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Abstract

Motivation: Despite of the lack of folded structure, intrinsically disordered regions (IDRs) of proteins play versatile
roles in various biological processes, and many nonsynonymous single nucleotide variants (nsSNVs) in IDRs are
associated with human diseases. The continuous accumulation of nsSNVs resulted from the wide application of
NGS has driven the development of disease-association prediction methods for decades. However, their perform-
ance on nsSNVs in IDRs remains inferior, possibly due to the domination of nsSNVs from structured regions in train-
ing data. Therefore, it is highly demanding to build a disease-association predictor specifically for nsSNVs in IDRs
with better performance.

Results: We present IDRMutPred, a machine learning-based tool specifically for predicting disease-associated germ-
line nsSNVs in IDRs. Based on 17 selected optimal features that are extracted from sequence alignments, protein
annotations, hydrophobicity indices and disorder scores, IDRMutPred was trained using three ensemble learning
algorithms on the training dataset containing only IDR nsSNVs. The evaluation on the two testing datasets shows
that all the three prediction models outperform 17 other popular general predictors significantly, achieving the ACC
between 0.856 and 0.868 and MCC between 0.713 and 0.737. IDRMutPred will prioritize disease-associated IDR germ-
line nsSNVs more reliably than general predictors.

Availability and implementation: The software is freely available at http://www.wdspdb.com/IDRMutPred.

Contact: yezq@pku.org.cn or ydwu@pku.edu.cn

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The paradigm of ‘sequence-structure-function’ states that the pro-
tein sequence will fold into well-defined domain structure, and the
folded structure will then fulfill specific function (Edsall, 1995).
This well-established dogma has been dominant in structural biol-
ogy and has led to great successes in revealing the structural basis of
numerous fundamental biological processes, including oxygen trans-
port of hemoglobin (Marengo-Rowe, 2006), protein translation of
ribosome machine (Schmeing and Ramakrishnan, 2009), enzymatic
catalysis and so on. It has also played a vital part in understanding
the disease mechanisms of genetic variants (Stefl et al., 2013), and in
structure-based drug discovery (Anderson, 2003). On the other
hand, a large fraction of protein segments, enriched with hydrophilic
and charged residues, lack stable structures (Babu et al., 2012; Lise
and Jones, 2004; Romero et al., 2001; Uversky et al., 2000). These

segments are named intrinsically disordered regions (IDRs), and a
large percentage of human proteins (35–44% due to different pre-
dictors and statistic methods) contain IDRs longer than 30 residues
(Pentony et al., 2010; Van Der Lee et al., 2014; Ward et al., 2004).
Previously regarded as ‘useless’, IDRs have been confirmed to have
versatile regulatory functions by acting as entropic chains, effectors,
scavengers, assemblers, chaperones and display sites (Tompa, 2002,
2005; Van Der Lee et al., 2014). Malfunctioning of IDRs is associ-
ated with a broad spectrum of human diseases, such as cancers
(Iakoucheva et al., 2002; Uversky et al., 2014), cardiovascular dis-
eases (Cheng et al., 2006), neurodegenerative diseases
(Raychaudhuri et al., 2009) and type 2 diabetes (Uversky et al.,
2008), and computational strategies for rational drug discovery that
targets IDR are also emerging (Ruan et al., 2019). Overall, it was
estimated that a substantial portion (�20%) of pathogenic nonsy-
nonymous single nucleotide variants (nsSNVs) are located in IDRs
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(Vacic et al., 2012). For example, variant R306C in MECP2 leads to
Rett syndrome (Vacic and Iakoucheva, 2012), a host of variants in
BRCA1 promote the development of breast cancer (Mark et al.,
2005) and the dileucine motif gain by variants in GLUT1 causes the
GLUT1 deficiency syndrome (Meyer et al., 2018). Hence, studies on
disease variants located at IDRs are as crucial as those in structured
domains.

