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Immunoinformatics has recently emerged as a critical field for accelerating immunology research.

Although still an evolving process, computational models now play instrumental roles, not only in

directing the selection of key experiments, but also in the formulation of new testable hypotheses

through detailed analysis of complex immunologic data that could not be achieved using traditional

approaches alone. Immunomics, which combines traditional immunology with computer science,

mathematics, chemistry, biochemistry, genomics and proteomics for the large-scale analysis of immune

system function, offers new opportunities for future bench-to-bedside research. In this article, we review

the latest trends and future directions of the field.
It has long been recognized that computational methods and

resources has the potential to accelerate immunology research,

but recent advances in genomic and proteomic technologies has

radically transformed the opportunities. Sequencing of the human

and other model organism genomes has produced increasingly

large volumes of data relevant to immunology research. At the

same time, huge amounts of functional, clinical and epidemiolo-

gic data are being reported in the scientific literature and deposited

in various specialist repositories and clinical records. Together, this

accumulated information reflects the current state of knowledge

on human immunology and disease, and represents a goldmine for

researchers looking for insights into the mechanisms of immune

function and disease pathogenesis.

The need to handle this rapidly growing immunological

resource has given rise to the field known as immunoinformatics.

Immunoinformatics, otherwise known as computational immu-

nology, is now an essential component of modern immunology

research. It lies at the interface between computer science and

experimental immunology, and represents the use of computa-

tional methods and resources for the understanding, generation,

processing, and propagation of immunological information. His-

torically, immunoinformatics began over 90 years ago with the
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theoretic modeling of malaria epidemiology [1]. At that time, the

emphasis was on the use of mathematics to guide the study of

disease transmission. Since then, the field has expanded to cover

all other aspects of immune system processes and diseases. Immu-

nomics, which combines traditional immunology with computer

science, mathematics, chemistry, biochemistry, genomics and

proteomics for large-scale analysis of immune system functions,

offers new opportunities for future bench-to-bedside research.

Computational systems immunology, which aims to study the

complex protein–protein interactions and networks, allows a bet-

ter understanding of immune responses and their role during

normal, disease and reconstitution states. Syndromic surveillance,

which focuses on monitoring disease trends using health-related

data, allows early detection and response to potential outbreaks.

This article provides an introduction to the growing literature in

this area, with special emphasis on the latest trends and future

directions.

The combinatorial immune system
The human immune system is highly combinatorial in nature. A

large repertoire of immunoglobulins (IG) (�1012) and T cell recep-

tors (TR) (�1012) is generated by mechanisms such as the combi-

natorial diversity of the variable (V), diversity (D) and joining (J)

genes, the N-diversity, and for IG, the somatic hypermutations
ee front matter � 2009 Elsevier Ltd. All rights reserved. doi:10.1016/j.drudis.2009.04.001
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[2,3] The human leukocyte antigen (HLA) haplotype influences

individual immune responses against specific antigens. As of

January 2009, 3304 alleles had been identified and deposited in

the IMGT/HLA Database [4]. Since a fully heterogeneous indivi-
TABLE 1

Some existing immunological databases reviewed in this article.

Database Summary

IMGTW IMGTW is an integrated knowledge resource specialized in
IG superfamily, MHC superfamily and related proteins of th

of human and other vertebrate species. IMGTW comprises 6

tools for sequence, gene and 3D structure analysis, and mo

of resources Web. Data standardization, based on IMGT-ON
approved by WHO/IUIS

SYFPEITHI SYFPEITHI is a searchable database that contains more than

MHC ligands and peptide motifs from humans and other s

to the EMBL and PubMed databases are included. In additi
predictions are also available for a number of MHC allelic p

IEDB IEDB is a resource center for data related to antibody and

for humans, non-human primates, rodents, and other anim

T and B cell epitope prediction tools, epitope analysis tools

peptide processing predictions are also available. As of Jan
IEDB stores 5138 references, 115,906 records, 80,884 distinc

and 38,580 distinct epitopes

AntiJen AntiJen contains over 24,000 entries of binding data on MH

TR-peptide-MHC complexes, T cell epitopes, TAP, B cell epit
immunological protein–protein interactions. Peptide library

numbers and diffusion coefficient data are also included

MHCBN MHCBN contains information on 20,717 MHC binders, 4022

non-binders, 1053 TAP binders and non-binders, and
6722 T cell epitopes

Los Alamos
HIV databases

The Los Alamos HIV databases contain data on HIV sequen

905 HIV-1 cytotoxic T cell epitopes, 1023 HIV-1 helper T ce

epitopes, 1448 antibody-binding sites, drug resistance-asso
mutations, and vaccine trials. The website also provides acc

