
CMIC: an efficient quality score compressor
with random access functionality
Hansen Chen, Jianhua Chen*   , Zhiwen Lu and Rongshu Wang 

Background
Modern DNA sequencing technology has generated a large amount of genomic data,
and with the emergence and maturity of NGS (next-generation sequencing) methods,
genome sequencing is becoming less expensive. In 2014, the cost of sequencing a human
genome was limited to $1000 [1], and the lower cost means that there will be an explo-
sion of genomic data. Today, the latest systems can sequence the equivalent of 48 com-
plete human genomes at once at 30× coverage. These genomes produced approximately

Abstract 

Background:  Over the past few decades, the emergence and maturation of new
technologies have substantially reduced the cost of genome sequencing. As a result,
the amount of genomic data that needs to be stored and transmitted has grown expo-
nentially. For the standard sequencing data format, FASTQ, compression of the quality
score is a key and difficult aspect of FASTQ file compression. Throughout the literature,
we found that the majority of the current quality score compression methods do not
support random access. Based on the above consideration, it is reasonable to investi-
gate a lossless quality score compressor with a high compression rate, a fast compres-
sion and decompression speed, and support for random access.

Results:  In this paper, we propose CMIC, an adaptive and random access supported
compressor for lossless compression of quality score sequences. CMIC is an acronym
of the four steps (classification, mapping, indexing and compression) in the paper.
Its framework consists of the following four parts: classification, mapping, index-
ing, and compression. The experimental results show that our compressor has good
performance in terms of compression rates on all the tested datasets. The file sizes are
reduced by up to 21.91% when compared with LCQS. In terms of compression speed,
CMIC is better than all other compressors on most of the tested cases. In terms of ran-
dom access speed, the CMIC is faster than the LCQS, which provides a random access
function for compressed quality scores.

Conclusions:  CMIC is a compressor that is especially designed for quality score
sequences, which has good performance in terms of compression rate, compression
speed, decompression speed, and random access speed. The CMIC can be obtained in
the following way: https://​github.​com/​Humon​ex/​Cmic.

Keywords:  FASTQ, Quality score, Random access, Lossless compressor

Open Access

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate-
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​
creat​iveco​mmons.​org/​licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver (http://​creat​iveco​mmons.​org/​publi​
cdoma​in/​zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

SOFTWARE

Chen et al. BMC Bioinformatics (2022) 23:294
https://doi.org/10.1186/s12859-022-04837-1

BMC Bioinformatics

*Correspondence:
chenjh@ynu.edu.cn

School of Information, Yunnan
University, Chenggong Campus,
Kunming, Yunnan, China

http://orcid.org/0000-0002-3637-2565
https://github.com/Humonex/Cmic
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-022-04837-1&domain=pdf

Page 2 of 17Chen et al. BMC Bioinformatics (2022) 23:294

6 TB of FASTQ files [2]. Such large-scale sequencing creates challenges for data stor-
age, transmission, and analysis. Therefore, it is necessary for us to develop a genome
sequence compressor with high efficiency.

The output of modern DNA sequencing is typically stored in FASTQ format [3], as
shown in Fig. 1, which is a file format containing the following types of data:

1.	 The identifier sequence contains the ID of the reads. It begins with @ followed by an
optional description.

2.	 The base sequence contains bases of a read. It usually has four kinds of bases (A, C,
G, T).

3.	 The quality score sequence contains quality score symbols of a read. It reflects the
level of confidence in the readout of each base. Its specific calculation formula is
S = −10 log10 P , where P is a reference sequencing error probability. Quality values
range from 33 to 73 (or from 64 to 104) and are represented by ASCII symbols.

For each read, there is a paired line of scores that is equal in length to the read length.
The quality score information is always of the same length as the respective base
sequence. Some FASTQ files have a fixed read length, and the length of the quality score
lines are also fixed; others have variable read lengths, and therefore, the lengths of the
quality score lines are also variable.

Among FASTQ files, the base sequence is highly redundant, with only four possible
values of ATCG in the sequence. The quality score sequence is much more difficult
to compress than the base sequence due to low redundancy and the fact that there
are as many as 71 possible values in the sequence. Additionally, more values in the
quality scores also lead to the compression being less efficient. Since the final com-
pression step in the proposed method is completed by ZPAQ, which is a statistical
model-based algorithm, a larger alphabet size means more difficulty in learning the
context model for a given source sequence, and thus, the compression efficiency is
affected. Moreover, in the lossless FASTQ compressed files, the quality scores account
for approximately 70% [4]. Therefore, the need for an algorithm that can efficiently
and losslessly compress quality scores has become critical. In addition, the qual-
ity score is important for mutation testing. When retrieving a list of specific protein
sequences, we only use a part of the genome data [5], which means that only some of
the bases and their corresponding quality scores in a FASTQ file need to be retrieved,
and the need for random access functionality on the compressed genome data arises.

Fig. 1  The example of FASTQ format

Page 3 of 17Chen et al. BMC Bioinformatics (2022) 23:294 	

Recently, the biotechnology industry has made substantial progress, and the compres-
sion of genomic sequences is close to practical application. However, most previous
genome data storage efforts do not have random accessibility, which means that they
have to decode the entire compressed file to retrieve a specific segment in a sequence
[6]. Since quality scores consist of an important part of a FASTQ file, an efficient com-
pression algorithm for them should also implement random access to the compressed
quality score information related to a specific base sequence. Obviously, if we want to
improve the random access efficiency, we need to divide the genome sequence into
blocks, but this requires an appropriate indexing method to quickly find the required
quality score sequence and minimize the impact of the index file on the final com-
pression efficiency. However, the block size directly affects the efficiency of compres-
sion and random access, so we need to achieve a reasonable balance between the two.