Recent years have witnessed the unprecedented advances in
next-generation sequencing techniques, and their wide applications
in disease research such as whole exome sequencing have generated
a huge amount of variant data (Goodwin et al., 2016). Since the
identified variants contain both disease-associated and non-disease
(neutral) ones, the major challenge is to discriminate them in a high
throughput manner (Cooper and Shendure, 2011). While the experi-
mental approaches are labor intensive and time consuming, a multi-
tude of computational predictors have been developed, whose
results can largely narrow down the variants pool for further experi-
mental validation (Niroula and Vihinen, 2016).

Significant progress has been made in developing tools to predict
disease-associated nsSNVs (Riera et al., 2014). Most of them are
trained on variants from diverse protein families, and are thus
general-purpose predictors. Among them, conservation and struc-
tural stability features have been used most widely (Riera et al.,
2014). However, the broadly distributed IDRs have neither ordered
structures, nor are they as conserved as ordered regions (ORs)
(Brown et al., 2011), raising the concern that the disease-association
prediction of variants in IDRs using general tools is supposed to be
inferior. In fact, previous research observed that general predictors
like SIFT encountered more misclassification on disease-associated
nsSNVs in IDRs (Mort et al., 2010). Several studies have reported
that the amount, the distribution and other characteristics of IDR
variants (Uversky et al., 2008, 2014; Vacic et al., 2012), but there is
currently no disease-association predictors for them. Considering
the indispensable roles played by IDRs in function regulation and
pathogenesis, and that the widely used sequencing technologies are
continuing to generate a huge amount of variants in IDRs, it is high-
ly desirable to build a disease-association predictor specifically for
IDR variants.

In this work, we have developed a machine learning-based dis-
ease-association predictor specifically for germline nsSNVs in IDRs
(Fig. 1). First, a training and two testing datasets containing germ-
line variants from IDRs was curated. Second, we extracted 175 fea-
tures, and selected 17 optimal ones through feature selection. Third,
three tree-based ensemble machine learning algorithms were
adopted to train prediction models, and the comparison with other
general prediction tools was conducted. Finally, a standalone pack-
age and its web server, namely IDRMutPred, was developed.

2 Materials and methods

The overall pipeline of our work is illustrated in Figure 1, and is
described as follows.

2.1 Datasets curation
Human protein sequences were derived from UniProt/Swiss-Prot
database (Release 2019_01 of January 16, 2019) (The UniProt
Consortium, 2019), and the germline nsSNVs were parsed accord-
ingly from the file ‘humsavar.txt’ from the UniProt FTP server. The
nsSNVs labeled with ‘Disease’ and ‘Polymorphism’, representing
variants reported to be implicated in disease or not, were regarded
as positive and negative samples, respectively.

We regarded that a residue is located in IDR if it was experimen-
tally annotated in DisProt (Release 7) database (Piovesan et al.,
2017) or could be predicted as disordered by SPOT-Disorder
(Hanson et al., 2016). By screening out the nsSNVs located outside
IDRs, we obtained the IDR nsSNV dataset. Random sampling was
utilized to build a balanced dataset. About one-tenth of the dataset
was kept for independent testing, while the remaining served as the
training dataset for feature selection and model training. Another
third-party dataset for further evaluation was based on ToolScores
datasets (Grimm et al., 2015) from VariBench (Nair and Vihinen,
2013). After aggregating its five member datasets, we deleted the
nsSNVs with conflicting class labels, kept only one occurrence for
duplicates with consistent class labels, and retained the IDR
nsSNVs. The third-party dataset was then constructed by removing
those that have occurred in the training set and selecting equal num-
ber of positive and negative samples.

2.2 Feature extraction
A total of 175 features were calculated for each of the IDR nsSNVs
(Supplementary Table S1), and were subjected to further feature se-
lection. These features can be categorized into 5 groups, including 2
substitution matrix scores, 152 sequence alignment features, 6
amino acid hydrophobicity scores, 9 protein-/gene-level annotations
and 6 disorder scores, all feature values in the training data were
standardized (Supplementary Methods). Feature values in the inde-
pendent testing and the third-party dataset were transformed ac-
cordingly with the parameters derived during the standardization of
training data.

