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Cyclic adenosine monophosphate (cAMP) is a crucial second messenger involved
in both pre- and postsynaptic plasticity in many neuronal types across species. In
the hippocampal mossy fiber (MF) synapse, cAMP mediates presynaptic long-term
potentiation and depression. The main cAMP-dependent signaling pathway linked to
MF synaptic plasticity acts via the activation of the protein kinase A (PKA) molecular
cascade. Accordingly, various downstream putative synaptic PKA target proteins have
been linked to cAMP-dependent MF synaptic plasticity, such as synapsin, rabphilin,
synaptotagmin-12, RIM1a, tomosyn, and P/Q-type calcium channels. Regulating the
expression of some of these proteins alters synaptic release probability and calcium
channel clustering, resulting in short- and long-term changes to synaptic efficacy.
However, despite decades of research, the exact molecular mechanisms by which
cAMP and PKA exert their influences in MF terminals remain largely unknown. Here,
we review current knowledge of different cAMP catalysts and potential downstream
PKA-dependent molecular cascades, in addition to non-canonical cAMP-dependent
but PKA-independent cascades, which might serve as alternative, compensatory or
competing pathways to the canonical PKA cascade. Since several other central
synapses share a similar form of presynaptic plasticity with the MF, a better description
of the molecular mechanisms governing MF plasticity could be key to understanding the
relationship between the transcriptional and computational levels across brain regions.

Keywords: cAMP, PKA, synaptic plasticity, mossy fiber synapse, LTP, forskolin-induced potentiation

CYCLIC ADENOSINE MONO-PHOSPHATE-AND PROTEIN
KINASE A -DEPENDENT MECHANISMS OF SYNAPTIC
PLASTICITY

The molecular mechanisms of synaptic transmission have been intensely studied in recent decades,
resulting in the functional characterization of many synaptic proteins involved in vesicle docking,
priming, fusion and recycling. These includes the SNARE proteins, synaptotagmin, regulatory
proteins, such as RAB3a, Munc13, Munc18, tomosyn, and active zone proteins, such as Piccolo,
Bassoon and RIM1a, as well as several structural and endocytotic proteins (Dresbach et al., 2001;
Südhof, 2013; Rizo, 2018; Chanaday et al., 2019). In many cases, the order of interactions involving
these proteins, as well as their roles at different stages of the synaptic vesicle cycle, have been
extensively described (Brunger et al., 2019). However, the exact contribution of these proteins to
synaptic plasticity is still poorly understood. Several second messengers, such as calcium (Ca2+) and
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cyclic adenosine mono-phosphate (cAMP), are known to
produce short- and long-term changes in vesicle release
probability (Pr), the number of release sites, and the clustering
of calcium channels at the presynaptic terminal. However,
whereas the role of Ca2+ in regulating both pre- and
postsynaptic processes has been described in detail (Zucker, 1999;
Schneggenburger and Neher, 2005; Lisman et al., 2007; Kavalali,
2020) the identities of cAMP downstream effectors, especially in
the presynaptic terminal, are still largely unknown.

cAMP is a ubiquitous second-messenger found in the three
domains of life, namely Eukarya, Bacteria and Archaea (Gehring,
2010; Kalia et al., 2013). A direct link between cAMP, synaptic
transmission and potentiation was first demonstrated in a
seminal work showing that exposing sensory neurons of the
sea mollusk Aplysia to cAMP molecules resulted in increased
neurotransmitter release, in turn affecting a short-term memory
process known as sensitization (Cedar et al., 1972; Klein and
Kandel, 1980; Schacher et al., 1988; Kandel et al., 2000). Later
studies extended the connection between cAMP and synaptic
plasticity to other model organisms, such as Drosophila (Davis
et al., 1998) and mice (Nguyen and Kandel, 1997; Wong et al.,
1999), where cAMP exposure was also shown to lead to an
increase in Pr (Ariel et al., 2013; Fukaya et al., 2021), vesicle
redistribution (Orlando et al., 2021) and changes in Ca2+ channel
clustering (Midorikawa and Sakaba, 2017).

Until recently, research into the molecular cascades activated
by cAMP focused on a single downstream effector—protein
kinase A (PKA) (Corbin and Krebs, 1969). PKA is a tetrameric
enzyme consisting of two regulatory and two catalytic subunits
(Bauman and Scott, 2002; Taylor et al., 2012). Binding of cAMP
to the PKA complex results in detachment of the regulatory
subunits from the catalytic subunits, thereby removing inhibition
from the latter (Turnham and Scott, 2016; Mucignat-Caretta and
Caretta, 2020). Subsequently, the catalytic subunits of PKA are
able to phosphorylate a myriad of protein targets, thus modifying
their functions (Waltereit and Weller, 2003; Kandel, 2012). In
Aplysia, injection of the PKA catalytic subunits yielded similar
effects to those observed following injection of cAMP alone
(Castellucci et al., 1980), leading to a prevailing consensus that
PKA is the principal, and perhaps sole downstream effector of
cAMP. In the mammalian brain, the hippocampal mossy fiber
(MF) synapse was found to be particularly prone to cAMP-
mediated regulation of neurotransmitter release, as will be
discussed in detail below.

