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Abstract: Gut microbial metabolites, short-chain fatty acids (SCFAs), are found at multiple locations
in the host body and are identified as important metabolites in gut microbiome-associated diseases.
Quantifying SCFAs in diverse biological samples is important to understand their roles in host health.
This study developed an accurate SCFA quantification method by performing gas chromatography–
mass spectrometry (GC/MS) in human plasma, serum, feces, and mouse cecum tissue. The samples
were acidified with hydrochloric acid, and the SCFAs were extracted using methyl tert-butyl ether.
In this method, distilled water was selected as a surrogate matrix for the quantification of SCFAs
in target biological samples. The method was validated in terms of linearity, parallelism, precision,
recovery, and matrix effect. The developed method was further applied in target biological samples.
In conclusion, this optimized method can be used as a simultaneous SCFA quantification method in
diverse biological samples.

Keywords: short-chain fatty acids; GC/MS; surrogate matrix; plasma; serum; feces; cecum tissue

1. Introduction

Short-chain fatty acids (SCFAs) are fatty acids with fewer than six carbons [1]. The
SCFAs are produced by the gut bacteria that metabolizes indigestible starch and dietary
fiber, and those SCFAs are also found in the host body via transportation into portal circu-
lation [2–4]. The SCFAs have been identified as important metabolites in gut microbiome-
associated diseases, e.g., inflammatory bowel disease [5,6], obesity [7,8], hypertension [9],
diabetes [10,11], rheumatoid arthritis [12], and multiple sclerosis [13]. Therefore, a sensi-
tive and accurate quantification method for the SCFAs in diverse biological specimens is
required to better understand the gut microbiome–host interaction.

Gas chromatography–mass spectrometry (GC/MS)-based analysis of SCFAs com-
monly requires precolumn derivatization [14–17]. However, many derivatization agents
are moisture-sensitive; thus, an anhydrous environment is required to improve sensitiv-
ity [14]. Moreover, the derivatization process is time-consuming, and analysis may be
deviated due to evaporation during the sample preparation. Direct aqueous injection of a
biological sample is an alternative method to avoid derivatization of SCFAs [18,19], but the
GC/MS system can be contaminated, due to the complex biological components. Therefore,
an improved method that reduces the GC/MS contamination is required.

Background noise of SCFAs was reported by a few previous studies [14,15,20]. This
background noise can be produced by organic solvents widely used for lipid extraction,
such as ethyl acetate (EA) and methanol [21,22]. Thus, optimizing the organic solvent for
extraction is important to accurately determine SCFAs. Furthermore, since the SCFAs are
endogenous metabolites, a metabolite-free biological matrix is not accessible to prepare cali-
bration standard samples. To address this limitation, surrogate matrices, such as an artificial
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matrix (e.g., bovine serum albumin in phosphate buffer saline) and a metabolite-depleted
matrix (e.g., charcoal-stripped biological matrix), are widely used [23,24]. However, using
a surrogate matrix can cause matrix-specific peak response alterations (matrix effect); there-
fore, the similar matrix effect and extraction recovery should be demonstrated in both the
surrogate matrix and biological matrix, and a parallel relationship between the surrogate
and biological matrix should also be confirmed [25,26]. This work aims to develop an
accurate GC/MS quantification method using the surrogate matrix approach to measure
the SCFAs in plasma, serum, feces, and cecum tissue. We optimized the liquid–liquid
extraction (LLE) procedure to detect SCFAs without derivatization and reduce the GC/MS
contamination. In this method, distilled water was selected as a surrogate matrix, and it
showed similar extraction recovery with SCFAs in the target biological samples. The devel-
oped method was further validated in terms of linearity, parallelism, precision, recovery,
and matrix effect. These results can be used as a customized protocol for the SCFA analysis
in diverse types of biological samples.

2. Results and Discussion
2.1. Method Optimization
2.1.1. GC/MS Condition

In this study, we used a high-polarity polyethylene glycol (PEG) type column to detect
SCFAs without derivatization. First, MS data were acquired by analyzing each analytical
standard in full scan mode in an m/z range of 40–150. All the analytes were detected on
the PEG type column and identified with a specific m/z ratio and retention time. Next,
we developed a selected ion monitoring (SIM) mode for target analytes. In the SIM mode,
the base peak in the EI mass spectra was selected as the target ion, and an analyte-specific
m/z value was selected as a confirmative ion (Table 1). As shown in Figure A1, the target
analytes were also successfully separated by retention time and m/z value.