to a large number of tools that can be used to analyze the

IPD IPD is a set of specialist databases related to the study of p

genes in the immune system. It consists of four databases:
sequences of killer-cell IG-like receptors; IPD-MHC for MHC

different species; IPD-HPA for alloantigens expressed only o

and IPD-ESTAB for access to the European Searchable Tumo

Cell-Line Database, a cell bank of immunologically characte
melanoma cell lines

Epitome Epitome stores information of 142 antigens from

protein–antibody complex structures

Allergen
Nomenclature
Database

The Allergen Nomenclature Database contains information

of allergens and isoallergens developed and maintained by
the Allergen Nomenclature sub-committee of the IUIS.

Data submissions are accepted and annotated by

the committee members

BIFS BIFS contains information on 453 food allergens
(64 animals, 389 plants), 645 non-food allergens,

and 75 wheat gluten proteins

SDAP SDAP stores information of 887 allergenic proteins.

It contains various tools for FAO/WHO allergenicity
tests and assessing the IgE-binding potential of

genetically modified food proteins

FARRP FARRP contains 1251 sequences of known and putative

allergens derived from scientific literature and public
databases

Allergome Allergome emphasizes the annotation of allergens that

cause IgE-mediated disease. The database contains

information derived from 5800 selected scientific literatures
dual may possess up to six different HLA class I alleles and an equal

number of class II alleles, the theoretical number of HLA haplo-

types is greater than 1012. Binding studies showed that HLA class I

binding peptides and the core of class II binding peptides are
URL Refs

IG, TR, MHC,
e immune system

databases, 15 on-line

re than 10,000 pages

TOLOGY, has been

http://www.imgt.org/ [11]

4500 records of

pecies. Hyperlinks

on, ligand
roducts

http://www.syfpeithi.de/ [5]

T cell epitopes

al species.

, as well as

uary 2009,
t structures,

http://www.immuneepitope.org/ [10]

C ligands,

opes and
, copy

http://www.jenner.ac.uk/antijen/ [8]

MHC http://www.imtech.res.in/raghava/mhcbn/ [7]

ces,

ll

ciated
ess

se data

http://www.hiv.lanl.gov/

olymorphic

IPD-KIR for
sequences of

n platelets;

ur

rized

http://www.ebi.ac.uk/ipd/ [15]

http://www.cubic.bioc.columbia.edu/

services/Epitome/

[9]

http://www.allergen.org/ [17]

http://www.iit.edu/�sgendel/fa.htm [16]

http://www.fermi.utmb.edu/SDAP/ [18]

http://www.farrp.org/ [19]

http://www.allergome.org/ [20]

www.drugdiscoverytoday.com 685

R
ev
ie
w
s
�
IN
F
O
R
M
A
T
IC
S

http://www3.oup.co.uk/nar/database/c/
http://imgt.org/
http://www.allergen.org/
http://imgt.org/
http://www.imtech.res.in/raghava/mhcbn/
http://www.hiv.lanl.gov/
http://www.ebi.ac.uk/ipd/
http://www.cubic.bioc.columbia.edu/services/Epitome/
http://www.cubic.bioc.columbia.edu/services/Epitome/
http://www.allergen.org/
http://www.iit.edu/~sgendel/fa.htm
http://www.iit.edu/~sgendel/fa.htm
http://www.fermi.utmb.edu/SDAP/
http://www.farrp.org/
http://www.allergome.org/


REVIEWS Drug Discovery Today � Volume 14, Numbers 13/14 � July 2009

R
eview

s
�IN

F
O
R
M
A
T
IC
S

predominantly nine amino acids long. Consequently, the number

of potential nonameric peptide candidates easily exceeds 1011. The

astronomically high diversity of the immune system components,

and also the complexity of its regulatory pathways, demands new

approaches for accelerating immunology research. An immunoin-

formatics strategy, which combines database design, mathemati-

cal modeling and high-performance computing, provides a highly

parallel, rational solution and works effectively on a massive scale.