THE MOSSY FIBERS PATHWAY, CYCLIC
ADENOSINE MONO-PHOSPHATE AND
PROTEIN KINASE A-DEPENDENT
PLASTICITY

The hippocampus is a central cortical structure in the
mammalian brain known to mediate key mnemonic and
cognitive functions. The hippocampus is classically divided
into three unidirectional pathways, collectively known as the
trisynaptic circuit. According to this notion of hippocampal

information flow, neuronal activity originating in the adjacent
entorhinal cortex (EC) is relayed via the perforant pathway
(PP), primarily to the hippocampal dentate gyrus (DG), where
it is processed and relayed to CA3 and CA2 pyramidal neurons
via the mossy fibers (MF) pathway. From these regions, which
are internally connected in an auto-associative network, the
information is delivered almost exclusively to CA1 pyramidal
neurons via Schaffer’s collaterals (SC), which finally redistribute
the processed signals across cortical and sub-cortical regions
(Figures 1A,B; Lieberman, 1965; Witter, 2007). The MF synapse,
corresponding to the second synapse in this circuit, is generally
considered to be an important locus for the formation, storage
and retrieval of contextual and episodic memories in mammals
(Lieberman, 1965; Neves et al., 2008; Lisman et al., 2017), through
a computational process termed “pattern separation” (Leutgeb
et al., 2007; Schmidt et al., 2012; Rolls, 2013).

The MF pathway is characterized by non-myelinated axons
that originate in dentate gyrus granule cells (DGCs) and travel
immediately above and below the CA3 Stratum Pyramidale
(S.P.), forming the Stratum Lucidum (S.L.). There, each axon
forms about a dozen enormous synapses (up to several
micrometers in diameter (Rollenhagen et al., 2007), termed
mossy fiber boutons (MFB), onto the large proximal dendritic
spines of CA3 neurons termed thorny excrescences (TEs)
(Amaral and Dent, 1981; Figures 1C,D). A single large MFB
contains 25 active zones on average and harbors some 16,000
synaptic vesicles, of which only about 600 are located within
60 nm from the AZ and are considered part of the readily
releasable pool of vesicles, while an additional 4,000 vesicles
are found at a short distance of 200 nm from the AZ and are
considered part of the recycling pool (Hallermann et al., 2003;
Rollenhagen et al., 2007). Though it has been speculated that
this organization might be essential for supporting the various
plasticity processes taking place at the MFB (Rollenhagen et al.,
2007), the reason for such extreme redundancy of synaptic
vesicles remains unclear.

In contrast to its prominent size, the MF synapse is
characterized by a very low basal Pr (Jonas et al., 1993) and
as a result, following a single action potential (AP) elicits weak
excitatory post-synaptic potentials (EPSPs) in CA3 neurons
(Lysetskiy et al., 2005). However, following a short train of
high-frequency APs, the accumulation of Ca2+ in the MF
synapse produces a dramatic increase in Pr, manifested as robust
short-term synaptic facilitation (Figures 1E,F). This facilitation,
together with the strategic location of the synapse in proximity
to the CA3 somata, and its multiple release sites, allow a single
MF synapse to elicit APs in its postsynaptic target following
a short train of APs (Henze et al., 2000; Evstratova and Tóth,
2014; Chamberland et al., 2018). This trait has led researchers
to describe the MF synapse as a “conditional detonator” or a
“high-pass filter,” due to the tendency of the synapse to selectively
propagate high-frequency activity patterns (Pelkey and McBain,
2005; Vyleta et al., 2016).

While other hippocampal synapses have been shown to
display primarily postsynaptic N-methyl-D-aspartate receptor
(NMDAR)-dependent long-term potentiation (LTP) (Bliss
and Collingridge, 2013), MF synapses are characterized by
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FIGURE 1 | Morphological and physiological properties of the hippocampal mossy fiber pathway. (A) Three-dimensional visualization of the anatomical location of
the dorsal hippocampus in mouse brain. (B) Schematic representation of hippocampal sub-regions, with emphasis on the input and output to and from the DG.
(C) Schematic representation of the unique anatomical and morphological structure of the MF-CA3 synapse. Insert: mossy fiber bouton (MFB, orange) and
postsynaptic thorny excrescence (TE, light green). (D) A representative confocal image of the hippocampus following injection of AAV-DIO-EF1a-tdTomato into the
DG of a Prox1-cre transgenic mouse (top). The images below show the MF tract at higher magnification (tdTomato, orange), following immunolabeling for VGluT1
(VGluT1, cyan), and demonstrate the size differences between the large MF terminals (white arrows) and the small S.R. terminals (magenta arrows). Scale bars
represent 200, 10 and 2 µm for the top, right column and left column images, respectively. (E,F) MF-CA3 short-term plasticity demonstrated by measurements of
paired-pulse (E) and a high-frequency burst (F) stimulation, delivered electrically to the DG while recording fEPSPs from the S.L. (G,H) MF-CA3 long-term plasticity
demonstrated by measurements of FSK- (G) and tetanus- (H) induced potentiation, with subsequent application of DCG-IV, blocking synaptic transmission. (I).
MF-CA3 long-term plasticity (LTD) following a prolonged low-frequency stimulation, with subsequent application of DCG-IV, blocking synaptic transmission. Images
in (A) were adapted from the Allen institute’s Brain Explorer 2 (http://mouse.brain-map.org/static/brainexplorer).

NMDAR-independent LTP (Zalutsky and Nicoll, 1990; Johnston
et al., 1992; Huang et al., 1994; Salin et al., 1996b; Castillo,
2012). Long-term potentiation in the MF synapse (MF-LTP,
Figure 1G) manifests as a long-term increase in the presynaptic
Pr and is mediated by cAMP, evident by the robust potentiation
observed also following application of the adenylyl cyclase
(AC) agonist forskolin (FSK, Figure 1H; Weisskopf et al.,
1994; Salin et al., 1996b; Villacres et al., 1998; Castillo, 2012).
Using pharmacological tools that control cAMP levels, it was
demonstrated that both cAMP and PKA are important for the
induction and maintenance of MF-LTP (Huang et al., 1994;
Weisskopf et al., 1994). These studies were followed by genetic

perturbation of PKA subunits (Huang et al., 1995) that provided
genetic evidence for the involvement of PKA in MF-LTP.