2.3 Feature selection
Feature selection is a necessary part in machine learning because the
initial feature set often contain unnecessary, irrelevant and redun-
dant features, which may slow down the training procedure or intro-
duce over-fitting (Drotar et al., 2015). In this work, we implemented
a feature selection strategy by combining forward selection and
backward elimination, which wrapped a machine learning algo-
rithm as the backend engine for evaluating the goodness of the fea-
ture subsets (Supplementary Methods and Supplementary Fig. S1).

2.4 Prediction model training
We attempted three tree-based machine learning algorithms, includ-
ing random forest (RF) (Breiman, 2001), extreme gradient boosting
(XGBoost) (Chen and Guestrin, 2016) and light gradient boosting
machine (LightGBM) (Ke et al., 2017). RF is a classic machine learn-
ing framework by constructing a multitude of decision trees in paral-
lel, while XGBoost and LightGBM are two more modern ones by
constructing gradient boosting trees. Remarkably, LightGBM has
faster training speed and lower memory usage (Ke et al., 2017).

For each algorithm, we randomly tried a series of hyperpara-
meter combinations (random search), and we chose the one with the
best AUC in the G10FCV (described in Section 2.5). After obtaining
the best hyperparameter combination, we trained the final predic-
tion models using all the training data accordingly. The feature im-
portance was outputted to compare the relative contributions
between different features, and Mann–Whitney U test was per-
formed when comparing each feature between disease and neutral
nsSNVs. The python packages including scikit-learn v0.20.1

Fig. 1. The pipeline of building the IDR disease nsSNV predictor. DVs and NVs rep-

resent disease-associated and neutral nsSNVs, respectively
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(Pedregosa et al., 2011), xgboost v0.82 and lightgbm v2.2.1 were
adopted in our work.

2.5 Cross-validation and performance evaluation
Tenfold cross-validation was utilized for finding the best hyperpara-
meter combination. In the separation of data into 10 parts, we
required that nsSNVs from the same protein would not be split into
different data parts, i.e. the nsSNVs were split at the protein level.
Technically, we implemented this process using the Python module
GroupKFold in scikit-learn package (Pedregosa et al., 2011), and it
was referred to as grouped 10-fold cross-validation (G10FCV).
Given a hyperparameter combination, the average performance
obtained by G10FCV was adopted to measure the goodness of this
hyperparameter combination. By trying various combinations of
hyperparameters, one can select the optimal one.

We adopted four comprehensive performance metrics, including
accuracy (ACC), Matthew’s Correlation Coefficient (MCC), F1
score and area under the receiver operating characteristic curve
(AUC). The detailed definitions are provided in Supplementary
Methods.

Using the testing datasets, we compared the performance of our
models with 17 popular general predictors, including SIFT (Ng and
Henikoff, 2001), PolyPhen2 (Adzhubei et al., 2010), PhD-SNP
(Capriotti et al., 2006), MutationAssessor (Reva et al., 2011),
FATHMM (Shihab et al., 2013), PON-P2 (Niroula et al., 2015),
PROVEAN (Choi and Chan, 2015), PANTHER-PSEP (Tang and
Thomas, 2016a), Eigen (Ionita-Laza et al., 2016), REVEL (Ioannidis
et al., 2016), PMut2017 (Lopez-Ferrando et al., 2017), MutPred2
(Pejaver et al., 2017), CADD (Rentzsch et al., 2019), LIST (Malhis
et al., 2019), MetaSVM (Dong et al., 2015), MetaLR (Dong et al.,
2015) and M-CAP (Jagadeesh et al., 2016). Among them, two ver-
sions of PolyPhen2 (pph2-HumDiv and pph2-HumVar) and
FATHMM (weighted fathmm-W and unweighted fathmm-U) were
both adopted in the comparison. The prediction results of
PolyPhen2, MutationAssessor, PON-P2, PMut2017 and LIST were
obtained using their web servers, and those of Eigen, REVEL,
CADD, metaSVM/metaLR and M-CAP were downloaded from
dbNSFP v3.5a (Liu et al., 2016). The prediction results of all other
predictors were obtained by running their standalone programs with
default settings locally.