Immunological databases
Sequencing of the human and other model organism genomes has

produced increasingly large amounts of data relevant to the study

of human immune systems and disease. A total of 27 immunolo-

gical databases are currently (January 2009) described in the

Nucleic Acids Research Molecular Biology Database Collection

(http://www3.oup.co.uk/nar/database/c/). Some of these data-

bases are reviewed below (Table 1). Immune epitope databases

[5–10] are useful for major histocompatibility complex (MHC), TR

and IG-binding analysis, with direct implications in component

vaccine design and analysis of host–pathogen interactions. Impor-

tant sources of MHC ligand data include the SYFPEITHI database

[5], which contains>4500 records of MHC ligand data and peptide

motifs; the HIV Molecular Immunology Database [7], which stores

information on 905 HIV-1 cytotoxic T cell epitopes, 1023 HIV-1

helper T cell epitopes and 1448 antibody-binding sites and the

Immune Epitope Database and Analysis Resource (IEDB) [10],

which records data related to IG and T cell epitopes for humans,

non-human primates, rodents, and other animal species.

Immune sequence databases are valuable for research in auto-

immune disorders, infectious diseases, cancer, immunotherapy

and immunoprophylaxis. IMGT1, the international ImMunoGe-

neTics information system1 (http://imgt.org), serves as a central

resource for IG, TR, MHC, and related proteins of the immune

system of human and other vertebrates [11]. IMGT contains five

databases: (1) IMGT/LIGM-DB [12] with 132,746 IG and TR

sequences from human and 232 vertebrate species; (2) IMGT/

MHC-DB with sequences of 2292 HLA class I alleles, 1,012 HLA

class II alleles, and 106 non-HLA alleles; (3) IMGT/GENE-DB [13]

with 1922 genes and 2988 alleles of human, mouse, rat and rabbit

IG and TR genes; (4) IMGT/PRIMER-DB with 1864 primer records

of IG and TR from 11 species; and (5) IMGT/3Dstructure-DB [14]

with 1562 records of IG, TR, and MHC proteins with known 3D

structures. The Immuno Polymorphism Database (IPD) [15] con-

sists of four specialist databases: (1) IPD-KIR contains the allelic

sequences of 233 killer-cell immunoglobulin-like receptors; (2)

IPD-MHC details the MHC sequences of a number of different

species; (3) IPD-HPA stores data which define the human platelet

antigens; (4) IPD-ESTAB provides access to the European Search-

able Tumour Cell-Line Database (ESTDAB), a cell bank of immu-

nologically characterized melanoma cell lines.

Online resources for allergy information are also available. Such

data is valuable for investigation of cross-reactivity between

known allergens and analysis of potential allergenicity in proteins.

The Biotechnology Information for Food Safety (BIFS) database

[16] contains information on 453 food allergens (64 animals, 389

plants), 645 non-food allergens, and 75 wheat gluten proteins. The

Allergen Nomenclature database of the International Union of

Immunological Societies (IUIS) (http://www.allergen.org) pro-
686 www.drugdiscoverytoday.com
vides a centralized system to ensure uniformity and consistency

of allergen designations [17]. As of January 2009, more than 779

allergens and isoallergens from over 150 different species that can

induce IgE-mediated allergy (reactivity >5%) in humans are

described. The Structural Database of Allergen Proteins (SDAP)

[18] stores information of 887 allergenic proteins. The Food

Allergy Research and Resource Program (FARRP) Protein Allergen-

Online Database [19] contains 1251 sequences of known and

putative allergens derived from scientific literature and public

databases. Allergome [20] emphasizes the annotation of allergens

that result in an IgE-mediated disease. The database currently (last

update in November 2004) contains information derived from

5800 selected scientific literatures. Web sites of interest for immu-

nologists are listed in [21] and links to databases, tools and

resources in immunoinformatics are available in ‘The IMGT

immunoinformatics page’ at http://imgt.org.

Computational tools
A wide variety of computational, mathematical and statistical

methods has been reported in the literature, ranging from text

mining, information management, sequence analysis, molecular

interactions, to advanced systems simulation. Text mining of

biomedical literature is at its formative stages. Attempts are being

made for the extraction of interesting and complex patterns from

non-structured text documents in the immunological domain.

Examples include categorization of allergen cross-reactivity infor-

mation [22], identification of cancer-associated gene variants [23],

and the classification of immune epitopes [24].