Like the MF-synapse, several other synapses in the
mammalian brain display NMDAR independent presynaptic
forms of LTP (Yang and Calakos, 2013). These include
corticothalamic (Castro-Alamancos and Calcagnotto, 1999),
thalamocortical (Andrade-Talavera et al., 2013), cortical
interneuron (Chen et al., 2009; Sarihi et al., 2012) and subiculo-
cortical synapses (Behr et al., 2009), as well as synapses of
cerebellar parallel fibers (Salin et al., 1996a; Chen and Regehr,
1997; Bender et al., 2009), and several different inputs to
the lateral amygdala (López de Armentia and Sah, 2007;
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Fourcaudot et al., 2008). However, due to vast morphological
and molecular differences between these synapses and the MF, it
remains to be determined exactly how similar are the molecular
mechanisms that underlie their presynaptic LTP.

In addition to MF-LTP, which is induced by a short train
of high-frequency activity, long-term depression in the MF
synapse (MF-LTD) can also be elicited, by applying a prolonged
(15 min) low-frequency stimulation (Figure 1I). Like MF-LTP,
MF-LTD is also NMDAR-independent, however, it is mediated by
a reduction in cAMP levels and is manifested as a decrease in Pr
(Tzounopoulos et al., 1998; Kobayashi, 2010). MF-LTD induction
can be blocked by the metabotropic glutamate receptor (mGluR)
antagonist MCPG (Fitzjohn et al., 1998) or mGluR2/3 KO (Lyon
et al., 2011). At the same time, application of the mGluR2/3
agonist DCG-IV completely blocks MF synaptic transmission
synapses (Figures 1G–I), while having little to no effect on
other hippocampal synapses (Yoshino et al., 1996; Kamiya and
Ozawa, 1999). Since mGluR2/3 inhibits cAMP synthesis, it can
be inferred that bidirectional changes in cAMP concentration
control Pr at the MF synapse and can lead to LTP or LTD,
depending on the direction of the change.

FSK is one of the main pharmacological tools for elevating
cAMP levels that leads to synaptic potentiation. However, FSK
affects both the presynaptic terminal and the postsynaptic cells,
in addition to astrocytes, and is, therefore, not specific for the
presynaptic terminal. New recently implemented tools, such
as photoactivated adenylyl cyclase bPAC from the bacteria
Beggiatoa (Stierl et al., 2011; Raffelberg et al., 2013) or
pharmacogenetic tools, like Designer Receptors Exclusively
Activated by Designer Drugs DREADDs (Roth, 2016; Campbell
and Marchant, 2018), now enable control of cAMP levels with
substantially better cellular, spatial and temporal precision than
possible using pharmacological agents, such as FSK. Recently,
photoactivation of a synaptically-translocated bPAC, termed
SynaptoPAC, selectively in MF synapses, enabled cAMP synthesis
with physiological kinetics and led to long-term changes in Pr,
mimicking the effects of tetanus-induced LTP (Kees et al., 2021;
Oldani et al., 2021). Such tools, together with new cAMP sensors
(Odaka et al., 2014; Harada et al., 2017; Ohta et al., 2018; Linghu
et al., 2020) will allow better understanding of the effects of cAMP
on synaptic physiology at MF synapses.

MF synapses are characterized by additional forms of plasticity
that should be briefly mentioned. Although MF-LTP is NMDA-
independent, there are indications that presynaptic NMDA
receptors support a different form of LTP in the MF synapse,
which is dependent on Protein Kinase C (PKC) (Kwon and
Castillo, 2008; Lituma et al., 2021). Furthermore, it should be
noted that in addition to the large presynaptic MF terminal
on pyramidal CA3 neurons, MF axons also innervate S.L.
interneurons (SLINs) by small en-passant varicosities, also
known as filopodial extensions (Acsády et al., 1998). These
synapses on interneurons contribute to feed-forward inhibition
and exhibit different forms of synaptic plasticity mediated
by mGluR7 in a process only partially mediated by cAMP
(Toth et al., 2000; Pelkey et al., 2008). MF-SLIN synapses
also undergo cAMP-dependent plasticity changes, albeit in
a unique way. These synapses reverse their polarity in an

activity-dependent manner, with the internalization of mGluR7s
serving as the switch between two states. In response to high
frequency stimulation, naïve-state MF-IN synapses undergo
cAMP-independent presynaptic LTD, whereas synapses that
have internalized mGluR7s (LTD, resulting from previous high-
frequency stimulation) undergo cAMP-dependent presynaptic
LTP (Pelkey et al., 2008). This mechanism might allow
initial bursts of APs to propagate uninhibited to CA3, yet
prevents subsequent bursts from generating runaway excitation
(Pelkey et al., 2008).

In addition, most previous research suggests that postsynaptic
depolarization is not necessary for MF synapse LTP induction,
although under certain conditions, such depolarization could
still exert influence over presynaptic physiology (Castillo et al.,
2012; Makani et al., 2021; Vandael et al., 2021). This implies
that synchronous activation of pre- and postsynaptic neurons is
not necessarily a prerequisite for this form of LTP, suggesting
that MF synapse LTP is not Hebbian in nature. Together, these
unique properties of the MF synapse are likely to support roles
served by the hippocampus, such as the suggested role of MFs
in spatial orientation through a mnemonic function known as
pattern separation (Yassa and Stark, 2011; Schmidt et al., 2012;
Rolls, 2013).