2.6 Implementation of the predictor
To ease the application of our models, we implemented a standalone
package to automate the whole process. Based on Python 3.6.6, a
set of modules were implemented to calculate all necessary features.
By feeding them into the trained models, this package can make pre-
dictions in high throughput.

A web server was built to further facilitate the researchers with-
out bioinformatics skills. The Django (v2.1.0) (https://www.django
project.com/) and Bootstrap library (v3.3.7) (https://getbootstrap.
com/) were utilized to construct the web framework, MySQL
(https://www.mysql.com/) database management system was
adopted to temporarily store the prediction results and to manage
the submitted job queue, and Apache httpd (https://httpd.apache.
org) was chosen to provide the web services.

3 Results

3.1 Construction of the training and testing datasets
In total, 29 544 disease and 39 801 neutral nsSNVs located in
12 518 human proteins were derived from humsavar.txt provided
by UniProt/Swiss-Prot (The UniProt Consortium, 2019), and 78 732
IDRs were obtained. The integration of nsSNV and IDR resulted in
2793 disease-associated and 12 980 neutral nsSNVs located in IDRs
from 6337 proteins (Fig. 1).

A total of 2793 neutral nsSNVs were randomly sampled and
were combined with the 2793 disease nsSNVs to build a balanced
dataset. From it, 297 disease nsSNVs and 262 neutral nsSNVs (�1/
10 of the balanced dataset) were randomly chosen for independent

testing, while the remaining were kept for training (Table 1). We
required that all nsSNVs from the same protein were either in the
testing set or in the training set.

The ToolScores datasets from VariBench database contain 4597
disease-associated and 11 328 neutral nsSNVs in IDRs (Grimm
et al., 2015; Nair and Vihinen, 2013). After removing nsSNVs that
have occurred in the training dataset, we randomly sampled 2897
neutral nsSNVs to combine with the 2897 disease-associated ones,
serving as a third-party testing dataset for further evaluation
(Table 1).

3.2 Optimal feature subset
Our feature selection strategy is involved with a huge number of
training iterations on various feature combinations, so the computa-
tional cost is demanding. Due to its speediness, we adopted
LightGBM (Ke et al., 2017) as the backend engine of feature selec-
tion. The procedure of feature selection on all of the 175 candidates
resulted in an optimal feature subset with 17 features, including 9
sequence alignment features, 4 protein-/gene-level annotations, 3
hydrophobicity features and 1 disorder feature (Table 2). The
detailed feature definitions are provided in Supplementary Methods.
In the alignment features, four of them are related to the frequencies
of wild-type and mutant residues (#2, #3, #6, #7 in Table 2) in the
forms of proportion or number of wild-type or mutant residues, or
position weight matrix score; three directly describe the conserva-
tion of the nsSNV site in terms of relative entropy (#4, #8, #9); two
represent the quality of the alignment (#1, #5). The selected gene-/
protein-level features measure the variation tolerance (#12, #13), es-
sentiality (#14) and recessive disease-association probability (#11)
of the gene that bears the nsSNV. Other selected features measure
the hydrophobicity of the microenvironment around the nsSNV site
(#15, #17), the hydrophobicity difference between wild-type and
mutant residues (#16), and the disorder level at the nsSNV site
(#10).

3.3 Prediction model training and evaluation
Based on G10FCV on the training dataset with the optimal features,
we determined the best hyperparameter combination from 1000
randomly generated ones using RF, XGBoost and LightGBM, re-
spectively. The best hyperparameters and the performance metrics
of cross-validation are listed in Supplementary Tables S2 and S3.
Using these best hyperparameters accordingly, the model parameters
of the three prediction models were trained on the whole training
dataset. Notably, our cross-validation is based on splitting nsSNVs
at the protein level, which has avoided the so-called type 2 circular-
ity (Grimm et al., 2015). This strategy will decrease the risk of over-
ly fitting the prediction models to protein-/gene-level features.

