but we leave this
point for future work.
If the vein region is represented by one connected

component that encloses all the blood components, the
Fill Holes filter removes the blood components and the
resulting vein mask can be used to remove the vein struc-
tures from the image channels. A closeup view of such a
vein region in image “D4-CV1” is shown in Figure 13.
If the vein region is represented by several components,

the Fill Holes filter fails to remove all blood in the vein,
which may lead to false positives. In Figure 14 (left), one

Figure 9 Non-representative cell class. Close-up view for the smoothed blue image channel (left) and vein mask (right) for Figure 2. The cell
class is not representative in the image.

Figure 10 Thresholding result with vein. Results for Otsu thresholding (left) and EM (right) methods for the image in Figure 9 without vein
exclusion. Otsu thresholding misclassifies the cells, which cannot be restored. EM assigns both cells (darkest spots) and vein (brightest spots) to
the same Gaussian distribution. After connected component processing, it is possible to extract the cells from the EM result. However, a number
of false positives (in the vein area) is also detected.
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can observe the close-up view of such a vein region from
Figure 2. In such a case, we apply the vein smoothing
step to build the vein mask. Figure 14 (middle) shows the
correctly detected cells after vein smoothing and elimina-
tion in comparison to the result obtained without prior
vein handling shown in Figure 14 (right).
In the current implementation, the presence of the vein

structure and the correspondent number of classes in the
thresholding step is indicated by the filename. In future
work, we want to replace this convention with an auto-
matic investigation of the presence of vein structures.

General analysis
In Figure 15, images from three datasets with differences
in color properties are shown. The results for the

detection of all hepatocytes are presented in Figure 5 in
an overlaid fashion. The circles around the cells repre-
sent the result obtained with our pipeline and corre-
spond to the results shown in Table 2. Our approach is
robust enough to deal with images with different color
properties and gives results with high sensitivity (above
90%) and low FPF (below 15%).
As stated in Tables 2 and 3, the average sensitivity for

the detection of all hepatocytes is 93% and for the detec-
tion of proliferating hepatocytes is 91%. The results that
have been obtained with our pipeline lie within the expert
dispersion ranges. All the results were obtained using the
same set of parameters for all datasets. Although the data-
sets exhibit significant variations in color properties, no
additional parameter adjustment was necessary.

Figure 11 Thresholding result: Histogram. Results for Otsu thresholding and EM methods overlaid with image histogram for Figure 9 before
(left) and after (right) vein exclusion. When the vein is not excluded (left), Otsu thresholding misses the cell class. With vein exclusion (right),
Otsu thresholding is still not able to separate the cell class, as the variations inside the background class are more noticeable. EM assigns in both
cases (left and right) all non-representative classes (cells and vein) to the same Gaussian curve.

Figure 12 Thresholding result without vein. Results of Otsu thresholding (left) and EM (right) methods for the image in Figure 9 after vein
exclusion. Otsu thresholding splits the background into two classes instead of separating cell and background classes, as the cell class is
negligible. EM assigns all non-representative classes (cells and vein) to one Gaussian curve such that, after vein exclusion, the cell class is
correctly extracted.
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Although the selected default algorithm settings work
well for a wide range of images, we observed that some
improvement of the results can still be obtained for cer-
tain images by fine-tuning the parameters. In general, to
produce best results for a series of images with specific
color properties, the user should process one “typical”
ROI image from the sample, select the appropriate para-
meters for each step, and then apply the selected set-
tings to the whole sample.
Complicated cases
Apart from testing our pipeline on two batches of ROIs
with acceptable quality, that have been taken from the
stained liver sections with normal morphology, we have

also selected five more complicated cases. They can be
separated into two categories. The first category contains
the images with some morphological artifacts. In Figure
16, the images that belong to this category are shown.
There is a large necrosis area shown in Figure 16 (left

image). The normal liver structure could not be pre-
served in the necrosis area. Moreover, there is a number
of infiltrating cells around the preportal area, and some
of them are similar to HC in size. This causes a certain
number of false positives, as it is shown in Figure 17.
The results for this image are 88% sensitivity and 38%
FPF for the total HC, and 100% sensitivity and 56% FPF
for the proliferating HC.