The ROLE OF Ca2+ AND ADENYLYL
CYCLASE 1 IN MOSSY FIBERS
PLASTICITY

As in most other synapses, vesicle release at the MF terminal
depends on Ca2+ influx through voltage-dependent calcium
channels (VGCC), such as the P/ Q-, N-, L-, and R-type calcium
channels (Li et al., 2007; Vyleta and Jonas, 2014; Shin et al.,
2018). In addition, the activation of presynaptic NMDA receptors
during high frequency activity (Carta et al., 2018; Lituma et al.,
2021) and release of Ca2+ from internal stores (Lauri et al., 2003;
Scott and Rusakov, 2006) also contribute to Ca2+ dynamics at
the MF synapse. These dynamic changes in presynaptic calcium
drive MF short- and long-term synaptic plasticity (Castillo et al.,
1994; Regehr et al., 1994; Kapur et al., 1998; Breustedt et al., 2003;
Pelkey et al., 2006; Li et al., 2007; Vyleta and Jonas, 2014). In a
mature MFB, it was demonstrated that synaptic vesicles are only
loosely coupled to Ca2+ channels, allowing for a highly dynamic
Pr range (Vyleta and Jonas, 2014; Böhme et al., 2018; Brockmann
et al., 2019; Orlando et al., 2021). Changes in distances between
calcium channels and the synaptic machinery, in channel density,
and/or in concentrations of endogenous calcium buffers can
enable rapid and dynamic modulation of synaptic strength, as
discussed below.

In addition to its direct effects on vesicle fusion and
neurotransmitter release, Ca2+ also exerts a powerful effect on
MF synaptic strength through the Ca2+ sensor calmodulin and
activation of AC, leading to increased levels of cAMP. Numerous
studies have pointed to cAMP as the primary mediator of
MF-LTP, given how the application of the potent AC agonist FSK
or of cAMP analogs, such as Sp-8-CPT-cAMPs, elicit a strong
and sustained increase in the basal Pr (Weisskopf et al., 1994;
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Lonart et al., 1998; Tzounopoulos et al., 1998; Wang et al.,
2003; Kaeser-Woo et al., 2013; Hashimotodani et al., 2017). In
the mammalian brain, ten different isoforms of the Adcy gene
encode for ten distinct AC enzymes (AC1-10). These are classified
primarily according to their main upstream activator (Hanoune
and Defer, 2001) and are differentially distributed across brain
regions and cell types (Sanabra and Mengod, 2011). In the mouse
hippocampus, Adcy isoforms 1 and 2 are strongly and selectively
expressed in the DG but not in CA3 neurons (Figures 2A,B), and
while KO of Adcy8 was shown to affect MF synaptic plasticity
(Wang et al., 2003), comparatively low mRNA levels in the DG
(Figures 2A,B) suggest that further experiments are needed to

validate these results. Of the two most abundant AC isoforms
in the DG, AC1 is known to be activated by an increase in
Ca2+ and its downstream effector calmodulin (Hanoune and
Defer, 2001), whereas AC2 is largely Ca2+-insensitive and is
instead activated by PKC and the Gq protein-associated βγ

subunit complex (Hanoune and Defer, 2001; Willoughby and
Cooper, 2007; Halls and Cooper, 2011). Alongside these basic
properties, additional evidence further supports a central role
for AC1 in the MF synapse. First, AC1 is inhibited by the
Gi cascade, such as that associated with mGluR2/3, leading
to a reduction in cAMP levels (Sadana and Dessauer, 2009),
an effect which potentially underlies the complete silencing of

FIGURE 2 | Expression of AC isoforms across hippocampal sub-regions. (A) Distribution pattern of the ten AC isoforms in the hippocampus of adult mice following
in situ hybridization (Lein et al., 2007). (B) A heat map showing the relative mRNA expression levels of Adcy isoforms 1–9 across different hippocampal sub-regions.
fpkm—fragments per kilobase of transcript per million mapped reads (Cembrowski et al., 2016). (C) as in (B), a heat map showing relative Adcy isoform 1–9 mRNA
expression levels for the main cell clusters across several central brain regions. The right-most column specifies for which cell clusters evidence supports the
existence of presynaptic LTP (Saunders et al., 2018). Data in (A) were adapted from the Allen institutes ISH brain atlas (http://mouse.brain-map.org/), data in (B)
were adapted from hipposeq.janelia.org/and data in (C) were adapted from Dropviz.org.
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MF synaptic transmission following application of DCG-IV.
Furthermore, Adcy1 KO mice were found to exhibit impaired
MF-LTP but not PP-LTP and while MF short-term plasticity and
FSK-induced potentiation were not altered in Adcy1 KO mice
(Villacres et al., 1998; Table 1), this effect could have still been
mediated by other AC isoforms, being that FSK is not a selective
AC1 agonist. Last, immunolabeling of AC1 in the hippocampus
revealed it to be enriched in the hilus and mossy fibers (Conti
et al., 2007), implying that AC1 is preferentially trafficked to MF
synaptic domains.

Together, these observations suggest that AC1 is the dominant
isoform mediating Ca2+ dependent increases, or mGluR2/3-
dependent decreases in cAMP levels, to control MF synaptic
plasticity. Interestingly, the distribution of AC1 mRNA across
brain regions reveals strong correlation between cell types in
which Adcy1 is enriched, with such synapses having been
previously shown to express a presynaptic form of LTP
(Figure 2C). This correlation can potentially support the notion
that shared molecular mechanisms, driven by up-stream AC1
activation, underlies presynaptic LTP across cell types. In the
hippocampus, this conjuncture could apply to neurons of the
CA2 sub-region, in which Adcy1 is also enriched. While previous
studies suggested that CA2 neurons do not display any form
of postsynaptic plasticity (Zhao et al., 2007), the nature of the
presynaptic mechanisms at play in their synapses onto CA1
neurons, corresponding to their principal output (Kohara et al.,
2014), have not yet been investigated. Further experiments are
required to determine whether cAMP- and PKA-dependent
presynaptic LTP can also be induced there, and if so, one can ask
what sort of functional relevance this might have on information
processing in this pathway.

