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Abstract. The adhesion and migration of  human dip- 
loid fibroblasts on plasma clots were measured. The 
role of  plasma fibronectin was examined by depleting 
plasma of fibronectin before clotting. Fibronectin was 
not essential for cell adhesion and spreading, although 
rates were slightly slower on depleted dots.  Rates of  
migration on the surface of  clots were unaffected by 
fibronectin depletion. 

In contrast, fibronectin was an absolute requirement 

for migration of cells into plasma clots. Cells migrated 
rapidly into control clots but completely failed to pen- 
etrate the surface of  fibronectin-depleted clots. The 
effect of  depletion could only be reversed by adding 
fibronectin to depleted plasma before clotting. Ad- 
sorption of  fibronectin after dot t ing failed to reverse 
the effect of  depletion, suggesting that fibronectin had 
to be cross-linked by transglutaminase during the clot- 
ting process. 

T 
HE factors involved in fibroblast adhesion and migra- 
tion have been extensively studied. Most studies have 
made use of artificial substrates; these need to have a 

suitably charged surface (5, 19). In the presence of serum, 
fibroblasts adhere to such surfaces and spread into a charac- 
teristic bipolar morphology (34). This adhesion and spreading 
is a prerequisite for the proliferation of normal cells (31 ). 

Two plasma proteins can promote cell adhesion. One is 
fibronectin, a 450,000-D dimeric protein; the structure and 
mechanism of action of this protein are well documented 
(12). The other adhesive protein in plasma is 70,000 D (2, 10, 
16, 17, 30) and is unrelated to fibronectin. Less is presently 
known about this protein but it appears to have a different 
mechanism of action from fibronectin (17). 

During the wound response, fibroblasts and other cell types 
interact with the fibrin lattice of the clot that forms at the site 
of tissue damage. Fibroblasts migrate into certain areas of the 
clot, proliferate, and synthesize collagen and other compo- 
nents of the connective tissue extracellular matrix. The adhe- 
sion of cells to adsorbed monomolecular layers of fibrin has 
been studied (9, 23, 24), and fibronectin has been shown to 
increase rates of attachment and spreading (9). In the clot that 
forms physiologically, the fibrin is in the form of a three- 
dimensional lattice. The fibrin is cross-linked by transgluta- 
minase, the factor XIII of the clotting cascade which is also 
known to cross-link plasma fibronectin to fibrin (20, 21). 

In this study we have examined the behavior of human 
diploid fibroblasts on plasma clots and in particular the role 
of fibronectin in the adhesion and subsequent migration into 
clots. 

Materials and Methods 

Preparation of Plasma Clots 
Blood was collected from volunteers and anticoagulated with EDTA (final 
concentration 3.5 raM). After centrifugation at 5,000 g for l0 rain, plasma was 

aspirated and dialyzed at 4"C against phosphate-buffered saline (PBS). Assays 
of adhesion, spreading, and migration on the surface of plasma clots were done 
using 35-mm petri dishes. To 1 ml of plasma kept on ice was added 10/zl of 
150 mM CaCI2 and 10 ~1 of 50 IU/ml thrombin. The mixture was rapidly 
mixed and added to a petri dish which was placed in a 37*C incubator for 15 
rain to allow dotting to lake place. In some experiments, 24-well dishes were 
used. In this ease, 0.5-ml dots were formed in each well. 

Depletion of Fibronectin 
10-ml bed vol of gelatin-Ultrodex (LKB, Selsdon, Surrey) was used. 5-ml 
samples of plasma were passed through each column before regeneration. 
Plasma was eluted with PBS, and protein-containing fractions were pooled and 
concentrated back to starting volume using Amicon C25 Centriflo cones 
(Amicon Corp., Danvers, MA). Depleted plasma was dialyzed at 4"C against 
PBS. Before recalcifieation and clotting, the protein concentration was mea- 
sured speetrophotometrically at 280 nm. The depleted plasma was adjusted by 
further concentration or dilution to give the same protein concentration as 
control plasma. Clotting of fibronectin-depleted plasma was achieved in the 
same way as control plasma. Purified human fibroneetin was obtained from 
LKB and was, unless stated otherwise, added back to plasma at 0.3 mg/ml of 
plasma before or after clotting as indicated. 

Cells 
BCL-DI human diploid fibroblasts were obtained from Gibco (Uxbridge, 
Middlesex, UK) and cultured routinely in Ham's F10 medium (Gibco) supple- 
merited with 10% fetal bovine serum (Gibeo). 