Most current quality score compressors use run-length encoding [7] or build com-
plex context models for compression, and they do not support random access. The
advantage of using run-length encoding is that the compression speed is fast; how-
ever, the compression ratio is relatively low, and the robustness is poor (compression
may not perform well for different types of FASTQ files). The benefit of using complex
context modeling for compressors is the high compression ratio, but the compression
speed is slower than the other compression methods (Conversely, some compressors
try to increase the compression speed by building simple probabilistic models, but
the compression ratios of these methods are usually poor). It can be seen that the
compression speed and the compression ratio are not independent and are mutually
constrained. Most compressors weaken one to enhance the other. By improving the
parallelism of the algorithm and use more CPU cores, we can improve the compres-
sion ratio and speed at the same time.

In this paper, we propose a new quality score compressor, CMIC. To improve the
performance of CMIC, we made the following contributions:

1.	 We propose a new mapping method that makes full use of the correlation between
adjacent quality scores and improves the efficiency of context modeling entropy
encoding.

2.	 By building a highly effective light weight index, it implements and speeds up the
random access.

This article is organized as follows. The second section mainly describes the related
work. The third section introduces the specific implementation method of CMIC. The
fourth section discusses the experimental results. In the fifth section, we provide the
conclusion and the directions of future work.

To date, quality score compressors can be divided into two categories: lossy and
lossless approaches. Compared with the lossless compressor, a lossy compressor can
considerably improve the compression efficiency, but it is still controversial in practi-
cal applications [8]. Because the quality score represents the quality of each base, the
value of the quality score shows the potential error probability of the base. The larger
the value is, the smaller the possibility of a sequencing error. Therefore, improper
processing may lead to errors in the analysis results of the gene data.

Page 4 of 17Chen et al. BMC Bioinformatics (2022) 23:294

With regard to lossy quality score compressors, in 2016, the MPEG standardization
committee proposed a framework to measure the impact on variant calling for human
genomes [9]. However, long before the previous framework, the lossy quality score com-
pression tools QVZ [10], R-Block and P-Block [11] could not only maintain variant call-
ing performance but even improve it in some cases. However, considering that the lossy
quality score compression technology is still controversial, this paper focuses on solving
the related problems of lossless quality score compression.

In terms of lossless quality score compression, Fqzcomp [4] uses a hybrid statistical
model to compress the sequence and quality scores: the identifier sequence is encoded
by delta coding after preprocessing, and the base sequence is compressed based on a
limited context model. For DSRC2 [12], when compressing the identifier sequence, the
same method has been used as the one in Fqzcomp. Huffman encoding is used for base
sequence compression. When compressing the quality scores, mixed encoding (Run-
Length and Huffman encoding) is used. To date, many professional FASTQ compres-
sors still use the above methods to deal with quality scores. For example, LW-FQzip2
[13] preprocesses the quality scores using run-length encoding and then uses the com-
bination of the PPM model and the arithmetic encoder to compress the preprocessed
data. LFQC [14] divides the quality score file into several parts. It can easily determine
whether run-length encoding or Huffman encoding will be used by checking the average
run length of each quality score sequence. In addition to the above compression algo-
rithms, there are some general solutions, such as Gzip [15] and 7-Zip [16]. Most of the
public repositories still use them to store FASTQ files due to their simplicity.

Of course, with the continuous improvement of the sequencing speed, some profes-
sional quality score compressors have also been developed, such as SCALCE [17]. The
algorithm uses the core substring as the similarity measure to group similar sequencing
short fragments. These core substrings are generated by LCP (locally consistent pars-
ing) [18–20]. A third-order context model is used for the final compression. In fact, as
early as 2016, the CSAM [21] algorithm realized the random access function on SAM
files. It could process SAM data without decoding the whole compressed file. The AQUa
[8] algorithm is a quality score compressor based on the AFRESh [22] framework.
The authors develop and integrate four new encoding tools to make better use of the
redundancy in the quality scores and then use the Context-Adaptive Binary Arithmetic
Coder to compress the quality scores. CABAC is a tool for lossless entropy coding. It
is widely used in the field of compression [23, 24]. At the same time, AQUa supports
random access to quality scores. In addition, the LCQS [25] algorithm uses a general
compressor libzpaq [26] to compress quality scores. By optimizing the source code, the
running speed of the algorithm is greatly improved. LCQS uses the packing algorithm to
make use of the correlation among the adjacent quality scores. However, they thought
that the quality score with the most occurrence was the score with the largest value, so
their packing rules only considered part of the combinations of the neighboring quality
scores. Nevertheless, the score with the most occurrence is in fact not the one with the
largest value. The newly proposed FCLQC [27] algorithm uses concurrent programming
to greatly improve the running speed of the algorithm, which shows at least 31× of the
compression speed improvement, but the compression efficiency is reduced on average
by 8.62%.

Page 5 of 17Chen et al. BMC Bioinformatics (2022) 23:294 	

Through the description of the above algorithms, we find that it is difficult to imple-
ment the function of random access if we use the method of context modeling arith-
metic encoding for the whole quality score sequence. For the Run-Length and Huffman
encoding technology, the compression efficiency is greatly related to the characteristics
of the quality scores, and the robustness of the algorithm is generally not satisfactory. In
summary, we are interested in designing an algorithm that satisfies the following:

1.	 Context modeling arithmetic encoding is used to improve the compression ratio,
but we want to directly use the correlation of adjacent quality scores to improve the
modeling efficiency. At the same time, the adaptive context model is used to improve
the robustness of the algorithm for different genome sequences.

2.	 The function of random access on compressed files is implemented; in other words,
a specific target quality score line can be accessed without decompressing the whole
compressed file (only part of the file is decompressed).