Using the independent testing dataset, we directly compared the
performance of our models with 14 of the 17 general-purpose pre-
dictors (Table 3 and Supplementary Fig. S2). The comparison shows
that our models rank on the top tier for all of the four-performance
metrics. In detail, our best ACC (0.868), MCC (0.737), F1 score
(0.872) and AUC (0.934) have improved 3.3, 4.1, 1.2 and 0.5 per-
centage point, respectively, when compared to the best one in the
other 13 predictors. The most significant improvement comes from
MCC, a robust performance metric that balances positive and nega-
tive predictions.

We are curious about whether the homologous relationship be-
tween proteins from the testing set and those from the training set
have conferred overly optimistic performance. Hence, we removed
the testing data whose proteins are homologous to those in the train-
ing set using the cd-hit webserver (Huang et al., 2020,b) with 30%
as cutoff. The datasets and the performance comparison before and
after removing homologs (Supplementary Tables S4 and S5) demon-
strate that the performance of our predictors remain similar, indicat-
ing that these homologous sequences in the testing dataset do not
lead to overly optimistic results.

The third-party dataset contains 2897 disease and 2897 neutral
IDR nsSNVs, and the performance comparison on this dataset
shows similar results (Table 3 and Supplementary Fig. S3). In detail,
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the best ACC (0.858), MCC (0.718), F1 score (0.856) and AUC
(0.929) of our models have improved 1.6, 3.2, 2.1 and 2.1 percent-
age points, respectively, when compared to the best one in the other
13 predictors. The improvement of MCC is also the most significant
in this comparison.

It is worth noting that the independent testing dataset and the
third-party dataset have no overlap with our training set. However,
some of the testing nsSNVs may be in the training set of other pre-
dictors, which may not properly estimate their performance. For ex-
ample, PMut2017 and PON-P2 used humsavar (October 2016

Table 1. Summary of the training and testing datasets

Dataset Number of disease nsSNVs Number of neutral nsSNVs Number of IDRs Number of proteins

Training 2496 2531 2821 2390

Independent testing 297 262 313 262

Third-party testing 2897 2897 2914 2562

Table 2. The 17 selected optimal features

# Feature name Description

1 b9_eva_nal_w Weighted number of sequences in the alignment based on BLAST against UniRef90 with E-value of 10E-45

2 b9_all_rwt Proportion of wild-type residue at the nsSNV site in the alignment (UniRef90, E-value: default)

3 b9_eva_rmt_w Weighted proportion of mutant residue at the nsSNV site in the alignment (UniRef90, E-value: 10E-45)

4 b9_eva_ree Relative entropy based on the alignment (UniRef90, E-value: 10E-45)

5 b1_eva_naa_w Weighted number of residues at the nsSNV site in the alignment (UniRef100, E-value: 10E-75)

6 b1_hum_nmt_w Weighted number of mutant residues at the nsSNV site in the alignment (UniRef100 human, E-value: default)

7 b1_nhu_pwm_w Weighted position weight matrix score based on the alignment (UniRef100 non-human, E-value: default)

8 b1_hum_ree Relative entropy based on the alignment (UniRef100 human, E-value: default)

9 b1_nhu_ree Relative entropy based on the alignment (UniRef100 non-human, E-value: default)

10 pos_spo SPOT-Disorder score of the wild-type residue at the nsSNV site (Hanson et al., 2016)

11 pro_Prec Estimated probability that a gene is a recessive disease gene (MacArthur et al., 2012)

12 pro_RVIS_ExAC ExAC-based RVIS score (Petrovski et al., 2013)

13 pro_GDI_Phred Phred-scaled GDI score (Itan et al., 2015)

14 pro_Essential_gene Gene essentiality (Georgi et al., 2013)

15 hww_9 Sum of Wimley–White hydropathy index of neighboring residues with a window of 9 (Wimley and White, 1996)

16 hwo_d Difference of octanol–water free energy transfer index (Eisenberg and McLachlan, 1986)

17 hwo_3 Sum of octanol–water free energy transfer index of neighboring residues with a window of 3

Table 3 Performance comparison on the independent testing dataset and third-party testing dataset