Figure 13 Close-up view of vein: Simple case. Close-up view of a vein region in image D5-CV1 (left). As the region is represented by a
connected component, the Fill Holes filter suffices to generate the mask for vein exclusion. Detection result after vein exclusion (right).

Figure 14 Close-up view of vein: Complicated case. Close-up view of the vein region of the image in Figure 2 (left), cell detection result after
vein smoothing and elimination (middle), and cell detection result without prior vein handling (right). As the blood areas separate the vein into
several components, the Fill Holes filter fails to remove all cellular components of the blood, see the areas marked with arrows (left). Vein
smoothing and elimination allows for a correct detection (middle). If no vein exclusion is applied, the detection results in a number of additional
false positives and false negatives (right).
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The liver structure shown in Figure 16 (right image)
has been impaired by severe bile duct proliferation. It is
hard to differentiate the HC out from the bile epithelial
cells even by manual counting. The overlaid results are
shown in Figure 18.
The images that have lower quality due to the staining

settings belong to the second category (see Figure 19).
In Figure 19 (left image), one can observe a ROI with a

too reddish background and light blue HC. This causes
many misses (false negatives) and results in low sensitivity.
The overlaid results are shown in Figure 20. The results for
this image are 60% sensitivity and 10% FPF for the total HC,
and 32% sensitivity and 0% FPF for the proliferating HC.
In Figure 19 (central image), the image with a rather

weak staining for positive cells and too bright and inhomo-
geneous background. The non-proliferating hepatocytes
are stained weakly and the boundaries of the cells are not
pronounced. This results both in low sensitivity (36% for
total HC and 55% for proliferating HC) and high false
positive fraction (70% for total HC and 22% for proliferat-
ing HC). The overlaid results are shown in Figure 21.

In Figure 19 (right image), the image with a blurred
staining of proliferating HC and bright background is
shown. Due to the brightness of background the detec-
tion of the venous structure fails and a number of false
positives is detected. The blurred staining of proliferating
HC also causes high false positive detection rates. The
overlaid results are shown in Figure 22. The detection
results are 90% sensitivity and 30% FPF for the total HC,
and 80% sensitivity and 26% FPF for proliferating HC.
Summarizing the observations shown above, we state,

that our pipeline successfully determines the target cells
when the contrast between them and the background is
strong enough. However, the morphological abnormal-
ities can severely impair the detection.
Comparison to other techniques
Visual analysis of cell samples has played a dominant
role in the history of biology [23]. While numerous
commercial and free software packages are available for
image analysis, many of them are designed for a very
specific purpose and data type (for example, [24]). Most
commercial software is proprietary, which means that

Figure 15 Example images. Images of stained sections are always subject to variations in the color properties especially when acquired from
different experimental runs, samples, or animals. Images from three datasets D3-CV1, D7-CV1, and D8-CV1 are presented.

Figure 16 ROIs with morphological complications. ROI containing necrotic area (left) and ROI with severe bile duct proliferation (right).
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Figure 17 Overlaid Results. Overlaid detection results for the left image in Figure 16. The results are 88% sensitivity and 38% FPF for total HC
(left) and 100% sensitivity and 56% FPF for proliferating HC (right). Green dots denote the expert groundtruth, circles are the result of our
pipeline. Due to the necrotic area, the false positive rates are rather high.

Figure 18 Overlaid Results. Overlaid detection results for the right image in Figure 16. It is problematic to differentiate the HC out from the
bile epithelial cells even by manual counting. Green dots denote the expert groundtruth, circles are the result of our pipeline.