Conventional sequence analysis tools, such as ClustalW, BLAST,

and TreeView, as well as specialized immunoinformatics tools, such

as IMGT/V-QUEST [25] for IG and TR sequence analysis, IMGT/

Collier-de-Perles [26] and IMGT/StructuralQuery [14] for IG variable

domain structure analysis, allow the inference of functional, struc-

tural, or evolutionary relationships between DNA or protein

sequences. Methods that rely on sequence comparison are diverse

and have been applied to analyze HLA sequence conservation [4],

help verify the origins of human immunodeficiency virus (HIV)

sequences [27], and construct homology models for the analysis of

hepatitis B virus polymerase resistance to lamivudine and emtrici-

tabine [28]. Computational models that focus on protein–protein

interactions and networks include procedures for T and B cell

epitope mapping, proteasomal cleavage site prediction, and TAP–

peptide prediction [29]. The availability of experimental data is a

necessity for developing efficient and robust machine-learning

models to predict various molecular targets. Methods based on

structure-guided design are likely to become very powerful in the

years tocome, with the rapid increase in structuraldata generatedby

molecular biology initiatives. Cellular automata that utilize sophis-

ticated mathematical formulae to describe a wide range of complex

virus–host relations were also reported. Specific examples include

simulatingcognate recognition and response in the immune system

[30], modeling B cell maturation [31], and analyzing MHC poly-

morphism under host–pathogen co-evolution [32].

Computational vaccinology
Vaccination is widely regarded as one of the most successful public

health intervention measures in the fight against infectious dis-

eases, allergies, neurodegenerative diseases, autoimmune disorders

http://www3.oup.co.uk/nar/database/c/
http://imgt.org/
http://www.allergen.org/
http://imgt.org/
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and some cancers. A successful example was the worldwide eradica-

tion of smallpox. The aim of vaccination is to prime the immune

system in order to generate immunological memory so that a

heightened immune response will be mounted upon exposure to

the specified pathogen. Vaccines may be live attenuated whole

organisms, killed micro-organisms, subunit antigens or toxoids.

Vaccines based on killed pathogens may fail if the pathogen is

denatured by extreme heat or chemical reactions. While it is pos-

sible to design attenuated vaccines using weakened forms of patho-

gens, subunit or peptide-based vaccines is generally preferred to

reduce the risk of adverse reaction such as clinical manifestation of

disease. In the past decade, computational methods for mapping

immunogenic epitopes have been actively developed to facilitate

the discovery of suitable vaccine candidates. An overview of these

methods is described in this section.

B cell epitope prediction
B cell epitopes are antigenic determinants on the surface of patho-

gens that interact with B cell receptors. The B cell receptor (BCR)-

binding site is primarily hydrophobic, consisting of six hypervari-

able loops of variable length and amino acid composition. B cell

epitopes can be either continuous or discontinuous. Approxi-

mately 10% of B cell epitopes are contiguous, consisting of a linear

stretch of amino acids along the polypeptide chain. Most B cell

epitopes, though, are non-contiguous in nature, where distant

residues are brought into spatial proximity by protein folding. It

has been reported that not all residues within an epitope are

functionally important for binding, and the specificity could be

reduced or eliminated by single-site amino acid substitution. The

astronomical combinatorial space of molecular interactions calls

for the use of computational tools and mathematical models for

systematic screening and analysis.

A variety of methods for the modeling and prediction of B cell

epitopes have been reported. One of the biggest challenges in this

field is the lack of standards in defining B cell epitopes which has a

direct impact on the selection and development of appropriate

tools for analysis [33]. Current efforts are primarily focused on the

design of predictors for continuous epitopes, in part, due to lower

complexity in system development, and also because the experi-

mental design of conformational epitopes is non-trivial. Propen-

sity scales are commonly used to guide the mapping of B cell

epitopes. Hopp and Woods [34] introduced the use of hydrophi-

licity scales for locating protein antigenic determinants. Pellequer

et al. [35] applied the use of turn propensities for the analysis on 85

continuous epitopes in 14 proteins. Other amino acid propensities

were also proposed, but the effectiveness of such an approach has,

so far, been controversial. A benchmark on the performance of 484

amino acid propensity scales for B cell epitope prediction revealed

that the best set of scales and parameters performed only slightly

better than random [36]. Machine learning techniques have been

applied, but also achieved limited success for predicting contin-

uous epitopes [37]. On the contrary, structure-based predictors for

B cell epitope mapping are gaining dominance, due to (1) the

rapidly increasing number of three-dimensional (3D) structures of

antibody–antigen complexes available in the PDB and in IMGT/

3Dstructure-DB, and (2) the ability to predict both continuous and

discontinuous epitopes. In fact, the use of structural data parallels

the noticeable shift in B cell epitope prediction methodologies
over the past few years, away from sequence-derived properties to

much more structure-guided designs [38].