Cell Attachment Assay 
Confluent monolayers of BCL-D 1 cells were trypsinized, suspended in serum- 
less FI0 medium, and adjusted to a density of 5 × 104/ml. l-ml aliquots of the 
cell suspension were added to plasma clots in petri dishes and 0.5-ml aliquots 
to those in multiweUs. At time intervals medium was removed and each clot 
washed twice with I ml of FI0 to remove non-adherent cells. The initial 
medium and two washes were combined and cell number determined with a 
hemocytometer. 

Cell Spreading Assay 
A drawing-tube attached to an inverted microscope was used to focus the image 
onto a Hi-Pad digitizer tablet (Bausch & Lomb Inc., Rochester, NY) interfaced 
to an Apple 11 plus microcomputer (Apple Computer Inc., Cupertino, CA). 
The periphery of cells were logged via the digitizer, and specifically tailored 
programs were used to compute the longest axis as previously described (t 5). 
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Cell Migration on Plasma Clots 
Before the addition of cell suspensions to plasma clots, 5-ram lengths of 30- 
swg stainless steel wire were bent into right angles and embedded in the surface 
of clots. 24 h after adding cell suspensions and at four 0.5-h intervals thereafter, 
photomicrographs were taken of the area between the arms of the wire right 
angle. 

Enlargements of the micrographs were prepared and tracings then used to 
plot the migration of each cell in the field at half-hour intervals; the wire right- 
angles were used to orientate tracing overlays. The digitizer and computer were 
then used to measure the distance migrated per unit time. BCL-DI cells are 
very bipolar and so the distance measured was the difference betwoen the 
leading point of the cell at each time point. 

Cell Migration into Plasma Clots 
Migration chambers were made from two microscope slides separated by shaped 
1.5-mm thick spacers. Microscope slides had previously been treated with 
Siliclad (Becton Dickinson) to ensure that the chamber had non-adherent 
surfaces. Calcium and thrombin were added to plasma samples and the mixture 
introduced into the chambers with a syringe and needle to give a depth of 1 
cm. The chamber was then incubated at 37"C for 15 min to ensure complete 
clotting. A suspension of 2 x 104 cells/ml was then added onto each clot with 
a syringe and needle to give a depth of 0.5 cm. The open end of the chamber 
was sealed with dental wax and the chambers then incubated vertically at  37"C. 
After 24 h the chambers were placed horizontally on a stage of an inverted 
microscope and migration into the clot determined with the aid of a graticule 
by counting the number of cells in 0.2-mm intervals from the clot-medium 
interface. 

Diffusion of  Fibronectin into Plasma Clot 
Plasma clots were formed in plastic tubing of internal diameter 0.5 cm and at 
t = 0, 10 t~l of t2SI-labeled fibronectin was added to the surface of each clot. 
After incubation at 37"C for different periods of time, clots were snap-frozen 
and sliced at 1-mm intervals and each slice counted. 

Results 

Plasma clots were prepared from EDTA-plasma after dialysis 
and recalcification. Clots l-mm thick were formed in petri 
dishes and despite their fibrillar nature, an inverted phase- 
contrast microscope allowed visualization of ceUs seeded onto 
the surface of the clots. Fresh blood was used throughout this 
study since when outdated blood from the local blood bank 
was used, the clots were visibly less fibrillar and often began 
to lyse before completion of an experiment. 

When suspensions of fibroblasts were seeded in protein-free 
medium onto plasma clots, cells adhered and spread on the 
surface of the fibrin lattice. Fig. 1 shows a photomicrograph 
of BCL-DI cells 6 h after seeding onto a plasma clot. The 
fibriUar nature of the clot can be seen. The cells have a more 
spindle-shaped appearance than the same cells seeded onto 
tissue culture plastic. 

The role of fibronectin in the adhesion and spreading of 
cells on plasma clots was examined by removing fibronectin 
from fresh plasma by affinity chromatography before clotting. 
In addition to control plasma clots and clots prepared from 
fibronectin-depleted plasma, two further sets of plasma clots 
were used in the following experiments. Purified fibronectin 
was added back to depleted plasma in two ways. The first was 
addition before clotting; this would result in the covalent 
cross-linking of fibronectin to fibrin by transglutaminase. The 
second was to clot fibronectin-depleted plasma and then to 
adsorb fibronectin to the resulting clots; in this case fibronec- 
tin would be physically adsorbed to fibrin and little if any 

Figure 1. H u m a n  diploid fibroblasts on plasma clots. This photomicrograph was taken using phase-contrast optics of  BCL-DI cells 6 h after 
they were added to a control plasma clot. 
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would be cross-linked to it. Purified thrombin was used in the 
preparation of  clots. While control plasma always clotted 
rapidly when recalcified, fibronectin-depleted plasma clotted 
more slowly since surface-activating proteins such as Hage- 
man factor also bind to gelatin-affinity columns. 