Implementation
The framework of the CMIC algorithm is as follows. First, we classify the quality score
lines in different reads into various categories according to their statistical characteris-
tics. The objective of this step is to group together the quality score lines with similar
statistical characteristics to improve the statistical accuracy of context modeling. Next,
CMIC performs the mapping operation on quality scores. Mapping directly utilizes the
correlation between the adjacent quality scores (since there are few abrupt changes in
adjacent quality scores) and improves the efficiency of context modeling in the compres-
sion phase. We use the idea of run length encoding to map multiple quality scores into
one symbol. The advantage of this operation is that it improves the efficiency of describ-
ing the neighboring quality scores with similar values and greatly speeds up the con-
text model-based compression. Then, we propose a lightweight index building method
to support the random access function. We consider both indexing speed and the index
directory size to keep the size as small as possible, while the random access efficiency is
not apparently affected. Finally, the algorithm uses the general compression library libz-
paq, and we use the parallelism of the library to compress multiple blocks at the same
time to improve the compression speed.

Classification

We can find that in a FASTQ file, the content of quality score lines can be very different.
Many compression algorithms use this feature, such as CARGO [28], which first ana-
lyzes and rearranges the data, then aggregates the quality scores with similar properties,
and finally compresses the file. In the AQUa algorithm, the authors propose five different
coding tools, and select the most efficient coding tools for different quality score lines.
The main reasons for classifying the quality score lines are as follows:

1.	 Classification can improve the robustness of the compressor, and get better compres-
sion results for different FASTQ files.

Page 6 of 17Chen et al. BMC Bioinformatics (2022) 23:294

2.	 Classification can improve the efficiency of context modeling and improve the com-
pression speed.

The efficiency of context modeling is related to the distribution of data, and data
with poor statistical characteristics will affect the modeling of other data. Therefore,
we want to separate the quality score lines with different statistical characteristics.
Through the classification algorithm, we classify the quality score lines with good sta-
tistical characteristics into one class, which can effectively improve the efficiency of
context modeling. The other is the quality score line with poor statistical characteris-
tics. Although the efficiency of data context modeling of this class is poor, it does not
affect the compression of the other class.

In this paper, we present a statistics-based quality score classification algorithm. It
is well-known that before the base sequence is compressed, the bases are usually
divided into K-mers. The K-mer contains high-order context information, which can
be applied to the compression of quality score lines. We assume that the quality line is
r , which is a string consisting of |r| quality scores. Taking a string β i

k of length k in r
starting from the i th position, β i

k = r[i]r[i + 1]· · · r[i + k − 1],0 ≤ i ≤ |r| − k + 1 , β i
k is

referred to as a “K-mer” in r . We assume that the sample distribution in a FASTQ file
is consistent with the overall distribution. To speed up the classification, we take
some quality score lines as the sample (usually the first M lines of the file). We classify
each quality score line according to the number of K-mer repetitions in the sample.
Suppose there are J distinct types of K-mers in the sample; we count the number of
their occurrences through Nj

K , j = 1, . . . , J  . If the number of all possible K-mers in r
is NK  , we can define qjk =

N
j
K

NK
 , which reflects the proportion of the jth K-mer in all

K-mers in the sample. Let el =
∑

s
qsk , (l = 1, . . . ,M; s = 1, . . . , Sl) , where Sl is the num-

ber of different K-mers in the l th quality score line, and el is the sum of proportions
of different K-mers in the l th quality score line. Evidently, if all the different K-mers
in the l th quality score line are repeated more times in the sample, the value of el will
be larger and vice versa. We group the quality score lines that have larger el values,
which is advantageous for the entropy encoder based on context modeling to com-
press quality score lines with K-mers repeated more times. Then, we can find the
maximum value of el within the sample by Lm = max

l
el  . Finally, Lm is used to normal-

ize el for all the quality score lines. In this way, we can use Mx as the classification
feature for the quality score lines ( Mx =

el
Lm

 ). Usually, Mx is a real number between 0
and 1. Because Lm is obtained for the sample, Mx could be larger than 1 for some
quality score lines out of the sample; at this point, we set the value of Mx to 1 (the
classification standard is described later).

To facilitate our mapping and indexing, we divide the quality score lines into two
categories based on Mx , which is obtained after preprocessing (class A and class B).
The classification process is as follows:

1.	 The statistical information β i
k of the first M lines in the sample is collected.

2.	 Nj
K and qjk are calculated for all distinct K-mers in the sample.

3.	 el is calculated for each quality score line in the sample.

Page 7 of 17Chen et al. BMC Bioinformatics (2022) 23:294 	

When Lm is obtained, Mx can be calculated. According to a threshold α , the quality
score lines are divided into two categories, depending on whether Mx is greater than α.

Mapping

The quality scores are saved in FASTQ files with 8-bit ASCII encoding. They usually
show the following characteristic: in a quality score line, some quality scores repeat a
lot, and adjacent quality scores are similar. This means that in a quality score line, quality
scores change slowly in most cases. This characteristic makes quality score lines suitable
for compression using a method similar to run-length encoding, and it is reasonable to
map some adjacent quality scores into one character. Next, the mapped string is statis-
tically modeled and entropy encoded. In this way, the correlation among the adjacent
quality scores can be used directly. Many professional FASTQ compressors adopt the
above methods, such as DSRC2, Fqzcomp and LFQC. These methods achieve good com-
pression ratios and compression speeds. The number of encoded characters is reduced
by mapping. The compression speed can be improved.

Specifically, we use a one-to-one rule to map more than one original score with values
from 33 ~ 104 to one symbol with values from 1 ~ 512. The basic principle of mapping
is to represent the substring with a large number of repetitions with a single character.
We calculate a quality score C that appears most frequently in quality score lines after
classification and then determine the mapping rules according to C. This shows that the
possibility of a continuous occurrence of C is high, and C can be combined with other
quality scores as much as possible. The more quality scores that satisfy the mapping con-
ditions, the more quality scores can be combined to reduce the number of scores. Once
we obtain C, we map the quality score with the value that is close or equal to C.