T cell epitope prediction
T cells recognize antigens as short peptide fragments in association

with MHC molecules on antigen-presenting cells. Two classes of T

cells are available: (1) CD8+ T cytotoxic (Tc) cells, which recognize

peptides displayed by MHC class I molecules, and (2) CD4+ T

helper (Th) cells, which recognize peptides in association with

MHC class II molecules. Tc cells release cytotoxins which are

responsible for cell lysis, and granzymes which induces apoptosis.

Th1 cells produce interferon g (IFN-g) and tumor necrosis factor b

(TNF-b) and are involved in delayed-type hypersensitivity (DTH)

reactions. In contrast, Th2 cells produce interleukin 4 (IL-4), IL-5,

IL-10 and IL-13, which are responsible for strong antibody

responses, including the activation and recruitment of IgE anti-

body-producing B cells, mast cells, eosinophils, and the inhibition

of several macrophage functions.

Computational methods for predicting T cell epitopes and

MHC-binding peptides have been extensively explored and

reviewed elsewhere [39]. These include procedures based on bind-

ing motifs, binding matrices, decision trees, hidden Markov mod-

els (HMM), support vector machines (SVM), artificial neural

networks (ANN), quantitative structure–activity relationship

(QSAR) analysis, homology modeling, protein threading and dock-

ing techniques. In the last decade, much emphasis has been placed

on the design of computational technologies that allow the pre-

diction of promiscuous peptides capable of binding to a wide array

of MHC molecules [40]. This approach allows the design of peptide

vaccines with improved global coverage by ensuring that HLA

alleles that are present in most individuals from all major ethnic

groups may bind to at least one of the peptides in the vaccine.

Tools for predicting MHC class I binding in higher vertebrates have

also been reported [41]. Dynamic activities over the past 2 years

have also seen at least six reports of algorithms that attempt to

simulate the cell-mediated immune system by integrating the

different sub-components of the antigen processing and presenta-

tion pathway such as TAP, proteasome, and MHC [42,43]. These

tools are particularly useful for screening large sets of protein

antigens, such as those encoded by complete viral genomes.

Allergy informatics
Current efforts in allergy informatics are primarily focused on

quality data management, T and B cell epitope prediction, as

well as the assessment of allergenicity and allergic cross-reactiv-

ity. Standards for assessing protein allergenicity are still in their

formative stages. The World Health Organization (WHO) and

Food and Agriculture Organization (FAO) proposed guidelines

for evaluating allergenicity of genetically modified foods.

According to the Codex alimentarius, a protein is potentially

allergenic if it possesses an identity of �6 contiguous amino

acids or �35% sequence similarity over an 80 amino acid win-

dow with a known allergen. Although these recommendations

are in place, their inherent limitations are starting to become

apparent and exceptions to the rules have been well reported

[44]. Computational algorithms have been actively developed to

help assess the allergenic potential of genetically modified food

crops, bio-pharmaceuticals and various other products on the
www.drugdiscoverytoday.com 687
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consumer market [45]. An example was the use of the FASTA3

algorithm with k-nearest-neighbour (kNN) classifier for assessing

potential food allergenicity of newly introduced proteins [46].

The use of Fourier transform to detect compact patterns in

allergens was also reported [44]. Implementation and controlled

comparisons of allergen prediction systems is difficult, however,

due to poorly defined standards for identifying allergenicity and

the lack of experimental non-allergenic sequences. Many new

allergen prediction systems use hypothetical or inferred non-

allergenic sequences for system training and testing. At present,

information is limited about the usefulness of much of these

systems, and significant costs may be incurred in implementing,

improving and managing these systems, as well as investigating

false alarms. As more experimental validations are performed,

the relative value of the different approaches will be known and

it should be expected that the current FAO/WHO recommenda-

tions will also be refined.

Infectious disease informatics
There is intense interest in the use of informatics for the surveil-

lance, modeling and response to infectious diseases. Syndromic

surveillance has taken advantage of new technologies to model

how diseases, especially unexpected emerging infections such as

pandemic influenza or severe acute respiratory syndrome (SARS),

could spread through a community. Mathematical modeling,

pattern recognition and aberration detection are useful for screen-

ing data to identify patterns that warrant further public health

investigation, to enhance recognition of disease outbreak patterns,

and allow the monitoring and evaluation of control strategies. The

Centers for Disease Control and Prevention framework on public

health surveillance systems [47] highlighted the importance of

data quality, consistency and accessibility, and directed particular

attention to the measurement of timeliness and validity for out-

break detection as well as improved coordination and sharing of

information. Specific examples of syndromic surveillance systems

include autoregressive modeling of influenza-like illnesses in Min-

nesota [48], and Digital Ring Fence (DRiF) strategy for the contain-

ment of acute infectious outbreak [49].

