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ABSTRACT Gene essentiality is altered during polymicrobial infections. Neverthe-
less, most studies rely on single-species infections to assess pathogen gene essenti-
ality. Here, we use genome-scale metabolic models (GEMs) to explore the effect of
coinfection of the diarrheagenic pathogen Vibrio cholerae with another enteric
pathogen, enterotoxigenic Escherichia coli (ETEC). Model predictions showed that V.
cholerae metabolic capabilities were increased due to ample cross-feeding opportu-
nities enabled by ETEC. This is in line with increased severity of cholera symptoms
known to occur in patients with dual infections by the two pathogens. In vitro co-
culture systems confirmed that V. cholerae growth is enhanced in cocultures relative
to single cultures. Further, expression levels of several V. cholerae metabolic genes
were significantly perturbed as shown by dual RNA sequencing (RNAseq) analysis of
its cocultures with different ETEC strains. A decrease in ETEC growth was also ob-
served, probably mediated by nonmetabolic factors. Single gene essentiality analysis
predicted conditionally independent genes that are essential for the pathogen’s
growth in both single-infection and coinfection scenarios. Our results reveal growth
differences that are of relevance to drug targeting and efficiency in polymicrobial in-
fections.

IMPORTANCE Most studies proposing new strategies to manage and treat infections
have been largely focused on identifying druggable targets that can inhibit a pathogen’s
growth when it is the single cause of infection. In vivo, however, infections can be
caused by multiple species. This is important to take into account when attempting to
develop or use current antibacterials since their efficacy can change significantly be-
tween single infections and coinfections. In this study, we used genome-scale metabolic
models (GEMs) to interrogate the growth capabilities of Vibrio cholerae in single infec-
tions and coinfections with enterotoxigenic E. coli (ETEC), which cooccur in a large frac-
tion of diarrheagenic patients. Coinfection model predictions showed that V. cholerae
growth capabilities are enhanced in the presence of ETEC relative to V. cholerae single
infection, through cross-fed metabolites made available to V. cholerae by ETEC. In vitro,
cocultures of the two enteric pathogens further confirmed model predictions showing
an increased growth of V. cholerae in coculture relative to V. cholerae single cultures
while ETEC growth was suppressed. Dual RNAseq analysis of the cocultures also con-
firmed that the transcriptome of V. cholerae was distinct during coinfection compared to
single-infection scenarios where processes related to metabolism were significantly per-
turbed. Further, in silico gene-knockout simulations uncovered discrepancies in gene es-
sentiality for V. cholerae growth between single infections and coinfections. Integrative
model-guided analysis thus identified druggable targets that would be critical for V.
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cholerae growth in both single infections and coinfections; thus, designing inhibitors
against those targets would provide a broader spectrum of coverage against cholera in-
fections.

KEYWORDS infectious diseases, cholera, diarrhea, coinfection, drug target, flux
balance analysis, constraint-based model, genome-scale reconstruction, Vibrio
cholera, computational modeling, genome-scale modeling

Many studies focus on single-species infections although pathogens often cause
infections as part of multispecies communities (1). Most studies that aim at

identifying essential genomes, for example, have largely depended on single cultures
(2–5). Such studies thus identify sets of “conditionally dependent essential” genes
depending on the investigated growth conditions. Coinfecting microorganisms alter
pathogen gene essentiality during polymicrobial infections (1). Nevertheless, a limited
number of studies have attempted to identify variations in growth capabilities or gene
essentiality of a pathogen under coinfection conditions.

Many metabolic processes are critical for cellular growth and survival, and hence a
pathogen’s anabolic and catabolic capabilities are usually tightly linked to its growth
capabilities. There is growing evidence that, in addition to signals from the environ-
ment, the metabolism of a pathogen plays a major role in its virulence as well (6–9).

Genome-scale metabolic network reconstructions (GENREs) (10–12) have proven to be
powerful tools to probe the metabolic capabilities of several enteric pathogens including
Escherichia coli (13), Shigella (13), and Salmonella (14). GENREs are knowledge bases
describing metabolic capabilities and the biochemical basis for entire organisms (10–12).
GENREs can be mathematically formalized and combined with numerical representations of
biological constraints and objectives to create genome-scale metabolic models (GEMs)
(10–12). These GEMs can be used to predict biological outcomes (e.g., gene essentiality,
growth rate) given an environmental context (e.g., metabolite availability [14, 15]). Meta-
bolic models recapitulate the biological processes of nutrient uptake and metabolite
secretion, which can be the basis of some microbial interactions (16). A growing number of
experiments illustrated the predictive power of metabolic-driven computational ap-
proaches to describe emergent behaviors of coexisting species (17–22). However, deploy-
ing computational models to predict variations in pathogens’ growth capabilities when
present in single-infecting or coinfecting scenarios has not been investigated.

Vibrio cholerae is a Gram-negative bacterium that causes acute voluminous diarrhea
representing a dramatic example of an enteropathogenic invasion. Cholera infections
are typically caused by contaminated food and water (23, 24). Seven cholera pandemics
have been recorded in modern history, and the latest is still ongoing (25–27). The V.
cholerae life cycle is marked by repetitive transitions between aquatic environments
and the host gastrointestinal tract; thus, it has to adjust to different qualities and
quantities of nutrient sources (25). Within the human host, a highly active metabolic
program is necessary to support V. cholerae high growth rates (25), where it was
reported that cell numbers reach up to 109 cells/g stool excreted by cholera patients
(23, 25, 26). Further, several reports have suggested a role for central metabolism in
regulating the production of virulence factors in V. cholerae (cholera toxin [CTX] and
toxin-coregulated pilus [TCP]). For instance, TCP and CTX are not produced when V.
cholerae is grown in M9-glycerol (27–29). The Entner-Doudoroff pathway has been
shown to be obligatory for gluconate utilization and plays an important role in
regulating V. cholerae virulence (29). While most case reports focus on V. cholerae as the
single causative agent of diarrhea in cases of cholera infections, V. cholerae has
commonly been involved in dual infections with enterotoxigenic E. coli (ETEC) (30–32),
the second most frequent cause (�15%) of diarrheal diseases after V. cholerae. Notably,
dual infections with V. cholerae and ETEC are associated with increased severity and
increased health care costs (31). Thus, there is a need to study the variations in growth
capabilities and gene essentiality between single- and multispecies infections of patho-
gens in general, and of V. cholerae in particular.
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Here, we built a V. cholerae genome-scale metabolic model and validated its single gene
essentiality predictions against experimentally published data. We then evaluated the
growth capabilities of V. cholerae in relation to other enteric pathogens by simulating their
growth under 656 growth conditions spanning several nutrient sources under aerobic and
anaerobic conditions. Following that, we reconstructed a coinfection model of V. cholerae
with ETEC in a shared environment and compared the growth capabilities of V. cholerae in
single versus coinfection settings. Coinfection model simulations allowed for a comprehen-
sive assessment of variations in growth capabilities and single gene essentiality when V.
cholerae is grown solely or in coculture with ETEC. In vitro cocultures of the two enteric
pathogens as well as dual transcriptome sequencing (RNAseq) data reflected correspond-
ing variations in growth predictions and gene expression levels, respectively. Using single-
infection and coinfection models, we predicted V. cholerae essential genes representing
potential druggable targets that would be broader in spectrum against both V. cholerae
single and coinfections. The present work is computationally driven using high-quality
experimentally verified in silico and in vitro models and can be viewed as a means to
prioritize potential druggable targets of pathogens that are known to be involved in single
and multispecies infections. Further, our results substantiate the notion that data-driven
computational modeling coupled to experiments can predict and analyze microbial com-
munities’ behavior.