In addition to the Ca2+-mediated activation of AC1, increased
cAMP levels could also potentially arise from direct activation
of AC2 and AC9 through the alpha subunit of Gs protein-
coupled receptors (Hanoune and Defer, 2001), such as group
1 serotonin receptors (Hamblin et al., 1998), the beta sub-class
of noradrenaline receptors (Johnson, 2006) and dopamine D1-
like receptors (Girault and Greengard, 2004). In contrast, other
Gi protein-coupled neuromodulator receptors, such as group 1
and 5 serotonin receptors, the alpha2 sub-class of noradrenergic
receptors and the dopamine D2 receptor, would have an
opposite effect on cAMP production, potentially supporting

MF-LTD. It has previously been shown that neuromodulators
can indeed exert effects on MF synaptic transmission in various
manners (Yang and Calakos, 2013; Nozaki et al., 2016; Kobayashi
et al., 2020). This contradictory mode of action of different
receptors in response to the same ligand and their differential
expression patterns across hippocampal sub-regions make it
difficult to determine what would be the net effect of each
receptor on synaptic transmission and plasticity. In addition,
it has yet to be shown where these receptors are trafficked
within the cells and whether they are enriched in presynaptic
domains. Such knowledge is essential for determining whether
neuromodulators could have a direct effect on neurotransmitter
release at the MF-CA3 synapse, or whether the observed effects
of neuromodulator application during recordings arise from
changes in DGC somatic excitability or from various influences
on CA3 postsynaptic domains. The use of specific cAMP sensors
(Odaka et al., 2014; Harada et al., 2017; Ohta et al., 2018; Linghu
et al., 2020) that can be targeted to the synapse will allow
characterization of the spatiotemporal distribution of cMAP and
can clarify the above debates.

MOLECULAR MECHANISMS OF
PROTEIN KINASE A-DEPENDENT
MOSSY FIBERS PLASTICITY

As mentioned above, MF-LTP depends on cAMP levels, with this
effect having largely been attributed to downstream activation of
PKA. This assessment was further supported by the observation
that LTP is absent following KO of the PKA catalytic subunit-
encoding gene (Huang et al., 1995) and that application of
KT5720, a selective blocker of the PKA catalytic subunit,
prevents MF-LTP (Weisskopf et al., 1994). In addition, it
was suggested that FSK-induced potentiation interacts with
LTP, as the two processes were shown to mutually occlude
one another (Weisskopf et al., 1994). These findings led to
the suggestion that activation of PKA is an essential step in
MF-LTP. Accordingly, research conducted in recent decades
identified several putative synaptic PKA targets thought to be
involved in cAMP-dependent synaptic plasticity at MF synapses.
These include RAB3a-interacting molecule 1a (RIM1a) and
rabphilin, both acting through the vesicular GTPase Ras-related

TABLE 1 | The effects of manipulation of proteins on hippocampal mossy fiber synaptic plasticity.

KO/KD STP LTP Fsk-induced potentiation (FIP) Citations

Rab3A Not affected Abolished Not affected Castillo et al., 1997

RIM1a Not affected Abolished Not affected Castillo et al., 2002

Rabphilin Not affected No effect Not determined Schlüter et al., 1999

Synapsin Not determined No effect Not affected Spillane et al., 1995

Synaptotagmin-12 Not affected Abolished Impaired Kaeser-Woo et al., 2013

Tomosyn Impaired Abolished Impaired Ben-Simon et al., 2015

PKAα Not determined Impaired Not determined De Lecea et al., 1998

AKAP7 Not determined Abolished Not determined Jones et al., 2016

Epac2 Not affected Abolished Impaired Fernandes et al., 2015

AC1 Not affected Impaired Not affected Villacres et al., 1998
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protein Rab-3A (RAB3a) (Takai et al., 1996; Wang et al.,
2001), as well as synapsin (Bykhovskaia, 2011), synaptotagmin-12
(Maximov et al., 2007), and tomosyn-1 (Ashery et al., 2009). The
involvement of these proteins in cAMP-dependent plasticity was
mainly studied by examining the effects of deletion or mutations
in each of the encoding genes on short-term plasticity (STP),
FSK-induced potentiation, LTP and LTD (Table 1 and Figure 3).

Earlier efforts paid substantial attention to the small
vesicular GTPase RAB3a, which is seemingly involved in vesicle
mobilization and fusion (Geppert et al., 1997; Lonart and Südhof,
1998). While RAB3a is not considered a putative PKA target,
it is known to be regulated by other PKA targets, such as
RIM1a and rabphilin and has, therefore, been linked to the PKA-
mediated cascade. RAB3a KO was shown to block LTP, impair

LTD formation in MF synapse and led to memory impairment
(D’Adamo et al., 2004), although neither STP nor FSK-induced
potentiation were affected (Castillo et al., 1997). These effects
were thought to be the result of an enhanced effect of Ca2+ on
the secretory apparatus (Lonart et al., 1998), although the precise
mechanism involved was not identified.