Fig. 2 shows the rates of  attachment of  BCL-D 1 cells to 
different plasma clots. Rates of  attachment to fibronectin- 
depleted clots were slower than to control clots; however, by 
2 h all cells had adhered to both types of  clot. When fibronec- 
tin was added back to depleted plasma, then the effect of  
depletion was reversed and this was true whether it was added 
before or after clotting. To determine the role of  cell surface 
or secreted fibronectin in the adhesion to fibronectin-depleted 
clots, a series of  studies were done using anti-fibronectin 
antiserum. In initial experiments a dilution of  a polyclonal 
antiserum was found that inhibited the effect of  re-addition 
of  fibronectin. Fig. 3 shows the effect of  the antiserum on the 
adhesion of  cells to fibronectin-depleted clots. The antiserum 
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Figure 2. Adhesion of BCL-DI cells to plasma clots. A BCL-D1 cell 
suspension in serum-less medium was added to control plasma clots 
(O), fibronectin-depleted plasma clots (O), clots formed from fibro- 
nectin-depleted plasma with fibronectin added before clotting (11), or 
clots formed from fibronectin-depleted plasma with fibronectin ad- 
sorbed after clotting (O). Cell adhesion was measured at time intervals. 
Each point represents the mean of three observations. Maximum 
variation between observations was 6%. 
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Figure 3. The effect of anti-fibronectin antiserum on attachment to 
plasma clots. Fibronectin-depleted plasma was used to prepare plasma 
clots with (O, @) or without ([3, II) the addition of fibronectin. A 
suspension of BCL-D 1 cells in serum-less medium was added to the 
clots with (O, l )  or without (O, O) the addition of polyclonal 
antiserum to human fibronectin at a final dilution of 1:20. Cell 
attachment was monitored as in Fig. 2. 

abolishes the effect of  re-added fibronectin but has no effect 
on the ultimate ability of  all cells to adhere. 

When depleted samples of  plasma were subjected to SDS 
gel electrophoresis followed by electroblotting and detection 
with anti-fibronectin antiserum, no fibronectin was detecta- 
ble. To rule out the possibility of  traces of  fibronectin remain- 
ing after affinity chromatography, samples of  depleted plasma 
were rechromatographed using gelatin affinity columns, and 
polyclonal anti-human plasma fibronectin antibodies were 
added before clotting. There was no signifcant difference 
between the results obtained using this plasma and plasma 
that had been passed once through excess affinity gel. 

Cell spreading was measured morphometricaUy by focusing 
the phase-contrast microscope image onto a digitizer tablet 
interfaced to a microcomputer. Fig. 4 shows that cells spread 
on fibronectin-depleted plasma clots at slower rates than on 
control clots. As in the case of  attachment this is only a 
transient difference and with time both sets of  clots became 
indistinguishable. In the case of  re-addition of  fibronectin 
there was a clear difference between fibronectin added before 
and after clotting. Only in the case of  addition before clotting 
was the rate of  spreading the same as controls and clots to 
which fibronectin had been added after dotting behaved 
essentially like fibronectin-depleted plasma clots. 

Two aspects of migration were studied. Migration on the 
surface of  the clot was studied by taking photomicrographs of  
marked fields at time intervals and using the digitizer to 
measure rate of  locomotion. These measurements were made 
1 d after seeding cells onto the surface of  the clots and so cells 
were by this time equally well spread on control and fibro- 
nectin-depleted clots. Table I shows that fibronectin depletion 
had no effect on the rate of  migration over the surface of  a 
clot. 