RESULTS
Characterizing the metabolic capabilities of V. cholerae. iAM-Vc960, a manually

curated and quality-controlled GEM of V. cholerae, was constructed (Fig. 1, step 1) to
probe the enteric pathogen’s metabolic capabilities and gene essentiality in single
infections and coinfections. We sequenced and annotated the genome of V. cholerae
52, an O37 serotype strain (see Materials and Methods and see also Fig. S1 at https://
github.com/alyamahmoud/coinfection_modeling/blob/master/supplementary
_material/supplementary_text.docx). A list of metabolic pathways in V. cholerae V52
was built based on the genome annotation generated in this study as well as those
available in PATRIC and that of V. cholerae O1 N16961 (see Table S1 at https://github
.com/alyamahmoud/coinfection_modeling/blob/master/supplementary_material/
supplementary_tables.xlsx). The reconstruction was converted into a model, and the
stoichiometric matrix was constructed with mass- and charge-balanced reactions in the
standard fashion using the COBRA toolbox v.3.0 (33). Flux balance analysis (FBA) was
used to assess network characteristics and perform simulations (34). The biomass
function was constructed primarily based on that of Vibrio vulnificus (7) and E. coli K-12
iJO1366 (35). Transcriptomics data of V. cholerae V52 single cultures in minimal medium
were also generated and used to further refine iAM-Vc960 reconstruction and biomass
objective function (see Table S1 at https://github.com/alyamahmoud/coinfection
_modeling/blob/master/supplementary_material/supplementary_tables.xlsx). iAM-Vc960
accounts for 2,172 reactions, 1,741 metabolites across three compartments (cytosol,
periplasm, and extracellular compartments), and 960 metabolic genes. Gene-protein-
reaction (GPR) associations could be defined for 72% of all enzymatic reactions (Fig. 2A).
iAM-Vc960 exceeds the automatically generated V. cholerae model as part of the
Path2Models (36) project in terms of its gene, metabolite, and reaction content. Five
hundred eighty-four (89%) of the Path2Models V. cholerae model genes were already in
iAM-Vc960. The remaining 68 genes were mostly nonmetabolic. The Path2Models V.
cholerae model as downloaded from the biomodels repository was unable to produce
any biomass; thus, we could not perform a functional comparison between iAM-Vc960
and the previously published V. cholerae model (see supplementary text at https://
github.com/alyamahmoud/coinfection_modeling/blob/master/supplementary
_material/supplementary_text.docx for details on comparison to other previously pub-
lished V. cholerae GEMs [37]).

The iAM-Vc960 predicted growth rate was 1.07 mmol/g (dry weight [DW])/h, in M9
minimal medium supplemented with glucose, corresponding to a doubling time of 39
min. Previous experiments (38) using V. cholerae species reported doubling times of
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38 min and 147 min for fast and slow growth, respectively. Hence, the iAM-Vc960
predicted doubling time was within the expected range.

In order to further validate iAM-Vc960 predictions, we tested if iAM-Vc960 could
correctly predict gene essentiality. Multiple attempts have been made to generate
definitive lists of essential genes, but there are still many discrepancies between
these studies even for a model bacterium such as E. coli strain K-12 (39). We thus
compiled a high-confidence set of genes (n � 223; see Table S2 at https://github
.com/alyamahmoud/coinfection_modeling/blob/master/supplementary_material/
supplementary_tables.xlsx) that have been shown to be critical for V. cholerae growth
and survival from three independent previously published studies (40–42). In rich
medium (Luria-Bertani broth [LB]), iAM-Vc960 correctly predicted 71% of the experi-
mentally verified metabolic gene knockouts (see Table S2 at https://github.com/
alyamahmoud/coinfection_modeling/blob/master/supplementary_material/
supplementary_tables.xlsx). In a second step, we also used gene essentiality data for V.
cholerae strain C6706, a closely related O1 El Tor isolate, obtained from the Online GEne
Essentiality (OGEE) database (4, 5), which contains information for essential (n � 458)

FIG 1 Overview of the study design.
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and nonessential (n � 3,144) genes (see supplementary text for a comment on serotype
differences at https://github.com/alyamahmoud/coinfection_modeling/blob/master/
supplementary_material/supplementary_text.docx). The overall accuracy of iAM-Vc960
in reproducing OGEE essentiality (and nonessentiality) data was 87% (Fig. 2B) (see
supplementary text at https://github.com/alyamahmoud/coinfection_modeling/blob/
master/supplementary_material/supplementary_text.docx for details). Overall, iAM-
Vc960 predicted 225 and 171 genes to be essential for optimal V. cholerae growth in
minimal and rich media, respectively.

The agreement between the experimental gene essentiality data, obtained from
previously published studies, and the computational results, generated in the current
study, in terms of growth and single gene essentiality predictions, on the whole,
validates the content of the reconstruction, the modeling procedure, and the objective
function definition (Fig. 1, step 1). As such, iAM-Vc960 is a high-quality manually
curated genome-scale model that can simulate V. cholerae metabolism and thus can be
used to predict phenotypic behavior of V. cholerae in response to different perturba-
tions (e.g., culture conditions, interaction partners, etc.). This prompted us to system-
atically and comprehensively assess the metabolic capabilities of V. cholerae to study
how the pathogen adapts its network across the different growth conditions and assess
the relative metabolic capacity of V. cholerae in relation to other enteric pathogens, as
well as how the pathogen’s growth capabilities and gene essentiality are impacted in
the presence of other coinfecting pathogens.

V. cholerae has restricted metabolic capabilities compared to E. coli and Shi-
gella. Since enteric bacterial pathogens span several genera including Escherichia,
Salmonella, and Shigella, we thought it would be relevant to assess the metabolic
capabilities of V. cholerae in relation to other pathogens that cause diarrhea (Fig. 1, step
2). Using iAM-Vc960, we simulated growth capabilities of V. cholerae relative to a set of
previously published (13) GEMs of 55 strains of E. coli (both commensal and patho-
genic) and Shigella species on minimal medium with 656 different growth-supporting
carbon, nitrogen, phosphorus, and sulfur sources under aerobic and anaerobic condi-
tions (13, 14). iAM-Vc960 model size was in line with the smaller genome size of V.
cholerae than of E. coli and Shigella (Fig. 3A), where V. cholerae has 3,855 open reading
frames (ORFs) while Shigella and E. coli each have on average 4,199 and 4,663 ORFs,
respectively. Nevertheless, iAM-Vc960 metabolic genes covered 25% of V. cholerae ORFs
(43). Notably, iJO1366, the most well developed and curated genome-scale metabolic
model, covers 29% of E. coli strain K-12 substrain MG1655 ORFs. On average, Shigella
and E. coli GEMs covered 27% and 29%, respectively, of the corresponding species
ORFs.