Table 1. Retention time and target m/z values of the SCFAs and internal standard.

Analytes Retention Time
(min)

Target Ion
(m/z)

Confirmative Ion
(m/z)

Acetic acid 7.92 60.0 43.0
Propionic acid 9.32 74.0 45.0

Butyric acid 10.92 60.0 73.0
Valeric acid 13.02 60.0 73.0

Acetic acid-d4
a 7.84 63.0 46.0

Butyric acid-d7
b 10.74 63.0 77.0

a Internal standard of acetic acid; b Internal standard of propionic acid, butyric acid, and valeric acid.

2.1.2. Extraction Condition Optimization

An analytical method for SCFAs, using a PEG column, by injecting the acidified
water or acidified biological sample were published previously [18,19]. However, a PEG
column can be contaminated by strong acids, and the aqueous conditions can contaminate
the ion source. To avoid this direct injection of acidic samples, we performed liquid–
liquid extraction (LLE). Since the SCFAs are weak acids, with pKa values from 4.75 to
4.80 [27], hydrochloric acid (HCl) was added to adjust the pH of the aqueous sample to
2–3 so that the SCFAs will be undissociated forms [28]. Then, we evaluated the extraction
recovery of four organic solvents used for lipid extraction, methyl tert-butyl ether (MTBE),
diethyl ether (DE), chloroform (Chl), and n-hexane (HA), from an SCFA working solution
dissolved in acidified water (Figure 1). The DE was the most effective solvent for SCFA
extraction. However, high background noise for acetic acid was found in a blank water
sample extracted with DE (Figure A2). A further investigation suggested that acetic acid
can be produced via DE oxidation [29]. Consequentially, we selected the MTBE as an
extraction solvent for the SCFAs. Next, the LLE procedure with MTBE was applied to each
biological matrix: human plasma, serum, feces, and mouse cecum tissue. Figure 2 shows
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chromatograms of the target analytes extracted with MTBE from each water and biological
matrix. The target analytes were well separated and detected, and no interfering substances
were found around the retention times of the analytes.

Metabolites 2022, 12, x FOR PEER REVIEW 3 of 13 
 

 

traction. However, high background noise for acetic acid was found in a blank water sam-
ple extracted with DE (Figure A2). A further investigation suggested that acetic acid can 
be produced via DE oxidation [29]. Consequentially, we selected the MTBE as an extrac-
tion solvent for the SCFAs. Next, the LLE procedure with MTBE was applied to each bio-
logical matrix: human plasma, serum, feces, and mouse cecum tissue. Figure 2 shows 
chromatograms of the target analytes extracted with MTBE from each water and biologi-
cal matrix. The target analytes were well separated and detected, and no interfering sub-
stances were found around the retention times of the analytes. 

 
Figure 1. Extraction recovery of SCFAs with organic solvents. DE, diethyl ether; MTBE, methyl tert-
butyl ether; Chl, chloroform; HA, n-hexane (mean ± standard deviation, n = 3). 

 
Figure 2. Aggregates of SIM chromatograms (black, m/z = 60.0; red, m/z = 63.0; blue, m/z = 74.0) of 
SCFAs extracted with MTBE in (A) blank water, (B) SCFA standard mixture in water, (C) plasma, 
(D) serum, (E) feces, and (F) mouse cecum tissue samples. Peak identification: 1, acetic acid-d4; 2, 
acetic acid; 3, propionic acid; 4, butyric acid-d7; 5, butyric acid; 6, valeric acid. 

2.1.3. Surrogate Matrix Selection 
One limitation related to the quantification of endogenous SCFAs in the biological 

sample is the absence of matrix-matched calibration. We aimed to avoid the excessive use 
of biological matrices for calibration standard preparation so we could analyze small 
amounts of the samples. Thus, we explored the surrogate matrix approach. In this study, 
charcoal-stripped plasma, bovine serum albumin (BSA) solution, and water were selected 
for testing the spike recovery for SCFAs with plasma (Figure A3). First, the charcoal-
stripped plasma was not in the SCFA-depleted matrix, which was discarded (Figure A4). 

Figure 1. Extraction recovery of SCFAs with organic solvents. DE, diethyl ether; MTBE, methyl
tert-butyl ether; Chl, chloroform; HA, n-hexane (mean ± standard deviation, n = 3).