In LCQS, they only consider the case that the adjacent quality scores are less than or
equal to C. In some FASTQ files, the most frequent occurrence of C is indeed the largest
quality score, but the distribution of the quality scores in many FASTQ files is uncertain.
This means that C can be an intermediate value among quality scores, which has a great
negative impact on the compression results. In some extreme cases, the minimum qual-
ity score is C, and there is no mapping for the quality scores.

Therefore, we design the following quality score mapping rules:
Assume that qi is the i th quality score in a quality score line.

1.	 When the values of the adjacent quality scores are equal to C, the next quality score
qi+k(k ≤ 55 ) is investigated until qi+k is no longer equal to C, we record the value of
k , and map qiqi+1qi+2 . . . qi+k−1 to a symbol with value (k + 200).

2.	 When the value of the adjacent quality score is not equal to C, it can be divided into
the following situations:

(a)	 First, we discuss the case when the adjacent quality scores are close to C and
belong to [C-3, C + 3]. At this time, at most three adjacent quality scores
can be mapped to one character. If qiqi+1 belong to [C, C + 3], then they are
mapped to (((C + 7)− qi) ∗ 8+ ((C + 7)− qi+1)+ 255) ; if qiqi+1 belong to
[C-3, C], then they are mapped to ((qi − (c − 7) ∗ 8+ (qi+1 − (c − 7)+ 73) .
If qiqi+1qi+2 all belong to [C, C + 3], then they are mapped to

Page 8 of 17Chen et al. BMC Bioinformatics (2022) 23:294

(((C + 3)− qi) ∗ 16+ (((C + 3)− qi+1)) ∗ 4 + ((C + 3)− qi+2)+ 319)   ;
If qiqi+1qi+2 all belong to [C-3, C], then they are mapped to
((qi − (C − 3)) ∗ 16+ ((qi+1 − (C − 3)) ∗ 4 + ((qi+2 − (C − 3))+ 137) ; If
one of qiqi+1 is a member of [C, C + 3] and the other is a member of [C, C + 7],
then they are mapped to (((C + 7)− qi) ∗ 8+ ((C + 7)− qi+1)+ 255) ; If one
of qiqi+1 is a member of [C-3, C] and the other is a member of [C-7, C], then
they are mapped to ((qi − (c − 7) ∗ 8+ (qi+1 − (c − 7)+ 73).

(b)	 When the adjacent quality scores are slightly far from C, they do not
completely fall within [C-3, C + 3] but still fall within [C-7, C + 7].
At this time, two adjacent quality scores can be mapped to one sym-
bol. We check qi+1 . If qiqi+1 belong to [C, C + 7], we map them to
(((C + 7)− qi) ∗ 8+ ((C + 7)− qi+1)+ 255) ; if qiqi+1 all belong to [C-7, C],
we map them to ((qi − (c − 7) ∗ 8+ (qi+1 − (c − 7)+ 73).

3.	 If the current quality score qi is far from C, it is obvious that none of the above condi-
tions is true. We directly map qi to (qi − 32) and continue to check the next quality
score until the end of the quality score line.

By setting appropriate mapping rules, we consider all the cases of quality scores,
and the algorithm is greatly improved and can be more adaptable to different types
of FASTQ files. For a better understanding of the algorithm, please refer to the pseu-
docode shown in Additional file 1.

Random access and indexing

After the classification step, quality score lines are divided into class A and class B,
as shown in Fig. 2. To support random access, we have to combine these two types
of quality score lines into data blocks for the final compression. In this way, the data
blocks can be decompressed separately to implement random access. Because it is of
little importance to study a specific quality score, the focus of our algorithm is allow-
ing users to randomly access quality score lines in a certain range.

We set up two containers, A and B (gray and white parts in Fig. 2). Container A
stores the quality score lines of class A with more K-mers repeated frequently to
obtain better statistical information and better compression efficiency in the final
compression process. We check over the quality score file; if a quality score line is
of class A, then its content is added to container A. When a class B line appears, we
replace the line with a special character (a character that does not exist in the quality
score line) and add that character to container A as well. If there are consecutively
occurring quality score lines of class B, we add the corresponding number of special
characters to container A. In this way, the order of the quality score lines in container
A is consistent with the order of the lines in the original file. However, the contents of
the class B quality score lines are not reserved in container A, and thus, container B
has to be used to save the contents of the class B quality score lines. Therefore, when
a quality score line belonging to class B is found, we first add a special character to
replace the line in container A, and then add the content of this class B quality score

Page 9 of 17Chen et al. BMC Bioinformatics (2022) 23:294 	

line to container B. Container B stores the quality score lines with K-mers less fre-
quently repeated. When container A or B is full, the content of the container is sent to
the compressor as a data block for compression.

In AQUa, to allow random access, the algorithm must create additional entry points
for CABAC, where the byte addresses of the random access points are stored in a sepa-
rate XML file. As a result, AQUa requires a large index file, and the maximum overhead
of the index files is close to 3.5%, which affects the compression efficiency. At the same
time, because AQUa cannot compress all kinds of FASTQ files, random access cannot be
applied to some datasets (for example, the size of the read length is not fixed).

In CMIC, because quality score lines are stored separately in data blocks of classes A
and B, to improve the efficiency of random access, we also need to build an index file
to quickly find a specified quality score line. At the same time, to avoid the defects of
AQUa, we create a lightweight index and reduce the size of the index file to improve the
final compression ratio.