Methoda Independent testing dataset Third-party dataset

ACC MCC F1 score AUC ACC MCC F1 score AUC

Predictors without protein-/gene-level features

SIFT 0.793 0.584 0.803 0.863 0.660 0.321 0.642 0.723

pph2-HumDiv 0.773 0.542 0.791 0.854 0.637 0.279 0.611 0.693

pph2-HumVar 0.782 0.572 0.781 0.872 0.666 0.353 0.604 0.745

PhD-SNP 0.816 0.664 0.799 –b 0.673 0.412 0.552 –b

MutationAssessor 0.773 0.559 0.770 0.856 0.663 0.341 0.614 0.755

fathmm-U 0.753 0.518 0.745 0.831 0.615 0.252 0.514 0.665

PROVEAN 0.785 0.590 0.774 0.862 0.636 0.310 0.522 0.675

PANTHER-PSEP 0.805 0.598 0.845 0.858 0.527 0.068 0.496 0.649

Eigen 0.801 0.556 0.707 0.840 0.671 0.357 0.610 0.735

PMut2017 0.834 0.696 0.826 0.924 0.772 0.365 0.452 0.765

MutPred2 0.812 0.657 0.795 0.906 0.634 0.344 0.466 0.761

LIST 0.736 0.495 0.790 0.904 0.703 0.437 0.749 0.809

Predictors containing protein-/gene-level features

fathmm-W 0.801 0.615 0.795 0.889 0.842 0.686 0.835 0.898

PON-P2 0.835 0.670 0.860 0.929 0.803 0.614 0.822 0.896

REVEL 0.825 0.637 0.701 0.915 0.744 0.555 0.662 0.908

CADD 0.725 0.448 0.672 0.787 0.675 0.352 0.658 0.729

RF-based model 0.857 0.716 0.861 0.927 0.858c 0.718c 0.853 0.926

XGBoost-based model 0.859 0.719 0.863 0.934c 0.856 0.713 0.854 0.929c

LightGBM-based model 0.868c 0.737c 0.872c 0.931 0.858c 0.718c 0.856c 0.929c

aBoth PolyPhen2 and fathmm have two versions, so this table contains 16 lines for the 14 general-purpose predictors.
bNo AUC was calculated for PhD-SNP due to lack of continuous prediction scores.
cThe best value in each column is underlined.
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release) and VariBench for training, respectively (Lopez-Ferrando
et al., 2017; Niroula et al., 2015). Therefore, the above comparisons
may have underestimated the improved magnitude of our models.
When a testing dataset having no overlap with any of the training
datasets of all compared predictors is available, the improvement
would hopefully be larger.

Moreover, when comparing the performance of each predictor
between the independent testing and the third-party dataset, our
predictors are stable, while many others manifest large variance. All
of these comparisons demonstrate that our IDR-specific models are
robustly better in prioritizing pathogenic IDR nsSNVs from neutral
ones than general predictors.

As for the other three of the 17 general-purpose predictors, i.e.
MetaSVM, MetaLR and M-CAP, our models also showed superior
performance on the two testing datasets (Supplementary Table S6),
with the only exception that the F1 score of M-CAP is slightly bet-
ter. Because MetaSVM and MetaLR directly used allele frequency
(AF) as a feature, and M-CAP adopted the prediction scores of
MetaSVM/MetaLR as their features, we also supplemented ExAC-
based AF to our optimal feature subset to re-train our models for the
fair comparison with them.

Another concern is how our models will perform on nsSNVs
whose proteins contain both disease and neutral nsSNVs. To inspect
this, from ToolScores datasets (Grimm et al., 2015) we removed
nsSNVs that have occurred in the training data, and then selected
proteins that contain both disease and neutral variants. After this fil-
tering, we obtained a dataset with 2475 disease-associated and 873
neutral IDR nsSNVs from 321 proteins, and conducted an addition-
al evaluation (Supplementary Table S7). Although the ACC and
MCC have decreased, they are still high (though not ideal) with
MCC greater than 0.61 and ACC greater than 0.84. Moreover, the
performance of our models remains on the top tier, with other pre-
dictors dropping more. These results also demonstrated that predict-
ing the disease-association of nsSNVs whose proteins have both
disease and neutral variants are more challenging.