FIG 2 V. cholerae genome-scale metabolic model iAM-Vc960 description and performance evaluation.
(A) V. cholerae GE statistics (iAM-Vc960). (B) Comparison of iAM-Vc960 gene essentiality predictions
(simulating in vitro growth conditions in LB) showed 87% accuracy compared to single gene deletion
experiments from OGEE essential (n � 458) and nonessential (n � 758) gene data sets. In silico gene
essentiality was graded according to the percentage of reduction in growth rate compared to wild type.
The Fisher exact test as well as the Mathew correlation coefficient (MCC) was used to compute
significance of overlapping consistent predictions for iAM-Vc960. See Table S2 at https://github.com/
alyamahmoud/coinfection_modeling/blob/master/supplementary_material/supplementary_tables
.xlsx for details.
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We first confirmed known metabolic differences for distinguishing V. cholerae from
other enteric pathogens (Fig. 3B and C). For instance, iAM-Vc960 predicted the ability
of V. cholerae to utilize sucrose as sole carbon source (44, 45). iAM-Vc960 could not
utilize arginine as sole carbon or nitrogen sources, while all E. coli and Shigella models
were able to utilize arginine under aerobic conditions (46, 47) in line with the frequent
usage of the absence of arginine metabolism for characterizing V. cholerae (48).
Similarly, while E. coli and Shigella were able to utilize myo-inositol as sole phosphorus

FIG 3 Functional assessment of V. cholerae metabolic capabilities relative to E. coli and Shigella. (A) Proportion of metabolic genes included as
GPR in GEMs of E. coli and Shigella (13) and V. cholerae (this study) relative to total number of ORFs in each species. (B and C) Assessment of
iAM-Vc960 metabolic capabilities compared to a set of 55 E. coli and Shigella strains (13) by unique growth-supporting conditions. Predicted
metabolic phenotypes under the variable growth-supporting nutrient conditions composed of different carbon, nitrogen, phosphorus, and sulfur
nutrient sources under aerobic and anaerobic conditions. Strains were clustered based on their ability to sustain growth in each different
environment. Columns in panel B represent individual strains, and rows represent different nutrient conditions. iAM-Vc960 coclustered with
Shigella boydii CDC3083-94, Shigella boydii Sb227, and Shigella dysenteriae Sd197. Tables S4 and S5 at https://github.com/alyamahmoud/
coinfection_modeling/blob/master/supplementary_material/supplementary_tables.xlsx provide all details about the simulation conditions for the
alternative nutrient sources. A growth rate of 0.01 was used as the cutoff for binarizing the simulation results and was used to construct the
heatmap in panel B.
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FIG 3 (Continued)
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source, iAM-Vc960 predicted the failure of V. cholerae to grow when no other phos-
phorus source is present in the medium (46). Further, iAM-Vc960 also correctly pre-
dicted the ability of V. cholerae to utilize trehalose or mannitol as alternative carbon
sources under both aerobic and anaerobic conditions (47, 48).

In contrast to E. coli, the V. cholerae model displayed a large loss of catabolic
capabilities across the 656 tested growth conditions (Fig. 3B and C; see Tables S4 and
S5 at https://github.com/alyamahmoud/coinfection_modeling/blob/master/
supplementary_material/supplementary_tables.xlsx). This computational result implies
that V. cholerae, similarly to Shigella and several pathogenic E. coli strains (49), might
have lost catabolic pathways for many nutrient sources. Model predictions showed that
V. cholerae was able to grow under 51% (n � 336) of the simulated growth conditions,
while E. coli and Shigella were able to grow, on average, under 92% (n � 602) and 75%
(n � 493) of the tested growth conditions, respectively (Fig. 3B; see Tables S4 and S5 at
https://github.com/alyamahmoud/coinfection_modeling/blob/master/supplementary
_material/supplementary_tables.xlsx), implying that V. cholerae has less versatile met-
abolic capabilities than either E. coli or Shigella. In fact, V. cholerae metabolic capabilities
were more similar to Shigella than to E. coli (Fig. 3C). The V. cholerae model completely
lost the capability to sustain growth on nutrient sources for which most of the E. coli
and Shigella models had growth capabilities. Some of these nutrients include D-lactate,
D-fumarate, lactose, L-alanine-glutamate, uridine, xanthosine, thymidine, R-glycerate,
sn-glycero-3-phosphoethanolamine, 4-hydroxy-L-threonine, L-asparagine, L-proline,
L-arabinose, and L-xylulose as carbon sources as well as nitrate, nitrite (50), ornithine,
L-proline, agmatine, uracil, and putrescine (51) as nitrogen sources, and myo-inositol-
hexakisphosphate as phosphorus source. Further, most Shigella models and iAM-Vc960
were unable to sustain growth on chitobiose, D-malate, D-sorbitol, L-fucose, ethanol-
amine, galactitol, propionate, D-galactonate, choline, and allantoin as sole carbon
sources as well as hypoxanthine, inosine, and urea as nitrogen sources, whereas almost
all other E. coli models examined were able to sustain growth under the same
conditions.

Several tests based on nutrient utilization are routinely used to distinguish between
pathogens that cause diarrhea. Using GEMs of enteric pathogens can aid in predicting
potential metabolite markers that, upon experimental validation, could be used in
clinical practice to diagnose the causative agent of diarrhea or an enteric pathogenesis
in general.

Predicted expanded growth capabilities of V. cholerae in coculture with ETEC.
Computational approaches modeling metabolic fluxes between organisms can be used
to provide a mechanistic understanding of interaction patterns between different
microbes (17, 21, 52, 53). An emergent behavior in coculture will also relate to the
extent of overlapping resources between the component species as well as whether or
not there will be any cross-fed substrates (22). Using V. cholerae as our model organism,
we wanted to investigate how the metabolic capabilities (as proxy of growth capabil-
ities) of V. cholerae will vary if other coinfecting pathogens are involved (Fig. 1, step 3).
We thus set to model coinfections of V. cholerae and ETEC. V. cholerae (�25%) followed
by ETEC (�15%) is the most prevalent bacterial pathogen causing diarrheal diseases in
the developing world (30). These bacteria are representative of species found in the
same environment and are both involved in enteric pathogenesis. In particular, the
choice of these species was inspired by the recurrent dual infections of both species in
hospitalized patients due to diarrhea (30–32). The antibody titer against cholera toxin
(but not against heat-stable or heat-labile toxins produced by ETEC) was also found to
increase in cases of dual infections of V. cholerae and ETEC relative to single V. cholerae
infections (31), although no mechanistic explanation was attributed to these variations.
V. cholerae V52 was also observed to be virulent against several other Gram-negative
species including E. coli although ETEC was not tested (54).

To investigate the behavior of the individual pathogens in coinfection relative to
their single infections, we used iAM-Vc960 and a previously reconstructed GEM of ETEC,
iETEC1333 (13), to simulate the growth of V. cholerae and ETEC in a single shared
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environment (55, 56). Metabolic genes, metabolic reactions, and metabolites were
compared across the species-specific networks. iAM-Vc960 and iETEC-1333 had
1,672 metabolites in common. This represented 96% and 85% of V. cholerae and
ETEC total metabolites, respectively. To distinguish between shared and species-
specific metabolites, each organism was represented as a separate compartment
(Fig. 4A) with a shared space representing the coculture/infection medium. Twenty-
three percent (n � 380) of the common metabolites between the two models were
amenable to exchange by being available in the shared extracellular space (Fig. 4A).
In total, the coculture model, iCo-Culture2993, had 4,550 reactions, 3,335 metabo-
lites, and 2,293 genes. The objective function was set to maximize the biomass
function of each pathogen, simulating growth of both species at 1:1 composition
(see Materials and Methods and see also supplementary text at https://github.com/
alyamahmoud/coinfection_modeling/blob/master/supplementary_material/
supplementary_text.docx for details in development and refinement of the coculture
model).