We need to build index tables for A and B (the rounded rectangle in Fig. 2). For con-
tainer A, the index table stores the start position SAi of the quality score line in container
A and the number of special characters µ . By querying SAi  , we can quickly find the data
block where the target sequence is located because the special characters in container
A represent the position information of the class B quality score lines. Parameter µ can
help us calculate the end position of the quality score line in container A and the posi-
tions of the class B quality score lines in container A. For container B, the index table
stores the starting position SBj and the ending position EB

j of the quality score line in con-
tainer B. By querying the information of SBj and EB

j  , we can rapidly find the data block
where the target quality score line is located. The advantage of building a lightweight
index is that the size of index files is greatly reduced, while the disadvantage is that a

Fig. 2  The Structure of the random access and index

Page 10 of 17Chen et al. BMC Bioinformatics (2022) 23:294

searching operation is needed during the random access process, but it only takes a
small amount of time compared with the whole process.

Suppose the user wants to find the quality score lines within the range [a, b] ( a, b are
the quality score line numbers in the quality score file). We first query the index table
of container A and locate the target lines in a range of class A data blocks. Thus, we can
obtain all class A lines in [a, b] . For class B lines, the special character stored in container
A and the number information in µ record its location information. The start line aB and
the end line bB of class B in [a, b] are calculated by the information in the index tables:

Assume the number of quality score lines of class A before aB is Na , aB = Na + SAi  .
When we find the µ th special character, it indicates that this position represents the
last class B line in class A data blocks. Assume the number of quality score lines of class
A before bB is Nb , bB = Nb + µ+ SAi  . Then, we query the index table of container B and
locate [aB, bB] in class B data blocks. Finally, the decompression operation is performed
to complete the random access.

Since the index table is ordered, we can use the binary search algorithm to query the
index table. Typically, we need to traverse the index table from scratch to locate a block
of data. The binary search can effectively reduce the search time. The “Go to Compres-
sion Phase” block in Fig. 2 means that the algorithm goes to the compression phase after
the index is established. In addition to extracting a specific range of quality score lines
through random access, when we decompress the entire file, the order of the decom-
pressed quality score lines is the same as their original order.

Compression

In the last step of compression, we use libzpaq, an open-source compression library,
which is the most advanced back-end compression algorithm. Although libzpaq has high
compression performance, its compression speed is very slow. Therefore, optimizing
libzpaq code is the focus of this step. In recent years, with the continuous update of the
version, the compression speed of libzpaq has been substantially improved.

We combine the characteristics of libzpaq and CMIC (we adopt the strategy of block
compression). The algorithm realizes the parallelization of the compression process by
using SIMD (single instruction multiple data) technology. Libzpaq has a JIT version
and a non-JIT version, and the JIT version is used in CMIC. The advantage of using this
strategy is that we can make full use of the advantages of multiple CPU cores in paral-
lel computing and greatly improve the compression speed. Using more CPU cores will
improve the compression speed. However, the whole file is segmented and compressed
by different threads; then, the compression ratio will be affected, and the CPU and mem-
ory occupation running the algorithm is large. However, with the rapid development of
hardware, we are no longer limited to the slow speed and the small memory computers
of the past. Therefore, we should try to maximize the performance of our algorithm.

Results
In this section, we describe the experimental configuration in details and verify the
superiority of CIMC compared with other compressors, mainly in terms of the following
aspects: robustness, compression ratio, compression speed, random access speed, and
decompression speed.

Page 11 of 17Chen et al. BMC Bioinformatics (2022) 23:294 	

Datasets and compared algorithms

In order to ensure that the datasets are fair and reasonable, we have selected some
genomic datasets in the MPEG HTS compression working group. On the one hand, with
huge demand and rapid development of genomic information compression, the stand-
ardization of genomic data benchmark has become an important task. The MPEG HTS
compression working group is aware of the need and is building up the genomic data
benchmark. They have done a better job on this side, which is the basis for our selection
of test data. On the other hand, in order to make the experimental results more accurate,
we should pay attention to the selection of test data involving different species, differ-
ent platforms, different read lengths, and different sizes. Based on the above criteria, we
selected the datasets shown in Table 1. They are publicly available from https://​trace.​
ncbi.​nlm.​nih.​gov/​Traces/​sra/.

All tests are performed on a server with Intel Xeon(R) Gold 6240 CPU(2.60 GHz *72)
with 251.3 GB of memory, running the CentOS Linux 7 operating system.

To better evaluate the performance of CIMC, we chose two types of lossless compres-
sors, the first type is the general purpose lossless compressor, the second is the profes-
sional quality score lossless compressor. We chose LCQS, AQUa and FCLQC as the
professional quality score compressors for comparison. For general lossless compres-
sors, we choose 7-Zip and Gzip for comparison.

Experimental results

The experimental results are shown in Table 2. As we can see, in terms of the compres-
sion rate, we achieve the best results for all datasets compared with other compressors
(Because FCLQC [19] focused on improving the compression speed, so the compres-
sion rate is not very ideal, we did not add it to the control group). The compression rate
is the value of bits per quality score. The best experimental result is the No.9 dataset
with a compression rate of 1.01. In particular, compared with LCQS, 7-Zip, Gzip, the

Table 1  Detailed descriptions of tested genome datasets

Code Datasets Platforms Organism Bases (Mbp) Read length Size (Quality
Score)

1 SRR1284073 PacBio Escherichia coli 649.4 (130,10,000) 476,930,701 bytes

2 SRR327342 Illumina S.Cerevisiae 2100 75 2,105,137,860 bytes

3 SRR870667 Illumina T.Cacao 12,600 74 or 108 11,455,676,056
bytes

4 ERR091571 Illumina Homo sapiens 42,700 100 43,133,335,476
bytes

5 SRR003187 LS454 Homo sapiens 803 (500,1000) 798,985,944 bytes

6 SRR003177 LS454 Homo sapiens 855 (500,1000) 850,464,554 bytes

7 SRR007215 ABI Solid Homo sapiens 238.6 25 248,099,332 bytes

8 SRR010712 ABI Solid Homo sapiens 431.6 35 443,972,736 bytes

9 SRR070253 ABI Solid Homo sapiens 45,600 50 12,719,021,580
bytes

10 SRR801793 Illumina Legionella pneu-
mophila

1100 100 1,092,105,122 bytes

11 SRR14340293 OXFORD NANO-
PORE

Puccinia graminis 8900 (1000,10,000) 7,782,970,748 bytes

https://trace.ncbi.nlm.nih.gov/Traces/sra/
https://trace.ncbi.nlm.nih.gov/Traces/sra/

Page 12 of 17Chen et al. BMC Bioinformatics (2022) 23:294

file size is reduced by up to 30.65%, 59.07%, and 94.05% respectively for the No.5 dataset
using CMIC. Compared with AQUa, we can also see better compression rates for all
of the datasets, with file sizes being 18.78% ~ 28.31% smaller than AQUa. At the same
time, AQUa is not good at compressing FASTQ files with variable read lengths. CMIC is
apparently effective both in terms of the compression rate and robustness.