Metabolites 2022, 12, x FOR PEER REVIEW 3 of 13 
 

 

traction. However, high background noise for acetic acid was found in a blank water sam-
ple extracted with DE (Figure A2). A further investigation suggested that acetic acid can 
be produced via DE oxidation [29]. Consequentially, we selected the MTBE as an extrac-
tion solvent for the SCFAs. Next, the LLE procedure with MTBE was applied to each bio-
logical matrix: human plasma, serum, feces, and mouse cecum tissue. Figure 2 shows 
chromatograms of the target analytes extracted with MTBE from each water and biologi-
cal matrix. The target analytes were well separated and detected, and no interfering sub-
stances were found around the retention times of the analytes. 

 
Figure 1. Extraction recovery of SCFAs with organic solvents. DE, diethyl ether; MTBE, methyl tert-
butyl ether; Chl, chloroform; HA, n-hexane (mean ± standard deviation, n = 3). 

 
Figure 2. Aggregates of SIM chromatograms (black, m/z = 60.0; red, m/z = 63.0; blue, m/z = 74.0) of 
SCFAs extracted with MTBE in (A) blank water, (B) SCFA standard mixture in water, (C) plasma, 
(D) serum, (E) feces, and (F) mouse cecum tissue samples. Peak identification: 1, acetic acid-d4; 2, 
acetic acid; 3, propionic acid; 4, butyric acid-d7; 5, butyric acid; 6, valeric acid. 

2.1.3. Surrogate Matrix Selection 
One limitation related to the quantification of endogenous SCFAs in the biological 

sample is the absence of matrix-matched calibration. We aimed to avoid the excessive use 
of biological matrices for calibration standard preparation so we could analyze small 
amounts of the samples. Thus, we explored the surrogate matrix approach. In this study, 
charcoal-stripped plasma, bovine serum albumin (BSA) solution, and water were selected 
for testing the spike recovery for SCFAs with plasma (Figure A3). First, the charcoal-
stripped plasma was not in the SCFA-depleted matrix, which was discarded (Figure A4). 

Figure 2. Aggregates of SIM chromatograms (black, m/z = 60.0; red, m/z = 63.0; blue, m/z = 74.0)
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(D) serum, (E) feces, and (F) mouse cecum tissue samples. Peak identification: 1, acetic acid-d4; 2,
acetic acid; 3, propionic acid; 4, butyric acid-d7; 5, butyric acid; 6, valeric acid.

2.1.3. Surrogate Matrix Selection

One limitation related to the quantification of endogenous SCFAs in the biological
sample is the absence of matrix-matched calibration. We aimed to avoid the excessive use of
biological matrices for calibration standard preparation so we could analyze small amounts
of the samples. Thus, we explored the surrogate matrix approach. In this study, charcoal-
stripped plasma, bovine serum albumin (BSA) solution, and water were selected for testing
the spike recovery for SCFAs with plasma (Figure A3). First, the charcoal-stripped plasma
was not in the SCFA-depleted matrix, which was discarded (Figure A4). The BSA solution
showed low recovery. The water exhibited a similar extraction recovery for SCFAs with
plasma. Consecutively, the spike recovery between the water and the other target biological
matrices, including serum, feces, and cecum tissue, were further evaluated, and similar
results were obtained (Table A1). The spike recovery results indicate that the water shows
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a similar extraction efficiency for SCFAs with target biological matrices. Therefore, the
water was selected as a surrogate matrix for the quantification of SCFAs in those biological
matrices.

2.2. Method Validation
2.2.1. Calibration Curve and Precision

In this study, the calibration ranges of each SCFA were divided to analyze the plasma
and serum, as well as the feces and cecum tissue, because the amounts of SCFA in the feces
and cecum tissue were much higher than those in the plasma and serum. Table 2 shows the
two calibration curve parameters for each SCFA, including the calibration range, limit of
detection (LOD), and limit of quantification (LOQ). The LOQ of propionic acid, butyric acid,
and valeric acid, which was calculated from the calibration range for the analysis of plasma
and serum, ranged between 12.67–28.06, which was lower than in a previous study [14].
The relative standard deviation (RSD) values of inter-day precision of three concentration
levels (Table A2) were less than 10%, which was within the acceptable range of the relevant
guidelines (Table 2) [25,26]. We thus confirmed the precision of the developed method.