RIM1a is an active zone protein and putative PKA target
(Wang et al., 1997; Castillo et al., 2002; Lonart et al., 2003). Similar
to what was seen in the absence of RAB3a, KO of RIM1a also
prevented MF-LTP but not FSK-induced potentiation or STP
(Castillo et al., 2002; Figure 3 and Table 1), suggesting a direct
link between PKA, RIM1a, RAB3a, and MF-LTP. However, this
effect appears to be PKA-independent, as RIM1aS413A, an isoform
that carries a point mutation preventing RIM1a phosphorylation

FIGURE 3 | cAMP cascades and cAMP-dependent synaptic plasticity in the MF synapse. (A) Cascades of activation of cAMP, PKA, and Epac2 in the MF terminal.
A train of action potentials arriving at the MF synapse triggers a calcium influx through voltage-dependent calcium channels and subsequent activation of CaM that
activates cAMP synthesis by AC1. AC1 acts on PKA or Epac2 to up regulate synaptic transmission (dashed green arrows between vesicles). Application of FSK
activates both AC1 and AC2 and elevates cAMP. AC2 is also activated by PKC following the activation by a G-coupled protein. Application of DCG-IV, an agonist to
mGluR2/3, leads to inhibition of AC1. Green arrows: activation, red arrow: inhibition, blue arrows: application of pharmacological reagents. (B) Downstream PKA
cascades and their relation to synaptic plasticity. PKA activity is dependent on the anchoring protein AKAP7, and is inhibited by the negative regulator PKAα. PKA, in
turn, phosphorylates multiple proteins including synapsin, rabphilin, tomosyn-1, synaptotagmin12 (Syt12) and RIM1a. Of these, deletion of synapsin and rabphilin
does not impair MF synaptic plasticity. Ablation of RAB3A, although not a direct PKA target, and RIM1a abolishes MF-LTP but does not affect STP and FSK-induced
potentiation (FIP). Synaptotagmin-12 KO abolishes MF-LTP and impairs FSK-induced potentiation but do not affect STP, while deletion of tomosyn-1 abolishes
MF-LTP, impairs FSK-induced potentiation and also affects STP. Epac2 manipulation also abolishes LTP and impairs FSK-induced potentiation. STP- short-term
potentiation, LTP- long-term potentiation, FIP- FSK-induced potentiation. Orange arrow represent PKA-independent pathway, Green arrows shades represent
different pathways.
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by PKA, was found to have no impact on either short- or long-
term plasticity, nor on behavior (Kaeser et al., 2008). Hence,
despite the dependence of LTP on RIM1a, the link through
PKA is less defined and suggests that PKA operates either
through a different mechanism, or via yet another unidentified
parallel pathway/s.

Rabphilin, another RAB3a effector, regulates vesicle priming
through interactions with RAB3a and the SNARE protein SNAP-
25, with the former occurring in a GTP-dependent manner
(Tsuboi and Fukuda, 2005; Deák et al., 2006). Rabphilin was
found to be phosphorylated following application of FSK in
the MF but not in the SC synapse (Lonart and Südhof,
1998), highlighting that significant differences exist in the
molecular mechanisms underlying synaptic plasticity between
these different hippocampal regions. However, KO of the rph3a
gene encoding for rabphilin did not change either short-term
facilitation or MF-LTP at the MF terminal (Schlüter et al., 1999;
Figure 3 and Table 1).

In addition to the RAB3a cascade, synapsin was considered
as another candidate PKA downstream effector. Synapsins are
among the most abundant synaptic proteins that are known to
be phosphorylated by PKA, and are involved in both synaptic
transmission and plasticity (De Camilli and Greengard, 1986;
Gitler et al., 2004). Accordingly, synapsins were one of the first
synaptic protein families to be examined as targets for cAMP
and PKA-dependent plasticity at the MF. Synapsin binds synaptic
vesicles and tethers them to the cytoskeleton, yet can release
these vesicles following phosphorylation by PKA, enabling their
translocation to the active zone in preparation for exocytosis (De
Camilli et al., 1983; Spillane et al., 1995). A triple KO of all three
synapsin isoform-encoding genes led to impaired plasticity in
primary hippocampal neuronal cultures, with such changes being
associated with PKA activity (Cheng et al., 2018). However, in
the MF pathway of acute hippocampal slices, a double KO of
the syn1 and syn2 genes, encoding the main isoforms expressed
in CNS neurons, did not alter cAMP-dependent LTP or FSK-
induced potentiation (Figure 3B and Table 1; Spillane et al.,
1995). While further research is required to reconcile these
contradicting results, these findings suggest that phosphorylation
of synapsin1 and synapsin2 by PKA is unlikely to be required for
cAMP-dependent MF synaptic plasticity.

More recent studies have examined other synaptic proteins
thought to be involved in PKA-dependent LTP at the MF
synapse. Synaptotagmin-12 differs from other synaptotagmins
in that it does not bind Ca2+ (Wolfes and Dean, 2020).
However, synaptotagmin-12 is phosphorylated by PKA and is
involved in the regulation of synaptic vesicles fusion and Pr
(Maximov et al., 2007). Synaptotagmin-12S97A mutant mice, in
which the site of PKA-mediated phosphorylation was mutated,
displayed impaired MF-LTP and FSK-induced potentiation,
although their STP remained unaltered (Kaeser-Woo et al., 2013).
Consequently, synaptotagmin-12 can be regarded as the first
protein shown to affect both LTP and FSK-induced potentiation
in a PKA-dependent manner.

Tomosyn is a PKA-dependent negative regulator of Pr and its
over-expression leads to an inhibition of vesicle priming, while
knockdown, knockout, or mutations in the tomosyn-1-encoding

gene led to an enhancement of vesicle fusion (Yizhar et al., 2004;
Chevlet et al., 2006; Gracheva et al., 2006; McEwen et al., 2006;
Ben-Simon et al., 2015). Tomosyn-1, which was shown to be
enriched in the MF pathway (Barak et al., 2010, 2013), can be
phosphorylated by PKA at Ser-724 (Baba et al., 2005) and its
acute down-regulation in the MF synapse leads to reductions
in both LTP and FSK-induced potentiation (Ben-Simon et al.,
2015). Interestingly, this manipulation also strongly reduced MF
facilitation and STP. These effects are likely the result of an
increase in the basal Pr following down-regulation of tomosyn-1,
which also led to occlusion of both potentiation and facilitation.
Although acute KD of tomosyn reduced both LTP and FSK-
induced potentiation (Ben-Simon et al., 2015), a direct link
between PKA-driven tomosyn-1 phosphorylation and synaptic
plasticity has yet to be demonstrated.