Figure 3 shows the average compression rates of the five compressors over the data-
sets, and it is clear to see that the proposed algorithm has the best averaged compression
performance.

Through observation on Tables 1 and 2, we have found that the compression rates
of CIMC have a strong relationship with the read lengths of FASTQ files. The smaller
the read length, the lower the compression rate. Generally speaking, for the same read
length, the larger the dataset is, the better the compression performance is.

Table 2  Comparison results of compression rates

Bold denotes the best compression rates for compressors

Dataset Compression rates (bits per quality score) CMIC File Size versus

CMIC LCQS AQUa 7-zip Gzip LCQS AQUa 7-zip Gzip

1 2.10 2.27 – 2.54 2.79  − 8.13%  −   − 20.99%  − 33.17%

2 2.75 3.05 3.38 3.37 3.74  − 10.71%  − 22.78%  − 22.46%  − 36.03%

3 2.31 2.38 – 2.85 3.05  − 2.96%  −   − 23.42%  − 31.95%

4 2.01 2.04 2.52 2.44 2.86  − 1.49%  − 25.64%  − 21.82%  − 42.51%

5 1.33 1.74 – 2.12 2.59  − 30.65% –  − 59.07%  − 94.05%
6 1.38 1.70 – 2.08 2.54  − 23.34% –  − 50.52%  − 83.91%

7 4.13 4.68 4.91 5.09 5.26  − 13.35%  − 18.78%  − 23.17%  − 27.17%

8 4.20 4.75 5.02 5.15 5.32  − 13.14%  − 19.73%  − 22.65%  − 26.67%

9 1.01 1.16 1.30 1.28 1.37  − 15.08%  − 28.31%  − 26.43%  − 35.45%

10 2.47 2.50 3.02 2.96 3.44  − 1.05%  − 22.32%  − 19.96%  − 39.17%

11 3.14 3.82 – 4.23 4.52  − 21.91%  −   − 34.95%  − 44.03%

Fig. 3  The averaged compression rates of five compressors over 11 datasets

Page 13 of 17Chen et al. BMC Bioinformatics (2022) 23:294 	

Table 3 shows the results of the compression speed of the CMIC compared with
other four compressors. Since AQUA is unable to process FASTQ files with vari-
able read lengths, so we do not use AQUa as a comparison compressor from now
on. The compression speed is the ratio of the uncompressed file size and the time
needed for compression. Compared with LCQS and 7-zip, The compression speed of
CMIC is better on all datasets, it improves the compression speed 0.63% ~ 1079.82%.
Compared with Gzip, the maximum improvement is 390.47%. But it does not do well
on five datasets (No.1, No.7, No.8, NO.9, No.11). In the worst case, CMIC is 86.69%
slower than Gzip. However, the averaged compression performance of Gzip is the
worst among all six compressors. Compared with FCLQC, CMIC is 20 ~ 60 times
slower than it. But the compression is better than FCLQC.

Table 4 shows CMIC and LCQS decompression speed. The decompression speed is
the number of the quality score lines that the compressor can decompress per second.
However, neither Gzip nor 7-zip supports decompressing files by lines. Therefore, the

Table 3  Comparison results of compression speed

Bold denotes the fastest compression speed

Dataset Compression speed (MB/S) CMIC accelerating ratio versus%

CMIC LCQS FCLQC 7-zip Gzip LCQS FCLQC 7-zip Gzip

1 5.592 5.073 1.511 6.399 10.23% – 270.09% − 12.61%

2 8.796 8.741 303.66 6.435 4.523 0.63%  − 3352.25% 36.69% 94.47%

3 10.556 9.472 329.16 1.213 2.292 11.44%  − 3018.23% 770.24% 360.56%

4 12.86 11.074 290.23 1.09 2.622 16.13%  − 2156.84% 1079.82% 390.47%

5 8.406 6.981 – 2.822 2.0538 20.41% – 197.87% 309.29%

6 8.012 6.983 – 2.846 2.768 14.74% – 181.52% 189.45%

7 2.831 2.787 159.12 0.986 21.274 1.58%  − 5520.63% 187.12%  − 86.69%

8 3.532 3.374 265,29 1.882 9.876 4.68% – 87.67%  − 64.24%

9 6.621 6.126 421.58 3.063 13.644 8.08%  − 6267.32% 116.16%  − 51.47%

10 5.444 5.389 312.74 2.351 3.36 1.02%  − 5644.67% 131.56% 62.02%

11 6.095 5.274 – 2.586 23.328 15.57% – 135.69%  − 73.87%

Table 4  Comparison results of decompression speed

Dataset Decompression speed (thousand lines/s) CMIC
accelerating
ratio versus%CMIC LCQS

1 2.43 1.36 32.92%

2 2.51 2.31 7.97%

3 2.67 2.10 21.35%

4 2.42 2.31 4.55%

5 3.13 2.96 5.43%

6 3.21 2.85 11.21%

7 2.20 2.11 4.27%

8 2.67 2.16 19.10%

9 1.82 1.73 4.95%

10 2.77 2.75 0.72%

11 1.63 1.47 9.82%

Page 14 of 17Chen et al. BMC Bioinformatics (2022) 23:294

decompression speed of CMIC is only compared with LCQS. CMIC performs well
on all of the datasets. Compared with LCQS, CMIC has a maximum improvement of
32.92%.