Table 2. Calibration range, limit of detection (LOD), limit of quantification, and inter-day precision
values for SCFAs.

SCFAs
Calibration

Range
(µg/mL)

LOD
(ng/mL)

LOQ
(ng/mL)

Inter-Day Precision
(n = 15, RSD%)

Low Medium High

Acetic acid a 0.75–20 176.15 528.45 6.22 5.13 5.02
Propionic acid a 0.05–2 9.35 28.06 6.18 6.96 8.18

Butyric acid a 0.025–2 6.66 19.99 4.44 2 3.26
Valeric acid a 0.015–2 4.22 12.67 9.76 6.10 8.2

Acetic acid b 20–500 159.69 526.98 1.92 1.35 1.51
Propionic acid b 2–200 225.99 745.77 3.82 4.03 2.72

Butyric acid b 2–200 31.27 103.19 4.5 4.91 3.29
Valeric acid b 1–200 42.69 140.88 4.46 5.63 6.11

a Calibration ranges for analysis of SCFAs in the plasma and serum; b Calibration ranges for analysis of SCFAs in
the feces and cecum tissue; RSD, Relative standard deviation.

2.2.2. Parallelism

The slope parallelism results between the slope of water and the biological sample
were 0.98 to 1.02, respectively, with a standard deviation (SD) less than 0.02 (Table 3).
Improved results were obtained compared with previous studies, especially for butyric
acid and valeric acid, which were measured as 0.82 and 0.83, respectively [20]. Relative
error (RE) was measured between the extrapolated negative X-intercept value from the
curve in the biological sample and the interpolated concentration from the curve in water.
The mean RE values were less than 10% (Table 3). The two parallelism assessment results
indicate that water is a feasible surrogate matrix for the quantification of SCFAs in plasma,
serum, feces, and cecum tissue.

2.2.3. Recovery and Matrix Effect

The recovery was evaluated at three concentration levels for SCFAs in plasma, serum,
feces, and cecum tissue (Table 4). The mean recovery results ranged from 94.89–109.32%,
and these results validated the consistent extraction efficiencies for SCFAs in the target bio-
logical samples. The matrix effects at three concentration levels ranged from 97.18–108.37%
(Table 4), with an SD of less than 6.52%, and these results were improved over those in a
previous study, which found a range of 65–74% of the matrix effect value for acetic acid [30].
In conclusion, the developed method can be applied for the quantification of SCFAs in
plasma, serum, feces, and cecum tissue.
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Table 3. Parallelism results including slope comparison and relative error (RE) of SCFA concentration
obtained from the curve in the biological matrix and water. Presented values are mean ± standard
deviation.

Matrix SCFAs

Parallelism (n = 6)

Slope (Water/Biological
Matrix)

RE% of SCFA
Concentration

Plasma

Acetic acid 0.98 ± 0.02 6.59 ± 0.04
Propionic acid 1.02 ± 0.01 9.98 ± 0.12

Butyric acid 0.99 ± 0.01 6.36 ± 0.04
Valeric acid 0.97 ± 0.02 6.17 ± 0.03

Serum

Acetic acid 0.98 ± 0.01 4.01 ± 3.36
Propionic acid 0.97 ± 0.02 6.89 ± 4.58

Butyric acid 0.98 ± 0.01 3.73 ± 1.51
Valeric acid 0.98 ± 0.02 6.43 ±3.33

Feces

Acetic acid 0.99 ± 0.01 3.77 ± 4.12
Propionic acid 0.98 ± 0.02 2.84 ± 2.88

Butyric acid 1 ± 0.02 3.57 ± 2.85
Valeric acid 0.99 ± 0.01 3.43 ± 3.02

Cecum tissue

Acetic acid 1.01 ± 0.02 3.87 ± 3.26
Propionic acid 1 ± 0.02 6.87 ± 4.62

Butyric acid 1 ± 0.02 4.5 ± 3.14
Valeric acid 1 ± 0.02 5.81 ± 4.76

Table 4. Recovery and matrix effect values evaluated at three concentration levels. Presented values
are mean ± standard deviation.