To measure migration into clots, chambers were made 
using silicone-treated glass. The chambers were constructed 
so that they could be incubated vertically to allow suspended 
cells to settle onto the surface of  the clot. Fig. 5 shows a 
diagram of  the chamber. Cells were added to the surface of  
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Figure 4. The spreading of BCL-DI cells on plasma clots. A BCL-DI 
cell suspension in serum-less medium was added to control plasma 
clots (O), fibronectin-depleted plasma clots (O), clots formed from 
fibronectin-depleted plasma with fibronectin added before clotting 
(ll), or clots formed from fibronectin-depleted plasma with fibronec- 
tin adsorbed after clotting (O). Cell spreading was measured morpho- 
metrically at time intervals. Results represent the mean -+ one stand- 
ard deviation of 20 cells on each of triplicate clots (i.e., 60 cells in 
total). 
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Table L Rates of Migration on Plasma Clots 

Migration 0~m/h) 

Exp. no. Control plasma clots Fibroneetin-depleted clots 

1 78 _+ 6 85 - 1 3  

2 65 + 8 72 __. 8 
3 85+ 12 79+ 11 
4 9 9 + 6  87 _+ 13 

In four separate experiments plasma clots and fibronectin-depleted clots were 
prepared from the blood of four different volunteers. Each results represent the 
mean + SD of 20 cells on duplicate clots measured over four 30-min periods. 

Figure 5. Diagram of the chambers used to study migration into 
plasma clots. 

the clot in serum-less medium and at t imed intervals cham- 
bers were turned through 90* and placed on a microscope 
stage to measure migration of  cells into the clot. Cells failed 
to adhere to the siliconized glass used for construction of  the 
chambers and so any migration must have occurred through 
the fibrin lattice of  the clots. 

Fig. 6 shows a photomicrograph of  BCL-D 1 cells migrating 
within a control plasma clot. Cells have long processes and 
show non-uniform morphology. The cells that appear spher- 
ical in shape are in fact cells spread along the axis of  viewing; 
this is established by focusing at different levels within the 
clot. 

Fig. 7 shows the results of  a typical experiment measuring 
migration into different clots. While fibroblasts moved rapidly 
into control clots, cells were completely unable to migrate 
into fibronectin-depleted clots. In chambers containing fibro- 
nectin-depleted clots, cells adhered, spread, and migrated over 
the surface o f  the clot but failed even after a 3-d incubation 
to penetrate into the fibrin lattice. Addition of  fibronectin 
before clotting completely reversed the effect of  depletion. 
Adsorption of  fibronectin to the plasma clot failed to reverse 
depletion and again cells failed to enter the fibrin mesh. Even 
adsorption of  fibronectin for 24 h before the addition of  cells 
failed to reverse the effect of  depletion, and no cells migrated 
into the clot. The rates of  migration shown in Fig. 7 appear 
to be less than those in Table I. The reason is that fibroblasts 
show random migratory patterns and the data in Table I refer 
to absolute migration, whereas that in Fig. 7 concern net 
movement.  

Since fibronectin binds to fibrin, it was necessary to estab- 
lish that fibronectin, when added to the surface of  a clot, 
diffused through the fibrin mesh. This was achieved using 

Figure 6. Photomicrograph of cells migrating through a plasma clot. 
A cell suspension was added to the surface of plasma clots in migration 
chambers. After incubation at 37"C for 24 h, a chamber was turned 
through 90* and placed on the stage of a microscope and photo- 
graphed with phase-contrast optics. 
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Figure 7. Migration o f  fibroblasts into p lasma clots. Migration cham-  
bers were prepared conta in ing (a) control p lasma clots, (b) fibronec- 
tin-depleted plasma clots, (c) clots formed from fibronectin-depleted 
plasma with fibronectin adsorbed after dotting, or (d) clots formed 
from fibronectin-depleted plasma with fibronectin added before clot- 
ting. After adding cell suspensions and sealing the open end, the 
chambers were incubated vertically for 24 h at which time they were 
turned through 90", placed on the stage of a microscope, and the 
number of cells migrating regular distances from the clot/medium 
interface measured with the aid of a graticule. 
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Figure 8. Diffusion of fibronectin into plasma clots. Replicate plasma 
clots were formed from fibronectin-depleted plasma. After adding 
radiolabeled fibronectin to the surface of clots, they were incubated 
at 37°C. At 4 h (l'q), 8 h (@), and 24 h (O) clots were snap-frozen, 
sliced, and counted. 

radioiodinated fibronectin which was added to the surface of 
plasma clots. Fig. 8 shows the extent to which fibronectin had 
diffused into clots at different time intervals. SDS gel electro- 
phoresis and autoradiography was used to confirm that >98% 
of label diffusing into the clots was native fibronectin, and 
autoradiography of slices of clot was used to confirm that 
fibronectin diffused uniformly throughout the clot. 