Table 5 shows CMIC and LCQS random access speed. Here, the random access
speed refers to the time required for locating the data blocks that contain the target
quality score lines. The experiment design is as follows. We select No.3, No.4, No.9,
No.10, and No. 11 datasets as our test data. Since they are larger than other datasets.
We select some search ranges for target quality score lines as the test intervals. In
each interval, 10,000 lines of data are randomly selected as the access targets. 100
experiments are conducted for each interval, and the averaged random access time
is taken at last. It is obvious that CMIC has great advantages in the random access
speed. Compared with LCQS, No.11 has achieved the best results. CMIC improves
by 396.1%. The larger the size of the quality score file, the more improvement of the
averaged random access time of CMIC, since the binary search is apparently superior
than the linear search used in LCQS. About the size of the index used, because we
use a light wight index building method, the index table takes up only a small amount
of space. For example, for the No.4 dataset, the size of the index table accounts
for 0.016% of the compressed file, for the No.11 dataset, the size of the index table
accounts for 0.013% of the compressed file.

As we all know, when the size of the block is small, the compression efficiency will be
reduced, and the decompression time by random access will be improved. On the con-
trary, the compression efficiency will be improved, and the decompression time by ran-
dom access will slow down. Table 6 shows the decompression times by random access
for different block sizes (The size of the block is the number of quality score lines). We
select a line in the file (such as line 80,000) as our random access object. As can be seen

Table 5  Comparison results of random access speed

Bold denotes the fastest random access speed

Methods Random access speed (ms)

(No.3)
[75200000–
75600000]

(No.4)
[300500000–
300900000]

(No.9)
[120400000–
121000000]

(No.10)
[4300000,4700000]

(No.11)
[700000–
1100000]

CMIC 153.0 290.2 206.1 146.6 100.0
LCQS 524.4 869.3 530.5 418.0 496.1

CMIC accelerating ratio versus%

242.7% 199.6% 157.4% 185.1% 396.1%

Table 6  The decompression times by random access for different block sizes

Dataset The block size

15,000 20,000 25,000 30,000

1 149.5 201.2 242.8 298.6

3 136.8 176.3 225.6 274.5

4 145.2 194.7 235.7 289.2

10 140.8 186.4 230.3 284.6

Page 15 of 17Chen et al. BMC Bioinformatics (2022) 23:294 	

from Table 6, when the block size is large, the decompression time will be significantly
longer, and vice versa.

About the maximum CPU memory usage. Because CMIC algorithm needs to work in par-
allel, the data is compressed needs to be stored in memory, and each thread needs to occupy
the corresponding workspace. For example, for No.5 dataset, its file size is 798985944 bytes,
the maximum CPU memory usage in the compression phase is 9.5 GB, the maximum CPU
memory usage in the decompression phase is 13.5 GB, and the maximum running mem-
ory usage in the random access phase is 0.6976 GB. Especially for the No.4 dataset, its file
size is 431333335476 bytes, and its maximum memory usage in the decompression stage is
51.5 GB. Therefore, the memory usage of CMIC depends on the size of compressed data.

Conclusion
This paper presents CMIC, a quality score compressor that supports random access.
Experiments show that CMIC has advantages in terms of the compression rate and
the random access time over all 11 datasets. Although the compression speed is not as
fast as Gzip on some datasets, the compression efficiency is much better than that of
Gzip. The proposed quality score compressor can be integrated into other FASTQ file
compressors to improve their overall compression performance. However, in order to
improve the compression efficiency of base sequences, it is usually necessary to classify
base sequences. This will be different from the classification of quality score lines in this
algorithm. Therefore, some kind of index has to be built for the base sequence to support
random access. About the future work, In the FASTQ file generated by NPS, there is a
certain correlation between the base sequence and the quality score sequence of each
read. We hope to improve the compression efficiency of the quality score by using this
correlation while ensuring the random access performance.

About the future work, In the FASTQ file generated by NPS, there is a certain correla-
tion between the base sequence and the quality score sequence of each read. We hope to
improve the compression efficiency of the quality score by using this correlation while
ensuring the random access performance.

Availability and requirements

•	 Project name: CMIC.
•	 Project home page: https://​github.​com/​Humon​ex/​Cmic.
•	 Operating systems: Linux
•	 Programming language: C++
•	 Other requirements: gcc 5.4.0.
•	 License: The MIT License.
•	 Any restrictions to use by non-academics: For commercial use, please contact the

authors.

Abbreviations
MB	� Megabyte
NGS	� Next generation sequencing

https://github.com/Humonex/Cmic

Page 16 of 17Chen et al. BMC Bioinformatics (2022) 23:294

NPS	� Nanopore sequencing
SIMD	� Single instruction multiple data
CABAC	� Context-adaptive binary arithmetic coder

Supplementary Information
The online version contains supplementary material available at https://​doi.​org/​10.​1186/​s12859-​022-​04837-1.

Additional file 1. The pseudocode of the mapping algorithm.

Acknowledgements
Not applicable.

Author contributions
HC implemented the code. HC and JC wrote the manuscript. JC guided the project. ZL completed a part of the experi-
ments and prepared the dataset. The random access and indexing schemes were determined after discussion with RW.
RW also helped to modify the manuscript. All authors read and approved the manuscript.

Funding
This work is funded by National Natural Science Foundation of China under Grant (61861045). The funder had no role in
study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Availability of data and materials
This database is public. The datasets (ID: SRR1284073, SRR327342, SRR870667, ERR091571, SRR003187, SRR003177,
SRR007215, SRR010712, SRR070253, SRR801793, SRR14340293) supporting the conclusions of this paper are publicly
available from https://​trace.​ncbi.​nlm.​nih.​gov/​Traces/​sra/.