We then used the same set of 656 growth conditions to assess the difference in
metabolic capabilities of V. cholerae and ETEC in single infections and coinfections. All
three models (iAM-Vc960, iETEC1333, and iCo-Culture2993) were able to grow under
51% (n � 333) of the tested growth conditions. ETEC was able to grow under 42%
(n � 277) of the growth conditions that V. cholerae was unable to utilize in single
culture. However, iCo-Culture2993 acquired the capability to grow under the same
conditions (Fig. 4B; see also Tables S4 and S5 at https://github.com/alyamahmoud/
coinfection_modeling/blob/master/supplementary_material/supplementary_tables
.xlsx). A closer look revealed that most of those acquired capabilities were due to ample
cross-feeding opportunities enabled by the ETEC model. For instance, iAM-Vc960 is
unable to grow on putrescine as sole nitrogen or carbon source. iETEC1333 and
iCo-culture2993, however, are able to degrade putrescine into glutamate by putrescine
transaminase (patA: ETEC_3343) or into glutamate and succinate through the gamma-
glutamyl putrescine synthetase (puuA: ETEC_1401)/oxidoreductase (puuB: ETEC_1405)
pathway, both being absent in the V. cholerae genome. Similarly, V. cholerae cannot
catabolize uridine (and xanthine) whereas ETEC can degrade uridine, xanthine, and
xanthosine into ribose as it possesses pyrimidine-specific ribonucleoside hydrolases
(RihA, RihB, and RihC: ETEC_0680, ETEC_2297, and ETEC_0030) which can potentially be
cross-fed to V. cholerae. In addition, several D-amino acids were observed to be
cross-fed where they are degraded by ETEC into forms that can be utilized by V.
cholerae, e.g., D-allose which is degraded by ETEC D-allose kinase (alsK: ETEC_4394) into
fructose-6-phosphate that can be cross-fed to V. cholerae. Similarly, fructoselysine is
metabolized by ETEC fructoselysine kinase (frlD: ETEC_3624) and fructoselysine
6-phosphate deglycase (frlB: ETEC_3622) into glucose-6-phosphate which can be cross-
fed to V. cholerae. None of those genes have been identified in the genome of V.
cholerae to date (determined via searching the annotated genome of V. cholerae O1
biovar El Tor strain N16961 in PATRIC [57] and UniProt [58] and the annotated genome
of V. cholerae V52 generated in this study as well as two other assemblies, GCF_
001857545.1 and GCF_000167935.2, retrieved through PATRIC [57]).

Overall, iETEC1333, iAM-Vc960, and iCo-Culture2993 were able to grow in 94%
(n � 614), 51% (n � 336), and 93% (n � 613) of the simulated growth conditions,
respectively (Fig. 4B). As such, we predict that V. cholerae metabolic capabilities are
expanded in coinfections with ETEC relative to V. cholerae single infections while ETEC
metabolic capabilities are almost not affected where the main differences between the
two species lie in their capability to take up and catabolize various nutrient sources. Our
modeling approach thus provides mechanistic insights into the observed increase in
cholera infection severity in clinical patients who demonstrated increased antibody
titers against cholera (and not ETEC) toxin in case of coinfections by the two enteric
pathogens (31).
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FIG 4 Computational modeling and in vitro coculture of V. cholerae and ETEC coinfection. (A) Schematic showing the
modeling framework used to simulate growth of V. cholerae and ETEC in a shared environment. (B) Ternary plot showing 600�
growth conditions to compare the metabolic capabilities of V. cholerae and ETEC monocultures relative to their coculture.
Values used for plotting are flux rates in the biomass objective function of each model and are meant to show the ability to
grow or not grow under the respective growth condition rather than the flux value. No change in the overall plot was observed
when using normalized values relative to standard growth conditions (aerobic conditions � glucose/ammonia/phosphate/
sulfate). (C) Quantification of V. cholerae and ETEC CFU in monocultures and cocultures over 10 h for the CFU (pooled technical
replicates of n � 3 biological replicates) in M9 minimal medium supplemented with 0.5% glucose, 1 mM MgSO4, and 0.1 mM
CaCl2, with 5 �l spotted at each time point. Data shown as mean � SD for three biological replicates. (D) Dynamics of V.
cholerae in coculture with enterotoxigenic E. coli and in monoculture. Data shown as mean � SD for three biological replicates.
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Growth of V. cholerae is enhanced when cocultured with ETEC in vitro. To
validate our predictions, we employed single- and coculture in vitro experiments
(Fig. 1, step 4) to assess the predictions made by our enteric pathogen coinfection
model (Fig. 4C and D and see Table S6 at https://github.com/alyamahmoud/
coinfection_modeling/blob/master/supplementary_material/supplementary_tables
.xlsx). To this end, we developed a robust in vitro coculture system of V. cholerae V52
and two different ETEC strains (E36 and E616) in M9 minimal medium supplemented
with glucose (Fig. 4C and D). All three tested strains (V52, E36, and E616) are clinical
isolates that have been sequenced and characterized previously (59, 60) (see supple-
mentary text at https://github.com/alyamahmoud/coinfection_modeling/blob/master/
supplementary_material/supplementary_text.docx for details on strain selection and
sequencing performed as part of the current study). We determined the impact of the
coculture on each strain’s growth by comparing single-culture abundance over 10 h of
growth to the abundance of each strain in coculture at the same time (determined
using CFU counting; all strains were in transition or stationary phase). E36 and E616
were shown to have diminished ability to grow in coculture with V. cholerae V52. In
contrast, growth of V. cholerae V52 was strongly enhanced under coculture conditions
(Fig. 4C and D).

The growth data regarding V. cholerae V52 were in agreement with the modeling
predictions. When comparing maximal abundances, cross-feeding and competitive
interactions were already apparent. V. cholerae V52 reached higher maximal bacterial
counts in V. cholerae V52/ETEC E36 (unpaired two-sided Wilcoxon: shift 5.8e�09, 90%
confidence interval 3.8e�09 to 6.8e�09, P value 0.07) and in V. cholerae V52/ETEC E616
(unpaired two-sided Wilcoxon: shift 5.6e�09, 90% confidence interval 4.4e�09 to
8.8e�09, P value 0.1) cocultures (Fig. 4C and D). The maximum cell number of both
ETEC strains tended to be lower when competing with V. cholerae V52 than when
grown alone (unpaired two-sided Wilcoxon E36: shift �1.06e�10, 90% confidence
interval �1.14e�10 to �8.60e�09, P value 0.07; unpaired two-sided Wilcoxon E616:

FIG 4 (Continued)
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shift �6e�09, 90% confidence interval �9.4e�09 to �2.0e�09, P value 0.1). Finally,
according to maximal bacterial counts, E36 was more negatively affected by the
presence of V. cholerae V52 than E616 (unpaired two-sided Wilcoxon E36: shift
�6.4e�09, 90% confidence interval �9.4e�09 to �5.2e�09, P value 0.1).