Matrix SCFAs
Recovery (%, n = 3) Matrix Effect (%, n = 6)

Low Medium High Low Medium High

Plasma

Acetic acid 102.12 ± 4.41 108.95 ± 2.06 103.62 ± 3 107.19 ± 6.42 99.73 ± 3.52 99.9 ± 1.81
Propionic acid 101.62 ± 4.23 109.32 ± 2.69 103.45 ± 2.82 98.26 ± 6.52 97.31 ± 6.06 102.51 ± 1.28

Butyric acid 100.26 ± 3.68 106.69 ± 2.61 101.8 ± 2.29 107.14 ± 5.33 99.03 ± 3.29 100.68 ± 0.77
Valeric acid 97.27 ± 4.21 105.84 ± 3.33 103.96 ± 2.67 105.19 ± 2.88 98.93 ± 1.96 102 ± 1.15

Serum

Acetic acid 95.9 ± 3.45 98.98 ± 4.92 98.75 ± 2.48 101.64 ± 5.97 99.76 ± 2.48 100.18 ± 1.48
Propionic acid 97.66 ± 5.41 100.36 ± 4.28 98.61 ± 3.96 108.37 ± 2.97 100.29 ± 3.7 103.08 ± 1.26

Butyric acid 95.65 ± 6.04 100.3 ± 3.92 98.88 ± 2.55 102.25 ± 1.59 101.88 ± 2.3 100.85 ± 0.36
Valeric acid 96.14 ± 5.94 102.95 ± 3.58 100.07 ± 4.04 99.54 ± 1.56 100.46 ± 0.94 101.69 ± 1.7

Feces

Acetic acid 97.7 ± 3.16 102.78 ± 4.15 107.58 ± 3.7 103.91 ± 2.36 99.54 ± 2.2 101.22 ± 1.11
Propionic acid 96.59 ± 4.38 102.26 ± 4.14 107.12 ± 3.91 107.78 ± 4.65 103.51 ± 5.89 97.65 ± 1.57

Butyric acid 98.98 ± 2.36 102.09 ± 5.13 106.43 ± 3.97 105.29 ±5.1 98.92 ± 4.03 97.83 ± 1.54
Valeric acid 98.77 ± 5.03 102.76 ± 4.46 106.6 ± 4.06 103.34 ± 2.42 99.94 ± 2.51 98.59 ± 1.21

Cecum tissue

Acetic acid 100.7 ± 2.34 96.37 ± 4.72 99.47 ± 2.46 99.02 ± 2.89 97.18 ± 2.32 98.7 ± 2.53
Propionic acid 94.89 ± 5.4 95.35 ± 6.05 99.74 ± 2.74 102.69 ± 2.22 99.45 ± 1.12 98.5 ± 1.15

Butyric acid 98.94 ± 4.26 95.98 ± 6.26 100.3 ± 2.95 103.29 ± 5.82 99.96 ± 2.56 98.34 ± 1.16
Valeric acid 98.21 ± 6.26 96.14 ± 6.71 100.49 ± 2.88 99.67 ± 2.66 99.76 ± 1.53 99.06 ± 1.53

2.3. Quantification of the SCFAs in the Biological Samples

We quantified the SCFAs using the validated method in 10 human plasmas, 20 sera,
and 10 feces, and 6 mouse cecum tissues to determine whether the validated method can
be applied in biological samples (Table 5). The serum, feces, and cecum tissue samples
were quantified within the calibration range. Among the 10 plasma samples, two butyric
acids and three valeric acids were quantified at lower than the calibration range. The
concentration ranges of SCFAs in this study were similarly determined from previous
studies in each human plasma [31], serum [8], feces [32], and mouse cecum tissue [33].
The quantification results indicate that the developed method can be applied to the four
biological matrices. In addition, the composition of the SCFAs was similarly determined in
this study, compared to the previous studies. The composition of the SCFAs found in the
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human serum, i.e., acetic acid, propionic acid, and butyric acid, were analyzed to be 92:7:1,
respectively. In a previous study, the composition of acetic acid, propionic acid, and butyric
acid in human serum was reported to be 95:4:1, respectively [8]. In the human colon, the
composition of acetic acid, propionic acid, and butyric acid is 60:20:20, respectively [34]. In
our results, a similar composition of acetic acid, propionic acid, and butyric acid was found
in human feces, i.e., 53:26:21, respectively.

Table 5. Quantification results of the SCFA in the plasma, serum, feces, and mouse cecum tissue.
Presented values are range with mean ± standard deviation.