Declarations

Ethics approval and consent to participate
The ethic approval is not required since we used publicly available datasets.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Received: 17 January 2022 Accepted: 13 July 2022

References
	1.	 https://​www.​illum​ina.​com/​syste​ms/​hiseq-x-​seque​ncing-​system.​html.
	2.	 Mikel H, Dmitri P, et al. Genomic data compression. Annu Rev Biomed Data Sci. 2019;2:19–37.
	3.	 Metzker ML. Sequencing technologies the next generation. Nat Rev Genet. 2010;11(1):1–13.
	4.	 Bonfield JK, Mahoney MV. Compression of FASTQ and SAM format sequencing data. PLoS ONE. 2013;8(3): e59190.
	5.	 Mount DW. Bioinformatics: sequence and genome analysis. Cold Spring Harbor Laboratory Press;2001.
	6.	 Organick L, Ang SD, Chen YJ, et al. Random access in large-scale DNA data storage. Nat Biotechnol. 2018;36:242–8.
	7.	 Raffaele G, Rombo SE, Filippo U. Compressive biological sequence analysis and archival in the era of high-through-

put sequencing technologies. Brief Bioinform. 2014;3:390–406.
	8.	 Paridaens T, Van Wallendael G, De Neve W, Lambert P. AQUa: an adaptive framework for compression of sequencing

quality scores with random access functionality. Bioinformatics (Oxford, England). 2018;34(3):425–33.
	9.	 Alberti C, Daniels N, Hernaez M, et al. An evaluation framework for lossy compression of genome sequencing qual-

ity values. Data Compression Conference. Proc Data Compress Conf, 2016; 221–230.
	10.	 Hernaez M, Ochoa I, Rao M, Ganesan K, Weissmans T. Qvz: lossy compression of quality values. Bioinformatics.

2015;31(19):3122–9.
	11.	 Rodrigo C, Alistair M, Andrew T. Lossy compression of quality scores in genomic data. Bioinformatics.

2014;30(15):2130–6.
	12.	 Lukasz R, Sebastian D. DSRC2–Industry-oriented compression of FASTQ files. Bioinformatics (Oxford, England).

2014;30(15):2213–5.
	13.	 Huang ZA, Wen Z, Deng Q, et al. LW-FQZip 2: a parallelized reference-based compression of FASTQ files. BMC Bioinf

2017;18(1).
	14.	 Nicolae M, Pathak S, Rajasekaran S. LFQC: a lossless compression algorithm for fastq files. Bioinformatics.

2015;31(20):3276–81.
	15.	 http://​www.​gzip.​org.
	16.	 http://​www.7-​zip.​org/​sdk.​html.
	17.	 Faraz H, et al. SCALCE: boosting sequence compression algorithms using locally consistent encoding. Bioinformatics

(Oxford, England). 2012;28(23):3051–7.

https://doi.org/10.1186/s12859-022-04837-1
https://trace.ncbi.nlm.nih.gov/Traces/sra/
https://www.illumina.com/systems/hiseq-x-sequencing-system.html
http://www.gzip.org
http://www.7-zip.org/sdk.html

Page 17 of 17Chen et al. BMC Bioinformatics (2022) 23:294 	

•

fast, convenient online submission

 •

thorough peer review by experienced researchers in your field

•

rapid publication on acceptance

•

support for research data, including large and complex data types

•

gold Open Access which fosters wider collaboration and increased citations

maximum visibility for your research: over 100M website views per year •

 At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research ? Choose BMC and benefit from: ? Choose BMC and benefit from:

	18.	 Sahinalp SC, Vishkin U. Efficient approximate and dynamic matching of patterns using a labeling paradigm. Sympo-
sium on Foundations of Computer Science. IEEE, 1996.

	19.	 Graham Cormode et al. Communication complexity of document exchange, 2000.
	20.	 Tuğkan B, Funda E, Cenk S. Oblivious string embeddings and edit distance approximations. Discrete algorithm 2006.
	21.	 Rodrigo C, Alistair M, Andrew T. CSAM: compressed SAM format. Bioinformatics (Oxford, England).

2016;32(24):3709–16.
	22.	 Paridaens T, et al. AFRESh: an adaptive framework for compression of reads and assembled sequences with random

access functionality. Bioinformatics. 2017;33:1464–72.
	23.	 Marpe D, Schwarz H, Wiegand T. Context-based adaptive binary arithmetic coding in the H.264/AVC video compres-

sion standard. IEEE Trans Circuits Syst Video Technol 2003;13(7):620–636.
	24.	 Sze V, Budagavi M, Sullivan GJ, et al. High efficiency video coding (HEVC): algorithms and architectures. Berlin:

Springer Publishing Company; 2014.
	25.	 Fu J, Ke B, Dong S. LCQS: an efficient lossless compression tool of quality scores with random access functionality.

BMC Bioinf 2020;21(1).
	26.	 http://​mattm​ahoney.​net/​dc/​zpaq.​html.
	27.	 Cho M, No A. FCLQC: fast and concurrent lossless quality scores compressor. BMC Bioinf. 2021;22(1):606.
	28.	 Łukasz R, Paolo R. CARGO: effective format-free compressed storage of genomic information. Nucleic Acids

Research, 201612:e114–e114.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

http://mattmahoney.net/dc/zpaq.html

	CMIC: an efficient quality score compressor with random access functionality
	Abstract
	Background:
	Results:
	Conclusions:

	Background
	Implementation
	Classification
	Mapping
	Random access and indexing
	Compression

	Results
	Datasets and compared algorithms
	Experimental results

	Conclusion
	Availability and requirements
	Acknowledgements
	References