3.4 Feature analysis
To investigate relative contribution of the features in the optimal
feature subset, we plotted the feature importance of each feature for
the three models (Fig. 2 and Supplementary Fig. S4). Although dif-
ferent models have no identical rank of relative feature importance,
they provide some consensus insights: several alignment and gene-/
protein-level features contribute more than others. The distributions
of the standardized Z-scores of each feature in the disease and neu-
tral group are shown in Supplementary Figure S5. We inspect several
representative features in detail here.

Conservation features are one group of the most distinguishable
features for predicting disease-associated nsSNVs (Niroula and
Vihinen, 2016). One may concern whether these features remain
powerful in predicting disease nsSNVs in IDRs, as they are of lower
sequence conservation (Brown et al., 2011; Tang and Thomas,
2016b). Our results show that several conservation features were
selected and ranked on top (Fig. 2 and Supplementary Fig. S4). To
inspect them further, we compared one of these features (the relative
entropy based on the alignment with homologous non-human pro-
teins in UniRef100, feature #9 in Table 2) between variants in IDRs
and in ORs. The conservation levels in IDRs are indeed lower than
in ORs (the lower the relative entropy, the higher the conservation
level according to our definition in Supplementary Methods), which
is consistent with previous knowledge (Fig. 3A). Even though, the
distributions of this feature are evidently distinguishable between
disease and neutral nsSNVs, either in ORs or in IDRs. In OR
nsSNVs, the feature medians of disease and neutral nsSNVs are 2.73
and 3.84, respectively (P-value: 0, Mann–Whitney U test); in IDR
nsSNVs, the medians are 2.85 and 4.56, accordingly (P-value: 0,
Mann–Whitney U test), showing even more evident separation in
IDR nsSNVs (Fig. 3A). Hence, it is reasonable that the conservation
or conservation-related features were selected.

Certain protein-/gene-level annotations can prioritize disease
genes and provide information for further prioritization of variants
(Itan et al., 2015). Our work has selected four protein-/gene-level
features, and all the three trained models ranked them within the
top 10 (Fig. 2 and Supplementary Fig. S4). This observation hints
that incorporation of gene-/protein-level features is beneficial in
training predictors for disease nsSNVs. One of them is the score esti-
mating the probability that a gene is a recessive disease gene (feature
#11 in Table 2). This score has been widely used to discriminate
Loss-of-Function tolerant genes (with low score) from recessive dis-
ease genes (with high score) (MacArthur et al., 2012). In our data-
set, the feature values in the disease group are significantly higher
than those in the neutral group (Fig. 3B), indicating that disease-
related nsSNVs tend to come from recessive disease genes. The
medians of disease and neutral nsSNVs are 0.417 and 0.121 in
IDRs, respectively (P-value: 1.01E-59, Mann–Whitney U test), while
in OR these values are 0.333 and 0.152, respectively (P-value:
1.70E-70, Mann–Whitney U test). Similar to the conservation, the
separation of this feature between disease and neutral nsSNVs in
IDRs is much larger than that in ORs, illustrating that it may have

Fig. 2. The feature importance based on RF. The importance is defined as the aver-

age gain of splits that use the feature in RF
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more potential in predicting disease nsSNVSs in IDRs than in ORs.
As protein-/gene-level features cannot differentiate nsSNVs from the
same protein, it is necessary to conduct cross-validation at the pro-
tein level in optimizing the hyperparameters of the prediction mod-
els (G10FCV in this work), and to perform additional evaluations
on the dataset derived from proteins containing both disease and
neutral variants (Supplementary Table S7).