Although FSK-induced potentiation and MF-LTP are thought
to be interlinked and are driven by cAMP elevation (Weisskopf
et al., 1994), deletion of most PKA-dependent synaptic proteins
abolished only MF-LTP and not FSK-induced potentiation.
This could suggest the presence of additional parallel cAMP-
dependent pathways that are not fully PKA-dependent. It is
also possible that high frequency stimulation-induced LTP and
FSK affect downstream events with different cAMP-mediated
dynamics, which would differently affect MF-LTP and FSK-
induced potentiation. However, the same does not apply to the
loss of synaptic proteins, such as of tomosyn-1 or synaptotagmin-
12, which impaired both MF-LTP and FSK-induced potentiation
(Kaeser-Woo et al., 2013; Ben-Simon et al., 2015). It is reasonable
to assume that the impact of the loss of tomosyn-1 on MF-
LTP and FSK-induced potentiation can be explained through an
increase in basal Pr that is further translated into a reduction
in synaptic potentiation. What is clear is that further studies
are needed to characterize the exact contributions of these and
other synaptic proteins and pathways to the cAMP dependent
plasticity of the MF.

Additional proteins that interact with PKA, like PKAα

and AKAP7, have also been shown to affect MF plasticity.
PKAα is a PKA inhibitor whose activity decreases following
synaptic stimulation, leading to a relief of PKA inhibition
during neuronal activity. Moreover, blocking this pathway with
anti-sense oligonucleotides to PKAα resulted in elimination of
MF-LTP in the synapse (De Lecea et al., 1998). AKAP7 is a
PKA-anchoring protein also essential for the function of PKA.
Ablation of AKAP7 results in even more pronounced effects
than those seen with PKAα inhibition, specifically, not only the
elimination of MF-LTP but also various measurable behavioral
deficits (Huang et al., 1995; Jones et al., 2016; Figure 3B and
Table 1).

CYCLIC ADENOSINE MONOPHOSPHATE
AND RESTRUCTURING OF SYNAPTIC
RELEASE SITES

Recent results obtained with isolated MF terminals indicate
that cAMP can directly affect Pr via regulation of Ca2+

signaling (Midorikawa and Sakaba, 2017; Fukaya et al., 2021).
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Applying cAMP to isolated MF terminals increased Pr, although
the number of vesicles in the readily releasable pool and
replenishment of this pool following depletion remained
unchanged. It has been suggested that this increase in Pr is
associated with changes in the physical coupling between of P/Q-
type Ca2+ channels and readily releasable vesicles (Midorikawa
and Sakaba, 2017), which can alter the synaptic properties at the
terminal (Bucurenciu et al., 2008; Vyleta and Jonas, 2014). As
such, following an action potential, Ca2+ concentrations near
release sites are expected to be higher, thereby leading to synaptic
potentiation. Such molecular rearrangements were recently
shown to occur within 5–10 min following FSK application
(Fukaya et al., 2021).

A recent paper showed that FSK-induced potentiation was
associated with fast remodeling of MF synapse presynaptic
ultrastructure. However, the distance between P/Q-type calcium
channels and Munc13–1 as a proxy for the release machinery was
not altered and was found to be 65 nm (Orlando et al., 2021).
On the other hand, FSK-induced potentiation was associated
with synaptic vesicle accumulation at active zones, increases in
the numbers of docked and tethered vesicles and an overall
increase in the number of active AZs. In addition, vesicles were
more dispersed, possibly mediated by PKA phosphorylation of
synapsin (Sihra et al., 1989; Pechstein et al., 2020), allowing for
the mobilization of vesicles into the readily releasable vesicle
pool. A similar increase in the number of docked vesicles
was recently suggested to take place following high-frequency
stimulation of MF synapses (Vandael et al., 2020) and was
referred as a “pool engram,” enabling post-tetanic potentiation.
Reorganization of active zone and changes in the recycling
vesicle pool also occurs after FSK-induced LTP at CA3-CA1
synapses and might represent a basic mechanism of presynaptic
LTP in central synaptic synapses (Rey et al., 2020) and in the
Drosophila neuromuscular junction (Weyhersmüller et al., 2011).
Such processes are likely to be mediated by AZ proteins, such as
RIM1a that interacts with Munnc13–1, or Rab3A together with
calcium channels (Betz et al., 2001; Schoch et al., 2002; Han et al.,
2011; Kaeser et al., 2011; Eggermann et al., 2012), via RIM-BP2
that stabilizes Munc13-1 protein clusters at MF AZs channels
(Brockmann et al., 2019), or via synapsin phosphorylation.
However, as mentioned above, PKA-mediated phosphorylation
of RIM1a was shown to have no effect on MF synaptic
transmission (Kaeser et al., 2008), while synapsin KO had
no effect on MF-LTP. Additional super-resolution microscopy
methods that can inspect organizational changes at the 10–20 nm
range can resolve how the release machinery, AZ and calcium
channels are restructured following elevations in cAMP levels.