There have been remarkable advances in deciphering human

immune responses to various pathogens by integrating genomics

and proteomics with bioinformatic strategies that allow a rational

approach to target validation. Many exciting developments in

large-scale screening of pathogens are currently taking place,

including attempts for systematic mapping of B and T cell epitopes

of National Institute of Allergy and Infectious Diseases (NIAID)

category A-C pathogens. These pathogens include Bacillus anthra-

cis (anthrax), Clostridium botulinum toxin (botulism), Variola major

(smallpox), Francisella tularensis (tularemia), viral hemorrhagic

fevers, Burkholderia pseudomallei, Staphylococcus enterotoxin B, yel-

low fever, influenza, rabies, Chikungunya virus, among others.

Rule-based systems have been reported for the automated extrac-

tion and curation of influenza A records [50]. Information theory

has been used to measure the variability of influenza A virus

proteome [51]. This, combined with T cell epitope prediction

algorithms, allows the identification of conserved regions in viral

sequences that are prime targets for epitope-based T cell vaccine

formulations. Attempts are also being made to describe the rela-

tionship between T cell epitope antigenic diversity and protein
688 www.drugdiscoverytoday.com
sequence diversity of dengue virus [52] and escape mutations in

HIV-1 gag [53], which are of direct importance for peptide vaccine

formulation. In the next few years, increased integration of sur-

veillance technologies with sequence analysis and antigenicity

assessment tools will allow detailed analysis of the future disease

evolution patterns, and play a more prominent role in infection

control and health care epidemiology.

Cancer informatics
Cancer progression is a form of somatic evolution in which certain

mutations provide cancer cells with a selective growth advantage.

A number of cancer genome projects are currently underway to

identify novel mutations that drive tumorigenesis. An example of

a targeted approach for assessing mutations and cancer risk has

been reported by Kaminker et al. [54], in which the algorithm

CanPredict was used to indicate how closely a specific gene

resembles known cancer-causing genes. Protein–protein interac-

tion networks provide valuable information on tumorigenesis in

humans. Hernández et al. [55] has recently studied the coordinated

function of cancer proteins in the human interactome. This work

gives a good indication that cancer proteins are central to infor-

mation exchange and propagation, and are specifically organized

to promote tumorigenesis. Jonsson and Bates [56] performed a

detailed analysis of cancer proteins in a human interactome con-

structed by computational methods, and showed that cancer

proteins exhibit a network topology that is different from normal

proteins in the human interactome. A number of computational

models for classifying cancer subtypes based on epigenetic marks

have also been reported. Specific examples include the use of SVMs

for discriminating between acute lymphoblastic leukemia and

acute myeloid leukemia [57], as well as the use of Manhattan

distance and average linkage algorithms for hierarchical cluster

analysis of human colorectal tumors [58]. Cancer epigenetics will

be a major growth area in this domain, with the maturation of key

initiatives such as the European Union (EU) funded CancerDip

Consortium.

Conclusion
Realizing the full benefits of the informatics revolution will require

significant advances in the efficiency with which new data is

discovered, processed, interpreted and made accessible to

researchers. The next few years will see increased interest in the

use of cluster computing and distributed systems for large-scale

data analysis and screening. With the explosion in the number,

variety and sophistication of resources and analysis tools, the

challenge is to integrate the strengths and not the weaknesses

of each approach. Computational algorithms that model different

aspects of the human immune system and disease have been

described [42,43]. On the other hand, cellular automata have also

been proposed for exploring a wide range of virus–host relations

[30]. The different bioinformatic and mathematical modeling

approaches, in combination with advances in computational

infrastructures, allow the construction of new models that are

orders of magnitudes more complex than those currently available

and facilitate a system-level understanding of the structure and

dynamics of cellular and organism functions. Already, a number of

‘system biology’ approaches for immunological studies, such as

the EU funded ImmunoGrid project [59] and the National Cancer
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Institute’s Integrative Cancer Biology Program [60] have been

reported. With the increasing availability of correlative data and

maturation of key technologies for systems biology, it should be
expected that many more such system-driven approaches will be

developed that could lead to improved understanding of devel-

opment and homeostasis of immune system processes.
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