Figure 19 ROIs with staining complications. ROI with too reddish background and light blue HC (left); ROI with weakly stained proliferating
HC, inhomogeneous and bright blue background and non-proliferating HC (center); ROI with bright background and blurry stained proliferating
HC (right).
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the underlying methods of analysis are hidden from the
researcher.
We have chosen freely available, open-source image

analysis software CellProfiler (http://www.cellprofiler.
org, [23,25]) for comparison purposes. To detect the
total number of HC we have applied a pipeline that is
similar to the one proposed, for instance, in [25]. The
pipeline consists of smoothing and object detection
including size and roundness filters. The main part of
that pipeline is IdentifyPrimAutomatic module. This
module identifies primary objects (e. g., nuclei) in grays-
cale images that show bright objects on a dark back-
ground. It contains a three-step strategy based on a
watershed algorithm [26] for separating the overlapping

cells. In step one, CellProfiler determines whether an
object is an individual nucleus or two or more clumped
nuclei. In step two, the edges of nuclei are identified.
For nuclei within the image that do not appear to
touch, the edges are easily determined using threshold-
ing. The clumped cells are divided using the distance-
transformed watershed algorithm [26-28]. In step three,
the objects smaller than a user-specified size range, are
discarded. A more detailed description can be found on
http://www.cellprofiler.org.
Such an approach is rather general and allows to

quantify cells of any type and form. After the boundaries
of the overlapping cells are found with the watershed
method, the post-processing consisting of size and

Figure 20 Overlaid Results. Overlaid detection results for left Figure 19. The results are 60% sensitivity and 10% FPF for total HC (left) and 32%
sensitivity and 0% FPF for proliferating HC (right). Due to the weak staining of HC the false negative rates are high. Green dots denote the
expert groundtruth, circles are the result of our pipeline.

Figure 21 Overlaid Results. Overlaid detection results for central image Figure 19. The weak staining for positive cells and too bright and
inhomogeneous background impairs the detection. The results are 36% sensitivity and 70% FPF for total HC (left) and 55% sensitivity and 22%
FPF for proliferating HC (right). Green dots denote the expert groundtruth, circles are the result of our pipeline.
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shape filters can be applied. We applied it to several
images from our test datasets and obtained rather satis-
factory results (for example, for image D2-CV1 sensitiv-
ity equals 90%, FPF equals 39%), but many of the false
positives can be eliminated by some more sophisticated
size and roundness filters. However, as our case is rather
specific, i. e., the form of cells is known in advance, we
assume, the application of the Hough transformation
here allows for more exact quantification due to several
reasons. First, in the process of evidence accumulation
the regions that are not round enough are excluded by
the relevance thresholding. Second, after the circles are
found the information about radii and circle centers is

used for additional analysis. This produces results with
high sensitivity and low FPF, but at the same time
increases the number of the pipeline parameters. In
Figure 23, the overlaid results of CellProfiler pipeline
with watershed (left) and our pipeline (right) for image
D2-CV1 are shown. The greenish dots denote the
expert-defined groundtruth.

Conclusions
We have presented an algorithm for automatic hepato-
cyte detection, applied it to data of different characteris-
tics, and compared the automatically calculated results
to the manually detected ground truth. The proposed

Figure 22 Overlaid Results. Overlaid detection results for the right image in Figure 19C. Due to the blurred proliferating HC and similarity in
intensity of the background and venous structure the detection results have a rather high false positive fraction. The results are 90% sensitivity
and 30% FPF for the total HC, and 80% sensitivity and 26% FPF for proliferating HC. Green dots denote the expert groundtruth, circles are the
result of our pipeline.

Figure 23 Comparison. Overlaid results of CellProfiler pipeline with watershed (left) and our pipeline (right) for image D2-CV1 are shown. The
greenish dots denote the expert-defined groundtruth. Watershed (left image) successfully separates overlapping cells, but many of the false
positives can be eliminated if more sophisticated size and roundness filters are applied. Our pipeline with Hough transformation and vein
exclusion allows for the more exact target cells detection.
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processing pipeline consists of a smoothing step, an
automatic thresholding, a connected-component proces-
sing, vein exclusion (when necessary), and a Hough
transformation. The default parameter values of the
algorithm worked well for the data that we processed.
In addition, the parameters can be adjusted in a semi-
automatic manner and saved to a file such that they can
be used in a fully automated batch processing.
The automatic processing of file series allows to produce

the desired results in much shorter time when compared
to the manual or semi-automatic single file processing.
The proposed automatic pipeline gives results with high
sensitivity and low false positive fraction for a wide range
of images having different color properties. It can be used
for the subsequent hepatocyte quantification not only in
the selected ROIs, but also in the series of liver sections.
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