SCFAs Plasma a (ng/mL)
n = 10

Serum (ng/mL)
n = 20

Feces (µg/g)
n = 10

Cecum Tissue (µg/g)
n = 6

Acetic acid 1504.21–2906.72
(2077.55 ± 456.35)

4788.13–8823.54
(6561.86 ± 1068.53)

1251.97–4193.4
(2849.87 ± 1040.81)

2262–4363.38
(2907.17 ± 691.22)

Propionic acid 63.94–184.89
(97.57 ± 37.78)

247.69–757.96
(516.93 ± 108.27)

668.82–2398.44
(1406.92 ± 487.19)

308.13–566.11
(399.31 ± 86.59)

Butyric acid 25.5–63.61
(38.77 ± 13)

45.01–105.76
(72.78 ± 17.65)

342.08–1966.7
(1086.97 ± 514.29)

865.21–1353.25
(1008 ± 168.88)

Valeric acid 18.04–28.34
(22.52 ± 3.35)

20.44–77.65
(38.26 ± 16.42)

86.17–412.25
(199.91 ± 107.49)

43.14–85.53
(65.96 ± 12.73)

a The concentrations lower than the calibration range (butyric acid, n = 2; valeric acid, n = 3) were excluded from
the statistics.

3. Materials and Methods
3.1. Chemicals and Reagents

The reference standards, including acetic acid (purity ≥ 99%), propionic acid (purity
≥ 99.5%), butyric acid (purity ≥ 99.5%), valeric acid (purity ≥ 99.8%), and acetic acid-d4
(purity ≥ 99.5%) were obtained from Sigma-Aldrich (South Korea), and the butyric acid-d7
(purity ≥ 98%) was obtained from Cayman Chemical (Ann Arbor, MI, USA).

The reagents, including 37% HCl, MTBE (purity ≥ 99.5%), DE (purity ≥ 99.9%),
chloroform (Chl, purity ≥ 99.5%), n-hexane (HA, purity ≥ 95%), bovine serum albumin
(BSA), phosphate buffer saline (1.0 M), and dextran-coated charcoal were obtained from
Sigma-Aldrich (Darmstadt, Germany), and distilled water was obtained from J. T. Baker
(Phillipsburg, NJ, USA).

3.2. Preparation of Standard Solutions

Stock solutions of each SCFA were prepared in water at the concentration of 10 mg/mL.
Working and calibration solutions of SCFAs were also prepared in water. Internal standard
(IS) solutions (acetic acid-d4 and butyric acid-d7) were prepared in water, at the concen-
tration of 100 µg/mL and 10 µg/mL (for plasma and serum analysis) or 500 µg/mL and
30 µg/mL (for feces and cecum tissue analysis), respectively. All the solutions were stored
at 4 ◦C. The stabilities of the solutions were evaluated weekly, and RSD lower than 5% was
observed.

3.3. Biological Sample Preparation

Human plasmas, sera, and feces were obtained from healthy fasting volunteers and
the mouse cecum tissues were collected immediately after sacrifice. All the biological
samples were kept at −80 ◦C until analysis. For the analysis of the sample, the plasma and
serum were thawed at 4 ◦C. Water was added to feces and cecum tissue at 500 µL: 50 mg
ratio right before the sample analysis. The feces samples were vortexed for 20 min, and
the cecum tissues were homogenized using TissueRuptor (Qiagen, Hilden, Germany). The
homogenized feces and homogenized cecum tissue were centrifuged for 5 min at 18,341× g
and 4 ◦C, and the supernatants were transferred into a 1.5 mL plastic tube.
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3.4. Extraction Procedure

A 100 µL of standard solution, plasma, serum, homogenized feces, and homogenized
cecum tissue were transferred into a 1.5 mL plastic tube. Then, 10 µL of 1.0 M HCl was
added to the samples. Consecutively, each 10 µL of the IS working solutions was spiked to
facilitate quantification of SCFAs [26]. The mixture was vortexed for 1 min and centrifuged
for 5 min at 18,341× g and 4 ◦C. A 100 µL of supernatants were transferred into new 1.5 mL
plastic tubes, and then 200 µL of MTBE was added to induce LLE. The LLE was processed
by vigorously vortexing the mixture for 20 min and then centrifuged for 5 min at 18,341× g
and 4 ◦C. Finally, 100 µL of MTBE phase was transferred into an autosampler vial with a
glass insert and analyzed by GC/MS.