Although our modeling procedure predicted and explained the increase in V.
cholerae growth capabilities when cocultured with ETEC, the decrease in abundance of
ETEC in V. cholerae V52/ETEC cocultures was not captured by our metabolic models. V.
cholerae V52 was previously found to be highly virulent against several Gram-negative
bacteria, including E. coli and Salmonella enterica serovar Typhimurium, due to the type
VI secretion system (T6SS) (54). Although ETEC was not tested for in these experiments,
it is expected that ETEC would behave similarly to closely related pathogenic E. coli
strains (enteropathogenic E. coli [EPEC] and enterohemorrhagic E. coli [EHEC]). Thus, the
decrease in ETEC growth is very likely mediated by nonmetabolic factors. We also focus
on the improved growth of V. cholerae since this is of potential clinical relevance and
since the decrease in ETEC growth in V. cholerae cocultures has been investigated
before.

Altered gene expression in single- and multispecies cocultures. To assess the level
of genetic perturbations due to addition of ETEC as an interaction partner to V. cholerae
cultures, we conducted a dual RNAseq analysis (61–64) of V. cholerae cocultures (Fig. 1,
step 4) with each of the two ETEC strains (E36 and E616). We then compared the gene
expression levels for each pathogen to its single culture (see Materials and Methods
and see also Tables S7 to S10 at https://github.com/alyamahmoud/coinfection
_modeling/blob/master/supplementary_material/supplementary_tables.xlsx). Through
principal-component analysis (PCA) (Fig. 5; see also Fig. S5 at https://github.com/
alyamahmoud/coinfection_modeling/blob/master/supplementary_material/
supplementary_text.docx), we found that the coculture expression data clustered
independently from single-culture data, indicating that the transcriptome of V. cholerae
is distinct during coculture compared to single culture. The expression of 20% of the V.
cholerae quantifiable transcriptome was significantly altered when either strain of ETEC
was added to the culture. In particular, 15 to 17% of V. cholerae genome was upregu-
lated while 4 to 5% was downregulated in V. cholerae coculture with ETEC relative to
its single culture. V. cholerae differentially expressed genes were enriched in diverse
metabolic processes spanning amino acid metabolism like tyrosine and L-phenylalanine
(P value �0.01, odds ratio �10) as well as carbohydrate metabolic processes (P
value �0.05, odds ratio � 2.630409) (Fig. 5; also see Tables S9 and S10 at https://github
.com/alyamahmoud/coinfection_modeling/blob/master/supplementary_material/
supplementary_tables.xlsx). Upregulation of certain amino acid biosynthesis pathways,
which can be catabolized by both species, highlights that, despite potential cross-
feeding between the two pathogens, the presence of more than one infectious agent
might eventually lead to competition (65). Further, in support of non-metabolism-
mediated suppression in growth observed for ETEC, E36 differentially expressed pro-
cesses were significantly enriched in taxis and chemotaxis GO terms (P value � 3.8e�05
and odds ratio �20). Also, in line with previous reports (54, 60) about T6SS expression
levels, T6SS components were constitutively expressed in V. cholerae V52 in both single
culture and cocultures (see Tables S9 and S10 at https://github.com/alyamahmoud/
coinfection_modeling/blob/master/supplementary_material/supplementary_tables
.xlsx).

In line with predicted cross-feeding interactions between V. cholerae and ETEC, we
found that gamma-glutamyl putrescine oxidase (puuB) and putrescine utilization reg-
ulator (puuR) as well as several putrescine transporters were indeed significantly
upregulated in E616/V52 coculture relative to E616 single culture (logFC [fold
change] �1.5, adjusted P value �0.05). Furthermore, neither patA nor puuB was ex-
pressed in V. cholerae V52. Similarly, ribose-5-phosphate isomerase B (rpiB) and tran-
scriptional regulator of D-allose utilization (rpiR) were significantly upregulated in
E616/V52 coculture relative to E616 single culture (logFC �2, adjusted P value �0.005)
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and were not expressed in V. cholerae V52. Lastly, transcriptional regulator of fructose-
lysine utilization operon (frlR), fructoselysine 6-kinase (frlD), fructoselysine 3-epimerase
(frlC), and fructoselysine-6-phosphate deglycase (frlB) were also significantly upregu-
lated in E616/V52 coculture relative to E616 single culture (logFC �1 to 1.5, adjusted P
value �0.05).

Interestingly, expression levels of bacteriocins’ related genes in ETEC strains showed
that colicins’ production and tolerance genes were significantly upregulated in E616
coculture with V. cholerae V52 relative to the individually grown E616 (see Table S8 at
https://github.com/alyamahmoud/coinfection_modeling/blob/master/supplementary
_material/supplementary_tables.xlsx). In contrast, E36, whose growth is more sensitive
to cogrowth with V. cholerae V52, failed to upregulate genes encoding colicin V
production and tolerance genes (see Table S7 at https://github.com/alyamahmoud/
coinfection_modeling/blob/master/supplementary_material/supplementary_tables
.xlsx). Colicin V is a peptide antibiotic that members of Enterobacteriaceae commonly use
to kill closely related bacteria in an attempt to reduce competition for essential nutrients
(66). To sum up, the difference in expression levels of genes encoding colicin production
and resistance explains why E36 growth was more severely affected when cocultured with
V. cholerae V52 than with E616 (see Fig. S5 at https://github.com/alyamahmoud/coinfection
_modeling/blob/master/supplementary_material/supplementary_text.docx).

RNAseq thus confirmed that there is an emergent behavior in the cocultures and
that the observed changes were not due just to variations in inoculum composition or

FIG 5 Dual RNAseq analysis of V. cholerae and ETEC in coculture. GO enrichment of V. cholerae differentially expressed FIGfams in coculture with ETEC E36 (A)
and E616 (B) relative to its single culture. Up- and downregulation are in V. cholerae when in coculture relative to its monoculture. Z-score is calculated according
to GOplot (up-down/	count) where up and down are the number of assigned genes upregulated (logFC � 0) in the data or downregulated (logFC � 0),
respectively. PCA plots show that the monocultures are clustering differently from the cocultures for either species.
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the lag phase (64). Taken together, our integrated modeling, coculturing, and tran-
scriptomics approach provided mechanistic insights into the observed increase in
cholera infection severity in dual infections with ETEC where ETEC coinfection results in
an increased growth of V. cholerae due to expanded metabolic capabilities enabled by
ETEC. In parallel, V. cholerae suppresses ETEC growth by nonmetabolic factors, resulting
in an increase in cholera infection severity but not ETEC as monitored by antibody titer
against species-specific toxins (31).