Discussion 

During a wound response, cells migrate into the coagulum 
formed at the site of tissue damage. Here it is shown that 
plasma fibronectin is necessary for the migration of fibroblasts 
into plasma clots. The role played by fibronectin is complex. 
Although necessary for migration into clots, it is not necessary 
for the attachment and spreading of cells on the surface of 
fbrin since when clots were prepared from fibronectin-de- 
pleted plasma, there were only small differences in initial rates 
of adhesion. Migration over the surface of plasma clots was 
also unaffected by removal of fibronectin. Antisera to fibro- 
nectin did not prevent adhesion to fibronectin-depleted 
plasma clots, suggesting that the cells can adhere and spread 
via mechanisms that do not involve plasma or cellular fibro- 
nectin, although fibronectin can mediate adhesion to ad- 
sorbed monomolecular layers of fibrin (9). Fibronectin is not 
essential for the adhesion of cells to tissue culture plastic (11, 
32) or to collagen (8, 26), and there is in plasma at least one 
other adhesive glycoprotein known as serum spreading factor 
(vitronectin) (2, 10, 17, 30), which is unrelated to fibronectin 
and stimulates adhesion via a different mechanism (15, 18). 

The requirement for fibronectin in migration into a clot 
was absolute. Cells failed, even over extended time courses, 
to migrate into clots formed from fibronectin-depleted 
plasma. This effect was reversed by the addition of purified 
fibronectin before clotting, suggesting that the fibronectin 
needs to be covalently cross-linked to fibrin by transgluta- 
minase. The importance of this enzyme has been demonstra- 
ted in vitro (4, 14, 33) where optimal growth on clots requires 
the presence of the enzyme. Individuals with an inherited 
deficiency of the enzyme display poor wound-healing (1, 6). 

The results using fibronectin added after clotting of depleted 

plasma are only valid if the fibronectin has diffused into the 
matrix of the clot. This was confirmed using radioiodinated 
fibronectin. The fact that serum contains only slightly less 
fibronectin than plasma indicates that only a small percentage 
of the total plasma concentration becomes involved in fibrin 
formation. Fibronectin diffused rapidly into depleted clots 
and the diffusion coefficient was calculated as 0.9 x l0 -7 
cm2/s. This is not significantly different from the value that 
would be expected in water. Using the data from studies 
involving the migration of cells into clots, an equivalent 
diffusion coefficient of over 108 cm2/s was obtained. This 
indicates that even if fibronectin and cells were added at the 
same time that the diffusion of fibronectin would not be rate- 
limiting in relation to cell migration. In fact, in some of the 
reported experiments, fibronectin was added 24 h before the 
cells. 

The structure of the fibronectin molecule has been studied 
in detail. The protein contains a domain that includes a fbrin- 
binding region (27, 28) and a domain that includes a cell 
surface binding site (7, 25). The two binding sites of the 
protein would seem to offer an obvious mechanism in which 
the cross-linked fibronectin provides the points of adhesion 
for cells on the fibrin lattice. However, the results here show 
that fibroblasts can adhere, spread, and migrate on fibrin 
lattices in the absence of fibronectin. Thus, there must be 
other sites on the fibrin lattice to which cells can become 
attached. 

The cross-linking of fibronectin to fibrin is known to affect 
the physical characteristics of the clot. Thus, the shear mod- 
ulus of fibrin is increased by the cross-linking of fibronectin 
(13). 

Cells could migrate on the surface of clots in the absence 
of fibronectin and so it is necessary to question the mechanism 
in which fibronectin promotes migration into plasma clots. 
Recently it has been shown that fibronectin brings about a 
rapid movement of cells from collagen gels that did not 
contain fibronectin into contiguous areas of gel that did 
contain physiological concentrations of fibronectin (22). This 
translocation of cells was a function of the chemimechanical 
properties of the matrix in that polystyrene beads were also 
found to move rapidly but only during periods of collagen 
fibrillogenesis. Although we report here that fibronectin brings 
about a movement of cells into a fibrin mesh, it is unlikely 
that the mechanism involves "matrix-driven translocation." 
First, cells were not added until after the completion of fbrin 
fibrillogenesis. Second, matrix-driven translocation is unidi- 
rectional, whereas migration in plasma clots is random. Cells 
in plasma clots showed a non-uniform morphology. However, 
within the lattice structure of a clot, fibroblasts assume a 
three-dimensional configuration, whereas on a solid substra- 
tum the morphology is essentially two-dimensional. 

In vivo, it is possible that cell migration is chemotactic. 
Platelet-derived growth factor has been shown to exert a 
chemotactic influence on fibroblasts (29). Platelet factors were 
not present in the plasma clots used in the studies reported 
here. We intend to now study the effects of platelets and 
platelet factors in fibroblast migration into clots. 
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