ALTERNATIVE CYCLIC ADENOSINE
MONOPHOSPHATE TARGETS

PKA is considered by many to be a master regulator of synaptic
plasticity in the hippocampal MF synapse, as well as in many
other synapses (Waltereit and Weller, 2003). Consequently,
other than the intensive studies conducted on the involvement
of PKA targets in MF-LTP, only few studies have considered

other possible cAMP-dependent pathways. One such example
is a study that linked Epac2, a member of a family of cAMP-
dependent guanine nucleotide exchange proteins (GEFs), to
synaptic plasticity at the MF synapse (Fernandes et al., 2015).
The two cAMP-dependent GEFs, Epac1, and Epac2 (encoded
by the Rapgef3 and Rapgef4 genes, respectively), were linked to
several cAMP-dependent processes (Gloerich and Bos, 2010),
and it was further suggested that these proteins are relevant
to synaptic plasticity processes (De Rooij et al., 1998; Kawasaki
et al., 1998; Fernandes et al., 2015). Epac was shown to activate a
MAP-kinase called p38 (Figure 4) in cerebellar and hippocampal
neurons and this was correlated with modulation of neuronal
excitability (Ster et al., 2007, 2009). In a separate study, several
experiments have demonstrated that blocking Epac2 signaling
led to reduced levels of p38 phosphorylation (Emery et al.,
2014). This suggests that Epac2 responds to cAMP by activating
ERK and the small GTPase Rap, as well as its downstream
kinase p38-MAPK, thereby bypassing the canonical PKA cascade
(Figure 4). Epac2 plays a crucial role in MF-LTP, as KO of the
encoding gene led to deficits in MF-LTP and impaired FSK-
induced potentiation without affecting basal synaptic properties,
as measured by changes in STP (Fernandes et al., 2015; Figure 3B
and Table 1).

More recently, an additional member of the RAPGEF
family, RapGEF2, was hypothesized to participate in neuronal
and synaptic processes. Due to its unconventional cAMP-
binding motif, RapGEF2 was long considered not to be a
cAMP sensor (Liao et al., 1999; Kuiperij et al., 2003; Kannan
et al., 2007). However, more recent studies have shown that
a specific RAPGEF2 isoform expressed exclusively in neurons
and endocrine cells, termed NCS-Rapgef2, can phosphorylate
ERK in a cAMP-dependent manner in these cells (Emery
et al., 2013; Figure 4). In neurons, this observed effect was
modulated by activation of the dopamine receptor D1 (DRD1),
potentially modulating postsynaptic sensitivity in response to
dopamine release as well as in a dopamine receptor D1 (DRD1)-
dependent manner (Jiang et al., 2017). In addition, KO of NCS-
Rapgef2 in DRD1+ medium spiny neurons (MSN) of the nucleus
accumbens was shown to have behavioral consequences, resulting
in impairments in cocaine-induced locomotor sensitization
(CILS) and in conditioned place preference (Jiang et al., 2021).
Interestingly, CILS was previously shown to require ERK-
dependent DRD1-MSN neuroplasticity (Ferguson et al., 2006;
Girault et al., 2007), further supporting the contribution of
ERK-dependent pathways and the possible involvement of NCS-
RAPGEF2 in neuroplasticity. Still, the involvement of NCS-
Rapgef2 in presynaptic plasticity has yet to demonstrated.

Based on current understanding, we can assume the existence
of at least three main cAMP-dependent molecular pathways
relevant to synaptic plasticity. These can be described according
to the proteins directly activated by cAMP, and by the principal
kinases or RAPGEFs downstream of these proteins, which
execute many of the regulatory functions ascribed to their
respective pathways. The three principal pathways are PKA →

CREB, Epac → p38 and Rapgef2 → Erk (Figure 4). These
pathways can work independently but can also interact and
influence one another (Emery et al., 2014, 2016, 2017). Lastly,

Frontiers in Synaptic Neuroscience | www.frontiersin.org 9 April 2022 | Volume 14 | Article 861215

https://www.frontiersin.org/journals/synaptic-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/synaptic-neuroscience#articles


fnsyn-14-861215 March 29, 2022 Time: 17:0 # 10

Shahoha et al. cAMP and Mossy Fiber Plasticity

FIGURE 4 | Model of molecular mechanisms of cAMP-dependent LTP. Three cAMP-dependent effectors, Epac, PKA, and Rapgef2, give rise to three parallel
molecular pathways. Each of the three cAMP-dependent molecular pathways include a transcription factor that upon activation leads to long-term effects on gene
regulation that support synaptic plasticity.

these molecular pathways can activate plasticity processes that
differ in several aspects, such as the locus of plastic changes (e.g.,
pre- vs. postsynaptic plasticity), resistance to pharmacological
compounds, and even associated behavioral processes (Morozov
et al., 2003; Fernandes et al., 2015).

CONCLUSION

In summary, the presynaptic forms of LTP and LTD that transpire
in the hippocampal MF-CA3 synapse are thought to depend
on cAMP-PKA-dependent cascades. Various synaptic proteins
have been linked to these cascades, and manipulations of several
of these proteins, such as RAB3a, RIM1a, synaptotagmin-12,
and tomosyn-1, are crucial for signaling along these cascades.
Interestingly, manipulations of these proteins mostly impact MF-
LTP formation and only in some cases, FSK-induced potentiation
or STP. This indicates the strong possibility of the existence
of several parallel cAMP-dependent cascades, which are still
only partially understood. Mechanistically, elevation of cAMP in

the MF synapse involves the rearrangement of synaptic vesicles
near release sites and the clustering of calcium channels near
the release machinery, which lead to synaptic potentiation.
Adopting additional methods that can detect nanometric-
level organizational changes in the AZ will help resolve how
the release machinery is restructured following elevation in
cAMP with more detail. Such changes in synaptic plasticity
can be mediated via other PKA targets or via non-canonical
PKA-independent but cAMP-dependent pathways, like those
involving the RAPGEF family of proteins. Combinations of
cell type-specific manipulation of specific proteins, along with
synapse-specific manipulation of cAMP by either optogenetic
or pharmacogenetic approaches, as well as the ability to
measure cAMP levels in response to natural stimulation patterns,
will allow a more detailed understanding of the relationship
between cAMP and synaptic plasticity at the MF synapse. Such
findings could potentially be extrapolated to other synapses,
which bear similar physiological hallmarks, to expand our
understanding of the links between cellular transcriptomics,
synaptic physiology and behavior.
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