3.5. Extraction Recovery

The extraction recovery was evaluated to optimize the extraction solvent for SCFAs in
acidified water. The 100 µL SCFA standard mixture at a certain concentration (8 µg/mL
for acetic acid and 0.8 µg/mL for propionic, butyric, and valeric acid, respectively) was
acidified with 10 µL of 1.0 M HCl. The mixture was extracted with 200 µL of each organic
solvent: DE, MTBE, Chl, and HA. The peak area of each SCFA was compared to the SCFA
standard mixture at the same concentration, dissolved in water. The extraction recovery
(%) was analyzed in triplicate and was calculated as A/B × 100, where A is the peak area
of SCFA extracted with each solvent, and B is the peak area of SCFA dissolved in water.
The extraction recovery value was analyzed in triplicate and expressed as mean ± SD.

3.6. Surrogate Matrix Selection

We processed the surrogate matrix selection by evaluating the spike recovery with
an authentic biological matrix. We tested stripped plasma (8.0 g dextran-coated charcoal
in 50 mL of plasma), BSA solution (2 mg/mL of BSA in 1.0 M phosphate buffer saline),
and water to select the surrogate matrix. A total of 20 µL of SCFA standard mixture (at
40 µg/mL for acetic acid and 4 µg/mL for propionic, butyric, and valeric acid, respectively)
and 20 µL of IS solution (at 50 µg/mL for acetic acid-d4 and 5 µg/mL for butyric acid-d7)
were spiked in the surrogate and biological matrices. A blank sample was also prepared
to correct the amount of the baseline SCFA. The samples were extracted as described in
the extraction procedure. The spike recovery (%) was calculated as A/B × 100, where A is
the peak area ratio (peak area of SCFA/peak area of the corresponding IS) of SCFA in the
surrogate matrix and B is the peak area ratio of SCFA in the biological sample. The spike
recovery was analyzed in triplicate, and the results were presented as mean ± SD.

3.7. GC/MS Analysis

The sample analysis was performed using an Agilent 7890B gas chromatograph
(Agilent Technologies Inc., Santa Clara, CA, USA), coupled with an Agilent 7000B triple
quadrupole mass spectrometer (Agilent Technologies Inc., Santa Clara, CA, USA). A total
of 1 µL aliquots of the samples were injected at different split ratios; for the plasma and
serum, the samples were injected with a front inlet split ratio of 10, whereas the split ratio of
100 was used for the feces and cecum tissue analyses. The injected samples were separated
through the DB-FFAP (free fatty acid phase) column (30 m × 0.25 mm id, 0.25 µm; J&W
Scientific, Folsom, CA, USA). Helium (purity ≥ 99.999%) gas was used as a carrier gas at a
constant flow of 1.0 mL/min. The initial GC oven temperature was 40 ◦C, held for 2 min,
increased by 40 ◦C/min to 95 ◦C, held for 1 min, increased by 5 ◦C/min to 140 ◦C, and
then finally increased by 40 ◦C/min to 200 ◦C. The post-run time was 6 min at 240 ◦C. The
transfer line, ion source, and quadrupole temperatures were set to be 280, 230, and 150 ◦C,
respectively. The energy of electron ionization was set to 70 eV.

The MS data of the analytes were acquired in full scan mode from m/z range 40–150.
The identification of compounds was achieved by the injection of chemical standards
and comparison of the retention time and corresponding MS spectra. The analytes were
quantified in the selected ion monitoring (SIM) mode using target ions (60.0, 63.0, and
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74.0 m/z) and confirmed by confirmative ions (43.0, 45.0, 46.0, and 73.0 m/z), as shown in
Table 1. The compounds were integrated with the specific m/z value. Data were acquired
and analyzed using the Masshunter quantitative program B.06.00 (Agilent Technologies
Inc., Santa Clara, CA, USA) and Graphpad Prism 7.00 (GRAPH PAD Software Inc., San
Diego, CA, USA).

3.8. Method Validation

The validation was processed by referring to the relevant bioanalytical guidelines [25,26].