Evaluation of experimentally validated essential genes across single-infection
and coinfection models of V. cholerae. The essential genome of a large class of bacterial
species has been characterized as it encodes potential targets for antibacterial drug
development (39, 67). Interestingly, metabolic genes have predominated in studies of
essential genomes of microbial pathogens (67, 68). With this in mind, we attempted to
construct a comprehensive map of V. cholerae essential metabolic genome (Fig. 1, step 5)
by projecting the list of experimentally validated essential genes onto our single-infection
and coinfection models’ predictions (Fig. 6; see also Table S2 at https://github.com/
alyamahmoud/coinfection_modeling/blob/master/supplementary_material/
supplementary_tables.xlsx). Selecting targets that are critical in both single-infection and
coinfection settings would promote the discovery of novel targets or new combinations
of existing antibacterials that would be effective in a broader spectrum of cholera
infections. The color scheme of highlighted reactions (Fig. 6) denotes model prediction
classification across single infections and coinfections. The red group in Fig. 6 highlights
reactions predicted to be sensitive in both single infections and coinfections; this is of
particular importance since the efficacy of some of the commonly used treatment drugs

FIG 6 Comprehensive map of V. cholerae essential metabolic genome constructed by projecting the list of experimentally validated essential genes onto our
single and coinfection models’ predictions. Inhibitors against red targets are expected to have a broader spectrum since they are essential for V. cholerae in
both single and coinfection scenarios. Inhibitors against yellow targets are essential for V. cholerae growth in single-infection scenarios, losing their essentiality
only in the presence of other coinfecting species. Green targets indicate a mismatch between model-predicted and experimentally validated essentiality.
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might significantly be altered in the presence of more than one infecting agent. There
are several gene deletions associated with reactions for which drugs have not been
developed (see Table S2 at https://github.com/alyamahmoud/coinfection_modeling/
blob/master/supplementary_material/supplementary_tables.xlsx). These highlight po-
tential targets for new drug development that may aid in treating enteric pathogenesis.
We also note that the green group identifies reactions that were missed by the models
and highlights areas for future model refinement.

Out of the 80 metabolic genes that have been experimentally shown to be essential
for V. cholerae growth and survival across several studies (see Table S2 at https://github
.com/alyamahmoud/coinfection_modeling/blob/master/supplementary_material/
supplementary_tables.xlsx), our coculture model predicted 47 genes to be critical for V.
cholerae growth even when a more metabolically versatile enteropathogen like ETEC is
added to the culture irrespective of the variation in species composition (see Materials
and Methods and see also Table S2 at https://github.com/alyamahmoud/coinfection
_modeling/blob/master/supplementary_material/supplementary_tables.xlsx for de-
tails). This set of 47 genes (Fig. 6, red) represents potential drug targets that are
predicted to be effective in killing V. cholerae whether it is the sole cause of diarrhea or
as part of a polymicrobial infection. Most of these enzymes were involved in cofactor
biosynthesis (e.g., coenzyme A [CoA], tetrahydrofolate, flavin adenine dinucleotide
[FAD], pyridoxone-5-phosphate, pantothenate, and iron-sulfur cluster) and isoprenoid
and porphyrin metabolism as well as pyrimidine metabolism (Fig. 6). Inhibitors of
several of those enzymes have already been reported to have a bactericidal effect (57)
in V. cholerae as well as in other enteric and nonenteric pathogens (see Table S2 at
https://github.com/alyamahmoud/coinfection_modeling/blob/master/supplementary
_material/supplementary_tables.xlsx). For instance, phosphopantetheine adenylyl-
transferase and thymidylate synthase have been already reported as drug targets (57)
in V. cholerae and ETEC E616. N-Acetylglucosamine transferase is a promising drug
target for Salmonella enterica while dephospho-CoA kinase has been shown to be an
interesting drug target in ETEC E616 and Shigella flexneri (57). Interestingly, 12 V.
cholerae genes were also predicted to totally lose their essentiality in dual infections
with ETEC. Some of those were involved in de novo purine metabolism (VC1126: purB,
VC2602: purA) and carbohydrate degradation (VC0477: pgk, VC0478: fbaA), implying
that V. cholerae is probably depending on ETEC to salvage these nutrients.

ATP synthase subunits were essential for V. cholerae growth in single cultures as
predicted by iAM-Vc960. Deletion of any of the 7 genes of the F0/F1 ATP synthase locus
in the coculture model resulted in a species-composition-dependent reduction in
reduced optimal growth (see Table S2 at https://github.com/alyamahmoud/coinfection
_modeling/blob/master/supplementary_material/supplementary_tables.xlsx). In mod-
els simulating high V. cholerae abundance relative to ETEC, ATP synthase subunits were
essential for optimal coculture growth. In contrast, models simulating higher ETEC
abundance relative to V. cholerae were less affected when ATP synthase subunits were
deleted. F0/F1 ATP synthase genes have been shown to be essential in a variety of
bacteria (40, 69–72) and have been recently reported as essential in V. cholerae (40). In
E. coli, however, ATP synthase is not essential (40, 73, 74). Thus, drug inhibitors (acting
on ATP synthase subunits) that would normally kill V. cholerae in single infections would
have decreased efficacy in cases of dual infections with E. coli. This suggests that
comparison of essential genes between organisms can uncover distinct ecological and
physiological requirements for each species (40) and should inspire future experiments
to validate our computational predictions. Similarly, sodium-dependent NADH dehy-
drogenase (Na�-NQR), a key component of the respiratory chain of diverse bacterial
species, including pathogenic bacteria, and succinate dehydrogenase subunits were
also predicted to lose essentiality for V. cholerae growth when cocultured with E. coli.
Taken together, our in silico predictions of variations in essentiality between single-
culture and coculture settings highlight the importance of considering both scenarios
when prioritizing druggable targets for downstream validation.
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DISCUSSION

Using integrated metabolic modeling, in vitro culturing and transcriptomics, we
investigated the growth phenotypes and single gene essentiality variations of a rep-
resentative human pathogen, V. cholerae, when implicated in single infections or
coinfections. We found that V. cholerae growth is enhanced in coinfection scenarios
with ETEC. Our modeling procedures explained this increase in V. cholerae growth by
an expansion in its metabolic capabilities through cross-fed metabolites enabled by
ETEC, reproducing observed behavior in patients with dual infections by the two
enteric pathogens. We further predicted a core set of essential genes that are critical for
V. cholerae growth whether it is implicated in single or dual infections with ETEC.

Our modeling approach allowed us to chart possible metabolites that can be cross-
fed to V. cholerae through ETEC (see Table S5 at https://github.com/alyamahmoud/
coinfection_modeling/blob/master/supplementary_material/supplementary_tables
.xlsx). Cross-feeding, in which one species produces metabolites consumed by another, has
been shown more than often to be adopted by coexisting species across diverse environ-
ments (17, 18, 53, 75). Questions like whether the release of cross-fed metabolites or
by-products would enhance or enable the growth of other species or whether it will be
costless or associated with reduced fitness of the producer are not usually clear. Such
questions become of even greater importance when it comes to pathogens since this will
have direct impact on the dosage and spectrum of antibiotics used. Our integrative
approach provides insights into how to arrive at primary answers to similar questions that
should direct future experimental work.

A large fraction of the V. cholerae essential genome (36%) (see supplementary text at
https://github.com/alyamahmoud/coinfection_modeling/blob/master/supplementary
_material/supplementary_text.docx for details) consists of metabolic functions span-
ning several processes including cell wall biosynthesis, lipid metabolism, and cofactor
biosynthesis (76–78). Most essential genes for V. cholerae growth whether it was
causing single or coinfections were also involved in cofactor biosynthesis. Interestingly,
cofactor-use-efficient pathways were often favored by organisms that depend on
simple carbon sources under anaerobic conditions (79) resembling growth conditions
in the intestine (50, 80), where V. cholerae and ETEC establish their infection. The
application of this work is of immediate relevance for the choice of antibiotics used in
cases of single or polymicrobial infections. Strategies that depend on an increase in
dosage of one drug or combining drugs of known efficacy against individual species
might not necessarily work when two or more pathogens are operating together. Our
findings indicate that the essential transcriptome of V. cholerae is distinct during
coinfection compared to single infection and highlight the importance of studying
pathogen gene essentiality in polymicrobial infections. While replacement fluids are the
main treatment line for V. cholerae infections, antibiotics are frequently used to lessen
the diarrheal purging, decrease the need for rehydration fluids, and shorten the
recovery time (23). For other human pathogens, however, antibiotics are the mainstay,
and we envision that our framework can be applied to other pathogens and their most
frequently reported coinfecting partners. We believe that such an integrative approach
could be routinely integrated as part of drug target development pipelines.