Hydrophobicity and disorder-related features have been demon-
strated informative in developing general predictors (Adzhubei
et al., 2010; Huang et al., 2010a; Ye et al., 2007). In this work, sev-
eral selected features measure the sum of hydrophobicity propensity
of a short peptide segment centered with the nsSNV site, i.e. hydro-
phobicity microenvironment, or the hydrophobicity differences be-
tween substituted residues. The disorder score of the wild-type
residue at the nsSNV site has also been selected. Although their fea-
ture importance ranks are relatively low when compared to other
types of features (Fig. 2 and Supplementary Fig. S4), their distribu-
tions between disease and neutral nsSNVs are still informative
(Fig. 3C and D). For the hydrophobicity difference, the medians of
disease and neutral nsSNVs are 0.18 and 0.05 in IDRs, respectively
(P-value: 0.001, Mann–Whitney U test); In ORs, these two values
are 0.03 and 0.05 (P-value: 3.08E-7, Mann–Whitney U test). The
larger median of disease nsSNVs in IDRs may indicate that a larger
portion of disease nsSNV have been substituted from hydrophilic to
hydrophobic residues. Larger separation between disease and neu-
tral nsSNVs in IDRs than in ORs can be observed as well.

The disorder score and the DisProt annotation have been
adopted to separate the IDRs from ORs in dataset curation, so the
disorder scores of IDR nsSNVs are much larger than OR nsSNVs
(Fig. 3D). Moreover, the medians of disease and neutral nsSNVs are
0.852 and 0.906 in IDRs, respectively (P-value: 6.84E-14, Mann–
Whitney U test), while these values are 0.041 and 0.061 in ORs (P-
value: 0, Mann–Whitney U test). The difference of medians between
disease and neutral nsSNVs in IDRs is larger than that in ORs,
which may also indicate that disorder scores have more potential to
separate disease and neutral nsSNVs in IDRs than in ORs.

3.5 The standalone package and web server
Although the performance of the three models in our work is simi-
lar, we choose the LightGBM-based model as the default since it is
much faster. The RF-based and XGBoost-based models are also pro-
vided as the options. The standalone package and the web server of
our method, namely IDRMutPred, are freely available at http://
www.wdspdb.com/IDRMutPred. Anaconda was utilized to install
all necessary packages and to share the running environment
(https://www.anaconda.com/), so the users can install and configure
a local copy of IDRMutPred smoothly, which will be convenient for
high throughput runs. The versions of the related Python packages
are listed in Supplementary Table S8. In addition, a Docker image of
the standalone IDRMutPred is also freely available at the website.

IDRMutPred requires that the user should provide a protein se-
quence and a list of amino acid substitutions. The output contains
the prediction score in the range between 0 and 1, and the binary
classification is based on the default cutoff of 0.5. The users can fur-
ther prioritize the disease-associated nsSNVs by ranking the scores.

4 Discussion

The better performance of IDRMutPred may roughly stem from sev-
eral aspects. First, general predictors are ‘one-size-fits-all’ models
based on training data from heterogeneous protein families or pro-
tein segments (Riera et al., 2014; Vacic and Iakoucheva, 2012),
while IDRMutPred has been trained on pure IDR nsSNVs, which
are more homogeneous. It is reasonable to train better specific pre-
dictors on homogeneous datasets due to lower noise. Developing
specific predictors has been practiced in several studies like
KinMutRF, wKinMut-2, iFish and others (Fechter and Porollo,
2014; Izarzugaza et al., 2012; Pons et al., 2016; Vazquez et al.,
2016; Wang and Wei, 2016).

Second, homogeneous training data help to highlight informative
features accordingly (Torkamani and Schork, 2007). Intuitively, sev-
eral features in our work have shown more evident contrast between
disease and neutral nsSNVs in IDRs than in ORs, e.g. the relative en-
tropy (Fig. 3A). If we combine the IDR with OR nsSNVs, the con-
trast between disease and neutral nsSNVs will be smaller, i.e. less
informative. These features will contribute more in IDR nsSNVs
predictors than in general ones, and will be supposed to result in the
better performance of IDRMutPred.

In summary, our work presents the first IDR nsSNV-specific pre-
dictor, IDRMutPred, which will hopefully serve as a valuable tool in
the research community that focuses on the study of nsSNVs, espe-
cially those located in IDRs.
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