3.8.1. Calibration Curve, Linearity, and Precision

The two calibration ranges were developed for each SCFA. One was the calibration
range for analysis of the plasma and serum, and the other was the calibration range
for analysis of the feces and cecum tissue. Eight concentration levels of the calibration
standards, diluted in water, were prepared and extracted as described in the extraction
procedure. The calibration curve was constructed by plotting the peak area ratio of each
SCFA to the corresponding IS versus the concentration of each SCFA, and linear regression
was performed. The linearity of the calibration curve of each SCFA was determined by the
calculated coefficient of determination (R2) value over 0.99 (n = 5). The LOD was calculated
as: 3.3 × Sa/b, where Sa is the SD of the Y-intercept (n = 5), and b is the slope of the linear
regression curve [35,36]. The LOQ was calculated as 3 × LOD. Inter-day precision was
evaluated at three different concentration levels (low, medium, and high) of SCFA working
solutions (Table A2). Five replicates of the samples were analyzed during three different
days, and the inter-day precision was expressed as RSD.

3.8.2. Parallelism

Parallelism was evaluated using the standard addition approach. Each water and
biological sample was divided into aliquots of 100 µL and then extracted as described in
the extraction procedure. Then the same amount of eight concentration levels of calibration
solutions and the IS solution were spiked in each aliquot to construct the standard curve by
linear regression. The parallelism was analyzed in sextuplicate in each biological sample
type. The slope of the curve between the water and the biological matrix was compared
and calculated as slope of the curve in water/slope of the curve in the biological sample.
The slope comparison results were expressed as mean ± SD. The parallelism was also
evaluated by measuring the RE% and calculated as |A − B|/A, where A is the negative
X-intercept value of extrapolated curve in the biological sample, and B is the biological
sample interpolated from the curve in the water. RE values were expressed as mean ± SD.

3.8.3. Recovery and Matrix Effect

The developed method employs the sample extraction procedure. Thus, the recovery
of the biological samples was evaluated by spiking the SCFA working solutions, either
pre-or post-extraction step. The recovery (%) was calculated as A/B × 100%, where A is
the peak area of SCFA in the post-extraction spiked samples, and B is the peak area of the
SCFA in the pre-extraction spiked samples. The recovery values were evaluated at three
concentration levels of the SCFA working solutions (Table A2) and represented as mean ±
SD (n = 3).

For the matrix effect evaluation, each water and biological sample was spiked with
three concentration levels of the SCFA working solutions (Table A2) and an equal amount of
IS working solution and then extracted as described in the extraction procedure. The blank
biological sample spiked with the IS working solution was also prepared and extracted
to correct the baseline. The matrix effect value (%) was calculated as (A − B)/C × 100%,
where A is the peak area ratio of SCFA in the spiked biological sample, B is the peak area
ratio of SCFA in the blank biological sample, and C is the peak area ratio of SCFA in the
spiked water sample. The matrix effect was evaluated from six different origins by each
biological matrix, and the results are expressed as mean ± SD.
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4. Conclusions

An improved method was developed by employing a surrogate matrix approach and
GC/MS for the quantification of SCFAs from human plasma, serum, feces, and mouse ce-
cum tissue. SCFAs extracted with MTBE were successfully detected without derivatization.
The water was a feasible surrogate matrix and could be applied without the additional use
of the biological samples to prepare the calibration standards. This developed method was
validated in terms of parallelism, recovery, and matrix effect. The method can be used as a
simple and accurate SCFA profiling method in gut microbiome–host interaction studies.
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Table A1. Spike recovery results between water and serum, feces, and cecum (n = 3, mean ± standard
deviation).

SCFAs Serum Feces Cecum

Acetic acid 92.78 ± 0.96 98.26 ± 1.21 100.27 ± 1.17
Propionic acid 96.04 ± 1.17 105.33 ± 1.87 105.77 ± 6.35

Butyric acid 100.08 ± 1.02 104.67 ± 3.64 105.16 ± 5.74
Valeric acid 97.09 ± 0.88 104.3 ± 5.05 108.29 ± 4.24

Table A2. Spiked concentration levels in each calibration range.

SCFAs

Spiked Concentration Levels for
Calibration Ranges of Plasma and

Serum (µg/mL)

Spiked Concentration Levels for
Calibration Ranges of Feces and

Cecum Tissue (µg/mL)

Low Medium High Low Medium High

Acetic acid 2.25 8 15 60 250 375
Propionic acid 0.15 0.8 1.5 6 90 150

Butyric acid 0.075 0.8 1.5 6 90 150
Valeric acid 0.045 0.8 1.5 3 30 150
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