An integral part of constraint-based modeling relies on reconciling differences that
arise between modeling and experiments (10–12, 81). In our case, coinfection models’
simulations predicted an increase in V. cholerae growth rate coupled with almost no
impact on ETEC growth capabilities. This is in line with recent studies showing that
most organisms secrete a broad distribution of metabolically useful compounds
without cost under a variety of environmental conditions (53). However, our in vitro
coculture experiments revealed a significant decrease in ETEC growth rate leading
us to conclude, in light of existing literature (54), that the suppression in ETEC
growth is potentially mediated by nonmetabolic factors that are not captured by
our GEMs.

Although our approach is based on computational predictions and in vitro experi-
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ments which definitely do not fully recapitulate in vivo conditions, our growth pheno-
type, predicted by coculture models and in vitro cocultures, matched observed behav-
ior in patients presenting with diarrhea while being coinfected with both V. cholerae
and ETEC showing higher antibody titers against cholera toxin relative to patients
infected with V. cholerae only (31). Nevertheless, we realize that there are other
processes that are not accounted for even after integrating data from various sources
within the current approach. For instance, the fact that our metabolic model could not
predict the decrease in ETEC growth rate implies that this effect is probably mediated
by a nonmetabolic factor that is not captured by the metabolic models as such. Future
models, building upon the present reconstruction, can expand the modeling scope to
account for synthesis and secretion of V. cholerae virulence factors (6–9) in an attempt
to investigate how the metabolic network of V. cholerae impacts the synthesis of its
virulence factors. Coculture experiments create an artificial community in a controlled
environment and thus provide ideal conditions to test ecological concepts concerning
community stability and dynamics that cannot easily be measured in macroecological
complex systems (82). However, most parts of the human intestine are hypoxic, vary in
pH level (50, 80), and are inhabited by diverse sets of commensal microbes which are
not accounted for when solely depending on in vitro experiments. Current predictions
and experiments thus do not capture several of these factors including temperature, pH
changes, signaling, gene regulation, serotype differences, and coexisting commensal
microbes (which may account for the absence of the V. cholerae growth phenotype
when using solid agar or spent medium for coinfection modeling; see Fig. S5 and S6
and supplementary text at https://github.com/alyamahmoud/coinfection_modeling/
blob/master/supplementary_material/supplementary_text.docx for details).

Our study investigates a synthetic enteric pathogens community with a combina-
tion of in vitro single cultures and cocultures, mechanistic modeling, and gene expres-
sion analysis. Constraint-based modeling approaches, which can take emergent me-
tabolism into account (34), require high-quality metabolic reconstructions for each
community member, which take months of curation effort to obtain (83). However, the
modular nature of the modeling approach followed here implies that such approaches
can be scaled up to simulate polymicrobial infections as well as coexisting commensal
microbes to further prioritize druggable targets that would be effective under an even
broader range of infection conditions and complex ecosystems. Collectively, this work
illustrates the importance of harnessing the power of integrative predictive modeling
coupled with coculture experiments to recognize potential amplification in a patho-
gen’s growth capabilities a priori which could contribute to downstream therapeutic
and management options.

MATERIALS AND METHODS
The methods employed for the reconstruction, simulation, and analyses presented in this work are

briefly summarized below, with further details regarding the procedures, protocols, calculations, and
quality control measures provided in the supplementary material on GitHub. All supplementary tables
are available as part of a GitHub repository at https://github.com/alyamahmoud/coinfection_modeling.

Growth assays and CFU measurements. Bacterial strains were grown in M9 (Sigma-Aldrich)
minimal medium supplemented with 0.5% glucose, 1 mM magnesium sulfate, and 0.1 mM calcium
chloride, unless otherwise specified. V. cholerae V52 (O37 serogroup) and the enterotoxigenic Escherichia
coli strains (ETEC E616 and ETEC E36) were a kind gift from Sun Nyunt Wai, Umeå University, Sweden. V.
cholerae and ETEC were grown either individually (monocultures of V52, E616, and E36) or in combination
(cocultures of V52/E616 and V52/E36) at 37°C at 200 rpm. Cocultures were started with equal concen-
trations of each strain. The absorbance (optical density at 600 nm [OD600]) was measured every 1 h over
a period of 7 h for the growth curve measurements. Simultaneously, at every hour, an aliquot was taken
from each culture flask and serially diluted and 5 �l was spotted (three technical replicates) on agar
plates containing appropriate antibiotics (100 �g/ml of rifampin or 15 �g/ml of tetracycline). V52
monocultures were spotted on rifampin plates whereas ETEC E616 and E36 monocultures were spotted
on tetracycline plates. Following, all cocultures were spotted on both sets of antibiotic plates to
distinguish between the individual strains during cocultures. All plates were incubated for a period of 12
to 16 h at 37°C after which the colonies were counted and the CFU/ml value was calculated.

DNA extraction, sequencing, and genome assembly. Genomic DNA and plasmids (in the case of
ETEC) were extracted from bacterial cells for the purpose of whole-genome sequencing. V. cholerae and
ETEC cells (monocultures) were inoculated in rich LB (Sigma-Aldrich) medium and grown at 37°C at
200 rpm until stationary phase. Subsequently, cells were harvested and lysed and the genomic DNA was
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extracted using the DNeasy blood and tissue kit (Qiagen), according to manufacturer’s instructions.
Plasmid DNA from both the ETEC strains was additionally isolated using the Gene Jet plasmid miniprep
kit (Thermo Scientific) by following the manufacturer’s instructions.

Genome sequences were assembled using SPAdes (84) for V. cholerae V52 and SPAdes and plasmid-
SPAdes (85) for ETEC E616 and ETEC E36. PATRIC (57) and eggNOG mapper (86) were used for genome
annotation.

Reconstruction of V. cholerae GEM iAM-Vc960. A list of metabolic pathways in V. cholerae V52 was
built based on the genome annotation generated in this study as well as those available in PATRIC and
that of V. cholerae O1 N16961 (see Table S1 at https://github.com/alyamahmoud/coinfection_modeling/
blob/master/supplementary_material/supplementary_tables.xlsx). The reconstruction was converted
into a model, and the stoichiometric matrix was constructed with mass- and charge-balanced reactions
in the standard fashion using the COBRA toolbox v.3.0 (33). Flux balance analysis was used to assess
network characteristics and perform simulations (34). We used iJO1366 (35) as a starting point for
reconstruction efforts; it is a common practice to use the closest available species as a starting template
(13, 14) while keeping only reactions for which evidence exists of their presence in the V. cholerae
genome and/or transcriptome (see Table S1 at https://github.com/alyamahmoud/coinfection_modeling/
blob/master/supplementary_material/supplementary_tables.xlsx). We also built an objective biomass
function based on iJO1366 and V. vulnificus (7) previously reconstructed GEMs. Additional reaction
content was added from KEGG and BIOCYC databases. All reactions added were manually curated
according to a published protocol (83). iAM-Vc960 was assessed for mass balance (83). Metabolites
charges and formulae were obtained from BiGG (87) and updated in iAM-Vc960 to mass-balance the
respective reactions. All reconstruction, refinement, validation, and simulations using all models in this
study were done using the COBRA toolbox (33) (v3.0.) and Matlab-R2016b. Please refer to section
“Refinement of iAM-Vc960” in the supplementary text at https://github.com/alyamahmoud/coinfection
_modeling/blob/master/supplementary_material/supplementary_text.docx for more details on the cu-
ration steps of iAM-Vc960.

Validation of iAM-Vc960 single gene deletion essentiality predictions. We downloaded gene
essentiality data for V. cholerae O1 strain C6706 from the Online GEne Essentiality (OGEE) database (4, 5).
In total, 3,886 genes (total number of ORFs identified in V. cholerae) were tested for essentiality. Four
hundred fifty-eight genes were essential, 148 were essential for fitness, 3,144 were nonessential, and 136
were unknown. Out of the 458 essential genes, 145 were metabolic genes and were already in
iAM-Vc960. iAM-Vc960 predicted 94 of those to be essential while the remaining 51 were falsely
predicted by the model as nonessential. For the nonessential genes, 758 of those were already in
iAM-Vc960. The model could predict 693 as nonessential while 65 were falsely predicted by the model
as essential. The overall accuracy of the model-predicted single gene essentiality was 87% (Fig. 2B). This
discrepancy between the model predictions and the high-confidence set that we used earlier, and
assuming a low experimental error rate, indicates that the reconstructed V. cholerae reactome is
incomplete and that there is further room for improvement and refinement of the iAM-Vc960, repre-
senting opportunities for new biological discoveries.

Metabolic modeling of coinfection of V. cholerae and ETEC. To simulate coinfection, individual
species models were combined into a community model where each species would interact with a
common external metabolic environment through their metabolite exchange reactions (55, 56). This
allowed each species to access the pool of medium/infection site metabolites as well as metabolites that
were released/taken up by the other pathogen. Each species could secrete/take up only those metab-
olites for which an exchange reaction (e.g., via transporters or free diffusion) exists in the model. The
widely employed FBA objective of biomass maximization (34) was replaced with the maximization of a
weighted sum of the biomass production fluxes for the community members (88), i.e., the objective
function was set to maximize the biomass function of each pathogen, simulating growth at 1:1 species
composition/abundance. Flux balance analysis (FBA) was performed using open CORBA in Matlab 2016b
and the Gurobi solver v7.0. Please refer to section “Quality control of the coculture model iCo-
Culture2993” in the supplementary text at https://github.com/alyamahmoud/coinfection_modeling/
blob/master/supplementary_material/supplementary_text.docx for more details on the curation of the
coculture model.

Catabolic capabilities of V. cholerae, ETEC, and coinfection GEMs. Growth under 656 different
growth-supporting conditions was simulated for iAM-Vc960, iETEC1333, and iCo-Culture and then
compared to identical simulation conditions for 55 GEMs of E. coli and Shigella (13). Table S4 at
https://github.com/alyamahmoud/coinfection_modeling/blob/master/supplementary_material/
supplementary_tables.xlsx details the simulation conditions for the alternative nutrient sources, and
Table S5 at https://github.com/alyamahmoud/coinfection_modeling/blob/master/supplementary
_material/supplementary_tables.xlsx shows all simulated growth conditions. Nutrient sources with
growth rates above 0.01 were classified as growth supporting, whereas nutrient sources with growth
rates less than 0.01 were classified as non-growth supporting. The binary results from the growth/no-
growth simulations were used to reconstruct the heatmap (Fig. 3C). Ward’s agglomerative clustering of
the matrix of correlations was used to cluster the species. The heatmap was visualized using the
pheatmap R package. The ternary plot (Fig. 4B) was visualized using the ggtern R package (89).

RNA extraction, sequencing, and data analysis. Sampling of cells for the purpose of RNA
extraction was performed as follows. Bacterial cells (monocultures and cocultures of V. cholerae and
ETEC) were grown to mid-logarithmic phase in shake flasks at 37°C at 200 rpm. In the case of the
cocultures, equal concentrations of individual monocultures were inoculated into the same medium
from the start. Once the appropriate growth phase was reached, the cells were harvested. RNA was
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extracted from the harvested cells using the RNeasy minikit (Qiagen), according to manufacturer’s
instructions. Experiments were carried out in triplicates. The RNA extracted was in the range of 200
to 100 ng/�l.

RNAseq reads from monocultures were directly aligned to the genome assembly of the correspond-
ing species. To check for reads cross-mapping, we first attempted to map V. cholerae reads against the
ETEC genome assembly and vice versa. In either case, the percentage of mapped reads was �2% (see
Fig. S4 at https://github.com/alyamahmoud/coinfection_modeling/blob/master/supplementary_material/
supplementary_text.docx), indicating minimal cross-mapping between the two species. Following, we
constructed an artificial genome assembly of both V. cholerae and ETEC combined, i.e., representing the
coculture as a single entity by merging the genome assemblies of the two species. PATRIC (57) was used
for annotation of the merged genome assembly. V. cholerae and ETEC reads from the coculture were
then each separately aligned against the merged genome assembly, and read counts were computed,
i.e., we sequenced and annotated the genome sequences from the single and dual cultures using the
same assembly and annotation pipeline to avoid differential gene calling. Although all strains used in this
study (V. cholerae V52 and ETEC E36 and E616) are clinical isolates that have been sequenced and
characterized before (59, 60), we have generated new assemblies and annotations mainly for the sake of
consistency for gene calling where we subjected the mono- and coculture transcriptomes to the same
processing and annotation pipelines. Bowtie2 (90) was used for all genome alignment. Read counts for
all genes were extracted with HTSeq-count (91) and normalized and analyzed using the R package
DESeq2 (92). In order to do differential expression analysis between the genome assemblies
generated from the monocultures and the cocultures, we aggregated genes by their FIGfam
identifiers (IDs) (93). Members of a FIGfam are believed to implement the same function, they are
believed to derive from a common ancestor, and they can be globally aligned. We wanted to see if
there are specific functions that will be significantly altered between the two culture conditions,
especially since the sequence identity between ETEC and V. cholerae is around 80% (40). FIGfam IDs
were aggregated by keeping the FIGfam ID with the maximum value of raw read counts across all
replicates from both the mono- and cocultures. The GOstats (94) R package was used for the GO
enrichment analysis, and the GOplot (95) R package was used for visualization of GO enrichment
results in Fig. 5. The details of the procedure for dual RNAseq data analysis are outlined in Fig. S4
and in the supplementary text at https://github.com/alyamahmoud/coinfection_modeling/blob/
master/supplementary_material/supplementary_text.docx, and code is shown at the GitHub reposi-
tory at https://github.com/alyamahmoud/coinfection_modeling.

Data availability. All data generated in this study are included in this published article. Models,
supplementary text, and supplementary tables as well as code to reproduce the main figures and key
analyses in this study are available as part of a GitHub repository at https://github.com/alyamahmoud/
coinfection_modeling.
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